Skip to main content

Studying the Effect of Different \(L_p\) Norms in the Context of Time Series Ordinal Classification

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2021)

Abstract

Time Series Ordinal Classification (TSOC) is yet an unexplored field of machine learning consisting in the classification of time series whose labels follow a natural order relationship between them. In this context, a well-known approach for time series nominal classification was previously used: the Shapelet Transform (ST). The exploitation of the ordinal information was included in two steps of the ST algorithm: 1) by using the Pearson’s determination coefficient (\(R^2\)) for computing the quality of the shapelets, which favours shapelets with better ordering, and 2) by applying an ordinal classifier instead of a nominal one to the transformed dataset. For this, the distance between labels was represented by the absolute value of the difference between the corresponding ranks, i.e. by the \(L_1\) norm. In this paper, we study the behaviour of different \(L_p\) norms for representing class distances in ordinal regression, evaluating 9 different \(L_p\) norms with 7 ordinal time series datasets from the UEA-UCR time series classification repository and 10 different ordinal classifiers. The results achieved demonstrate that the Pearson’s determination coefficient using the \(L_{1.9}\) norm in the computation of the difference between the shapelet and the time series labels achieves a significantly better performance when compared to the rest of the approaches, in terms of both Correct Classification Rate (CCR) and Average Mean Absolute Error (AMAE).

This work has been subsidised by “Ministerio de Economía y Competitividad del Gobierno de España y Fondos FEDER” (grant reference: TIN2017-85887-C2-1-P), by “Consejería de Salud y Familia de la Junta de Andalucía” (grant reference: PS-2020-780) and by “Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía” (grant reference: UCO-1261651). Víctor Manuel Vargas’s research has been subsidised by the FPU Predoctoral Program of the Spanish Ministry of Science, Innovation and Universities (MCIU), grant reference FPU18/00358.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code used in this paper and results achieved are available in the website https://github.com/dguijo/TSOC/releases/tag/1.0.1.

  2. 2.

    Code is available in the website https://github.com/alan-turing-institute/sktime.

  3. 3.

    These classifiers are available in the website https://github.com/ayrna/orca.

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, pp. 283–287. IEEE (2009)

    Google Scholar 

  2. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bagnall, A., Lines, J., Keogh, E.: The UEA UCR time series classification archive (2018). http://timeseriesclassification.com

  4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Gentile, C.: The robustness of the p-norm algorithms. Mach. Learn. 53(3), 265–299 (2003)

    Article  Google Scholar 

  6. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  7. Guijo-Rubio, D., et al.: Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport. Atmos. Res. 236, 104798 (2020)

    Google Scholar 

  8. Guijo-Rubio, D., Durán-Rosal, A.M., Gómez-Orellana, A.M., Gutiérrez, P.A., Hervás-Martínez, C.: Distribution-based discretisation and ordinal classification applied to wave height prediction. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J. (eds.) IDEAL 2018, pp. 171–179. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03496-2

  9. Guijo-Rubio, D., Gutiérrez, P.A., Bagnall, A., Hervás-Martínez, C.: Time series ordinal classification via shapelets. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  10. Guijo-Rubio, D., Gutiérrez, P.A., Tavenard, R., Bagnall, A.: A hybrid approach to time series classification with shapelets. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.J., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol. 11871, pp. 137–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33607-3_16

    Chapter  Google Scholar 

  11. Guijo-Rubio, D., Gutiérrez, P.A., Bagnall, A., Hervás-Martínez, C.: Ordinal versus nominal time series classification. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 19–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0_2

    Chapter  Google Scholar 

  12. Gutiérrez, P.A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernandez-Navarro, F., Hervás-Martínez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  13. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ju, H., Lee, D., Hwang, J., Namkung, J., Yu, H.: PUMAD: PU metric learning for anomaly detection. Inf. Sci. 523, 167–183 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ke, T., Zhang, L., Ge, X., Lv, H., Li, M.: Construct a robust least squares support vector machine based on LP-norm and l\(\infty \)-norm. Eng. Appl. Artif. Intell. 99, 104134 (2021)

    Google Scholar 

  16. Kivinen, J., Warmuth, M.K., Hassibi, B.: The p-norm generalization of the LMS algorithm for adaptive filtering. IEEE Trans. Signal Process. 54(5), 1782–1793 (2006)

    Article  Google Scholar 

  17. Liu, M., Gleich, D.F.: Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering. arXiv preprint arXiv:2006.08569 (2020)

  18. Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J.: sktime: a unified interface for machine learning with time series. In: Workshop on Systems for ML at NeurIPS 2019 (2019)

    Google Scholar 

  19. Rudin, C.: The p-norm push: a simple convex ranking algorithm that concentrates at the top of the list (2009)

    Google Scholar 

  20. Sánchez-Monedero, J., Gutiérrez, P.A., Pérez-Ortiz, M.: ORCA: a Matlab/Octave toolbox for ordinal regression. J. Mach. Learn. Res. 20(125), 1–5 (2019)

    Google Scholar 

  21. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  22. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  23. Thurnhofer-Hemsi, K., López-Rubio, E., Roe-Vellve, N., Molina-Cabello, M.A.: Multiobjective optimization of deep neural networks with combinations of LP-norm cost functions for 3d medical image super-resolution. Integrated Computer-Aided Engineering (Preprint), 1–19 (2020)

    Google Scholar 

  24. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956. ACM (2009)

    Google Scholar 

  25. Ye, Y.F., Shao, Y.H., Deng, N.Y., Li, C.N., Hua, X.Y.: Robust LP-norm least squares support vector regression with feature selection. Appl. Math. Comput. 305, 32–52 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Manuel Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guijo-Rubio, D., Vargas, V.M., Gutiérrez, P.A., Hervás-Martínez, C. (2021). Studying the Effect of Different \(L_p\) Norms in the Context of Time Series Ordinal Classification. In: Alba, E., et al. Advances in Artificial Intelligence. CAEPIA 2021. Lecture Notes in Computer Science(), vol 12882. Springer, Cham. https://doi.org/10.1007/978-3-030-85713-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85713-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85712-7

  • Online ISBN: 978-3-030-85713-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics