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Abstract. Additive manufacturing (AM) is a promising technology for
the rapid prototyping and production of highly customized products. The
scheduling of AM machines has an essential role in increasing profitability
and has recently received a great deal of attention. This paper investi-
gates the scheduling of batch processing of parallel 3d-printing machines
to minimize the total weighted tardiness. Accordingly, a mathematical
model is proposed to formulate the problem considering the sequence-
dependent setup time and incompatible job families, where jobs of dif-
ferent families are processed with different materials and desired quality.
Due to the high complexity of the problem, an efficient matheuristic al-
gorithm is presented based on the hybridization of a genetic algorithm
and a local search method based on mixed integer programming (MIP).
Computational results show that the proposed approach is efficient and
promising to solve the problem.

Keywords: Additive manufacturing · Batch processing · Scheduling ·
Matheuristic.

1 Introduction and Literature Review

Additive manufacturing (AM) that also called 3D-printing is a remarkable tech-
nology in the context of industry 4.0, which is rapidly developing smart manufac-
turing systems. various 3D-printing machine types are developed and applied in
prototyping, production, and biomedicine [1]. In terms of industrial production,
manufacturing companies are employing 3D-printing technology for facilitating
the fabrication of highly customized, and lighter weight products. Powder-based,
liquid-based, and solid or wire extrusion techniques are the main processing tech-
nologies applied in 3D-printing machines [2] that produce parts by depositing
material layer upon layer according to a predesigned computer pattern.
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This research focuses on the scheduling of a special kind of powder-based 3D-
printing machine known as Selective Laser Melting (SLM) machine. We consider
several independent machines working in parallel. In the SLM machine, the laser
beam hits the metal powder and welds its particles together. Then, a new layer
of metal powder is added and this process continues until the final product is
reached. In the current study, the scheduling of parallel SLM machines consists of
batching a variety of parts with incompatible job families and then determining
the allocation and sequencing of the formed batches in such a way that the total
cost of tardiness is minimized (Pm|batch, incompatible|

∑
wjTj).

According to the shift of AM from making the prototype to real parts pro-
duction, the production planning and scheduling in AM systems has changed
to a crucial problem. Special characteristics of AM environments, such as the
wide variety of orders, high production cost, high purchasing cost of AM ma-
chines in industrial dimension, and dependence on the orientation of parts in
machines, etc. have made the scheduling of AM more complex than the other
scheduling problems. Li et al. [3] proposed a mathematical model and two differ-
ent heuristics to solve the problem. Dvorak et al. [4] presented the scheduling of
3D-printing machines in a job shop while minimizing makespan and satisfying
deadlines. Li et al. [5] proposed an approach to make decisions simultaneously on
the acceptance and scheduling in AM production. Zhou et al. [6] and Maiet al. [7]
studied the scheduling of distributed AM in cloud manufacturing [8]. Regarding
to SLM machines, Li et al. [3] proposed two heuristic procedures named ‘best-fit’
and ‘adapted best-fit’ to minimize the production cost per volume of material
on nonidentical SLM machines. Griffiths et al. [9] studied part orientation and
2D bin packing in the SLM machine to minimize the production cost.

There are few studies on parallel batch processing machine scheduling in
AM. Zhang et al. [10] have developed an improved evolutionary algorithm for
(Pm|batch|Cmax) in SLA (Stereo Lithography Appearance) 3D printing ma-
chines. They have combined a genetic algorithm with a heuristic placement
strategy to take into account the allocation and placement of parts integrally.
Kucukkoc [11] has addressed scheduling problem of Single, parallel identical and
parallel non-identical AM machines to minimize the makespan. He developed
an MILP model that can easily be adopted by AM firms. Our study extended
Kucukkoc [11] research. In his research, there was only one type of material
and desired quality, and the objective function was the makespan. In contrast,
we considered parts with different material types and desired quality, sequence-
dependent setup times, and total weighted tardiness as the objective function.
Hence, a new mathematical model is presented and due to the high complex-
ity of the problem, a novel matheuristic algorithm based on the combination of
Genetic algorithm and an efficient MIP-based local search is developed. Regard-
ing to the computational results, it is clear that the proposed algorithm is an
effective step forward to solve the proposed problem.

The rest of this paper proceeds as follows. Section 2 illustrates the problem
description and presents the corresponding mixed integer linear programming
(MILP) model. In Section 3, the proposed matheuristic algorithm is described.
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Section 4 presents the computational results and evaluation of the proposed
method. Finally, Section 5 concludes the paper and presents some directions for
future research.

2 Problem Description

This section describes the investigated 3D-printing scheduling problem, its as-
sumptions, and the mathematical model. There is a set of parts (i ∈ I) with
specific properties that must be produced on a set of parallel SLM machines
(m ∈ M), while machines have different area of build platform (CAm) and
height of build platform (CHm). The characteristics of the parts include ma-
terial type (Mti ∈ K), area (api), height (hpi), volume (vpi), desired quality
(Qui ∈ Q), as well as the due date (ddi) and tardiness penalty per time unit
(tci). There is a set of batches (b ∈ B), and the parts with different families (dif-
ferent material types or different desired quality) cannot be assigned to the same
batch. The processing speed of the machine depends on the material type and
the desired quality of its allocated batch, and the processing time of each batch
depends on the total volume and the maximum height of its assigned parts. In
other words, the total volume of parts affects the total time required to melt
the metal powder and the maximum height of assigned parts affects the num-
ber of times to add a new layer of metal powder. After processing each batch,
the cleaning and setting of machines should be performed for starting the next
batch, while the time required for the new setup depends on the material type
of the previous batch. Other parameters and variables and the corresponding
mathematical model (Model 1) are as follows.

Parameters

vtkqm Time for melting material k with quality q on machine m per volume
unit

htkm Time required for powder layering of material type k on machine m

σ0k
m Setup time to start the first batch with material type k on machine m

σkk
′

m Setup time required to start the batch with material type k on machine
m when the material type of the previous batch on the machine was k′

G Big positive number

Variables

xibm 1 if part i is processed in batch b by machine m; 0, otherwise

ykqmb 1 if material k is employed for batch b on machine m to produce the
parts with quality q; 0, otherwise

pmb Processing time of batch b on machine m

tri Tardiness of part i
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Cmb Completion time of batch b on machine m

ci Completion time of part i

Min
∑
i∈I

tci · tri ∀i (1)

s.t.
∑
m∈M

∑
b∈B

xibm = 1 ∀i (2)∑
i∈I

api · xibm ≤ CAm ∀m,∀b (3)

hpi · xibm ≤ CHm ∀i,∀m,∀b (4)

ykqmb ·G ≥
∑

i∈I |Mti=k
&Qui=q

xibm ∀m,∀k, ∀q,∀b (5)

∑
k∈K

∑
q∈Q

ykqmb ≤ 1 ∀m,∀b (6)

ykqmb ≤
∑

i∈I|Mti=k
&Qui=q

xibm ∀m,∀k, ∀q,∀b (7)

∑
i′∈I
|Mti′=k
&Qui′=q

xi′bm ≤ G · (1− xibm) ∀i,∀m,∀k, ∀q,∀b | (Mti 6= k or Qui 6= q) (8)

pmb ≥ vtkqm
∑
i∈I

vpi ·xibm+htkm ·max
i∈I
{hpi ·xibm}−G·(1−ykqmb) ∀m,∀k, ∀q,∀b (9)∑

i∈I
xib+1m ≤ G ·

∑
i∈I

xibm ∀m, ∀b ≤ B − 1 (10)

Cm1 ≥ pm1 + σ0k
m −G · (1−

∑
q∈Q

ykqm1) ∀m,∀k, b = 1 (11)

Cmb ≥ Cmb−1+pmb+σ
k′k
m +G·(

∑
q∈Q

yk
′q
mb−1+

∑
q∈Q

ykqmb−2) ∀m,∀k, k′, b 6= 1 (12)

ci ≥ Cmb −G · (1− xibm) ∀i,∀m,∀b (13)

tri ≥ ci − ddi ∀i (14)

xibm, y
kq
mb ∈ {0, 1}; Cmb, ci, tri, pmb ≥ 0 ∀i,∀m,∀k, ∀q,∀b (15)

The relation (1) indicates the objective function of the problem, which is the
minimization of the total tardiness cost. Constraint (2) ensures that each part
is assigned to one batch. The capacities of SLM machines in terms of area and
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height of building platform is observed by constraints (3) and (4). Constraints
(5)-(7) determine the material type and quality of each formed batch. Constraint
(8) prevents the assignment of parts with different material and desired quality
to the same batch. The production time of each batch based on the total material
volume and the maximum height of its assigned parts is determined by constraint
(9). This constraint can be linearized by using variable γm,b instead of max

i∈I
{hpi ·

xibm} while γm,b ≥ (hpi · xibm) for all i,m and b. Constraint (10) ensures that
the parts cannot be assigned to a specific batch while its previous batch is not
formed. This constraint, along with constraints (11) and (12) are necessary to
determine the completion time of the batches. The tardiness of each part is
computed by constraints (13) and (14). Finally, Constraint (15) specifies the
ranges for the variables of Model 1.

3 Solution procedure

In this section, a hybrid algorithm called GA-MLS-α% is proposed based on a
hybridization of the genetic algorithm (GA) and a local search based on mixed-
integer programming (MIP-based local search). In this hybrid algorithm, the
GA is used to optimize the sub-problems related to determining the sequence of
parts, and allocation of parts to the machine. Then the assignment of parts to the
batches is performed by an effective heuristic named batching heuristic. Finally,
the MIP-based local search is implemented on the α% of the best solutions in
the current population to exchange the batch of parts respecting their sequence.
This process continues until the termination condition is met. This procedure
is terminated by reaching one of the cases i) a given number of iterations or
ii) a computational time limit. Fig. 1 illustrates the procedure of the proposed
algorithm.

Fig. 1. Schematic pattern of proposed Matheuristic algorithm

3.1 Solution representation and initial population

The utilized solution representation consists of a matrix S with two rows and
|I| columns. In the S matrix, the elements of the first row indicate the set of
parts (i ∈ I) while their arrangement delineates the relative execution sequence
of parts. The components in the second row determine the assigned machines to
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their corresponding part in the first row. Fig. 2 shows a solution for a problem
with 10 parts and 2 machines. In this figure, the columns with the same color
show parts that have the same material type and desired quality (same fam-
ily). For generating the initial population different rules are applied. Sequence
of parts is obtained by three rules using: i) random generation ii) shortest pro-
cessing time (SPT) first and iii) earliest due date (EDD) first. Moreover, the
assignment of machines to parts is obtained i) randomly and by ii) earliest time
of machine availability (ETA) rule [12].

Fig. 2. Solution representation for a problem with 10 parts and 2 machines

3.2 Crossover and mutation operators

The crossover and mutation operators are performed in the same way that pro-
posed by Rohaninejad et al. [13] In the crossover operator, first, ρ (1 ≤ ρ < I)
parts are randomly selected. Then, all selected parts are transferred to the first
offspring in the same sequence and position related to the first parent. The as-
signed machines for these parts are selected from the second parent. Next, the
remaining parts are transferred to the offspring respecting their sequence in the
second parent, and their assigned machines are determined according to the first
parent. A reverse procedure of the first offspring is used for the second offspring.
In the mutation operator, first, 50% of the parts are selected randomly, and their
sequence and assigned machines are determined randomly as well. The remained
parts are copied to the mutated individual according to their order of placement
and machine assignment in the previous individual.

3.3 Batching heuristic method

This section presents an effective heuristic for the assignment of parts to batches.
As shown in Fig. 2, the proposed solution representation lacks any information
regarding this decision variable. This pattern of solution representation con-
tributes to a faster search in the solution space and provides feasible solutions
in any condition in combination with the proposed batching heuristic. In this
method, the parts are assigned to an opened batch as much as possible with
maximum observance of their sequence. Algorithm 1 shows the pseudo code of
the proposed batching heuristic method.

3.4 MIP-based local search

In each iteration of the solution algorithm, an MIP-based local search is per-
formed on the α% of the best solutions in the current population. The MIP-based
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Algorithm 1: Batching (assignment of parts to the batches) heuristic

Result: The corresponding schedule of solution representation
input : The solution representation matrix (S); nb = 0; MC=[ ];MK=[ ]; RC=[ ]
for ρ = 1 to |I| do

i = S[1, ρ] and m = S[2, ρ] and k = Mti
if @ batch b ≤ nb while MC[b] =m and MK[b] = k and RC[b]≥ api then

Open new batch (b = nb+ 1) and b← i
MC[b] =m ; MK[b] = k ; RC[b] =CAm − api
nb = nb+ 1

else
Find the smallest b which MC[b]=m and MK[b]=k and RC[b]≥ api then
b← i and RC[b] =RC[b]− api

local search explores the neighborhood of the original solution. According to this
local search, the batching decision variables will be optimized again by a new
MIP model (Model 2) with respect to the sequence of parts and their assigned
machines corresponding to the original solution. The proposed local search steps
in each iteration of the GA are as follows respectively.

– Create set E including α% of the best solutions in the current pop-
ulation.

– Set the model 2 for each solution in E.

– Solve model 2 for each solution in E and determine the batching
variables again.

In Model 2, the objective function (1) and constraints (4), (6), (11), (12), (14),
and (15) are repeated without any change. Constraints (3), (5), (7), (8), (9),
(10) and (13) just needs to be written for every combination of m and i that
ω[m, i] > 0. The constraint (2) is replaced by constraint (16) and the constraints
(17) and (18) must be added in Model 2. Constraint (17) ensures that the order
of the parts with the same material and quality is according to their order on
the original solution. Constraint (18) guarantees that the parts can be processed
before a part with a lower sequence number just to fill the remaining capacity
of the previous batches.

ϕ[m] Number of parts that assigned to the machine m

ω[m, i] Sequence number of part i in solution representation if m is assigned to
i; 0, otherwise∑

b∈B | b≤ϕ[m]

xibm = 1 ∀i,∀m |ω[m, i] > 0 (16)

∑
b′=1 | b′≤ϕ[m] & b′>b

xib′m ≤ G.(1− xi′bm)

∀i,∀i′,∀m,∀b |ω[m, i] > 0 &ω[m, i′] > 0 &ω[m, i] < ω[m, i′]

&Mti = Mti′ &Qui = Qui′

(17)
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i′∈I

|ω[m,i′]>0
ω[m,i′]>ω[m,i]
&Mti′ 6=Mti
&Qui′ 6=Qui

xi′bm ≤ G.(1− xib′m) +G.
∑
i′∈I

|ω[m,i′]>0
ω[m,i′]<ω[m,i]

xi′bm

∀i,∀m,∀b ≤ ϕ[m],∀b′ ≤ ϕ[m] | b < b′ &ω[m, i] > 0

(18)

4 Computational results

In this section, 10 random instances are solved to evaluate the validation of
Model 1 and efficiency of the proposed algorithm. The instances are labeled
with (I −M −F ), which represent the number of parts, machines, and job fam-
ilies, respectively. The proposed algorithm with different α% (GA MLS α%) is
compared with two different metaheuristic algorithms that named GA BH and
GA ATC and the mathematical formulation (Model 1). The GA BH algorithm
is developed based on combination of proposed genetic algorithm and batching
heuristic. The GA ATC is a custom version of the genetic algorithm that pre-
sented by Balasubramanian et al. [14]. They proposed a GA-based algorithm
for (Pm|batch, incompatible|

∑
wjTj) while first assigns jobs to machines using

a GA, then forms batches on each machine and sequences them by a dispatching
rule called Apparent Tardiness Cost (ATC). In this study the GA algorithms
and mathematical models (Models 1 and 2) are coded by Python. Also, we have
used the CPLEX solver for solving the mathematical models. For each algorithm,
we have set the run-time limit to 1800 seconds. In Table 1, a detailed results
of proposed algorithms are given. In order to analyze the results of the table,
first the RPD% criteria is calculated for each algorithm. The RPD% specifies
the Relative Percentage Deviation from mean of the objective functions that ob-
tained by each algorithm. Accordingly, an efficient algorithm has a lower value of
RPD%. Based on this criteria, it can be found that the GA MLS 10% is the best
algorithm with the average of RPD% equal to -6.6%. The average of RPD% for
all instances are equal to -3.3%, -2.9%, 3.6%, 2.9% and 6.4% for GA MLS 5%,
GA MLS 15%, GA BH, GA ATC and CPLEX, respectively.

Fig. 3 shows the computational time of different proposed algorithms. Ac-
cording to this figure, the GA MLS α% algorithms are defensibly able to solve
medium-size problems in a reasonable time.

The box plot in Fig. 4 is employed and depicted based on RPD% criteria of
GA BH, GA ATC and GA MLS 10% as the best of GA MLS α% algorithms.
According to Fig. 4 the GA MLS 10% has significantly better performance so
that 3/4 of its RPD values are at least smaller than 3/4 of the RPD values
related to other methods.

5 Conclusion

This research addresses a scheduling problem in an AM environment with unre-
lated SLM machines and incompatible job families. A new mathematical model is
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Table 1. Compare performance of the proposed algorithms

Instances
CPLEX GA-BH GA-ATC GA-MLS-5% GA-MLS-10% GA-MLS-15%

Best

Obj

Time

(s)

Best

Obj

Time

(s)

Best

Obj

Time

(s)

Best

Obj

Time

(s)

Best

Obj

Time

(s)

Best

Obj

Time

(s)

8-2-2 839 50 839 6 885 8 839 11 839 18 839 26

10-2-2 504 127 732 9 732 11 732 17 504 32 504 44

12-2-4 1805 >1800 1688 12 1956 15 1688 35 1688 72 1688 106

15-3-4 2994 >1800 2712 16.6 2740 22 2728 57 2642 102 2606 152

20-2-6 4779 >1800 4627 18 5074 34 4472 149 4472 330 4413 492

25-3-6 10683 >1800 10472 23 11027 55 10521 285 9860 498 10412 729

30-3-6 8840 >1800 8316 26 8532 86 8467 401 8320 784 8145 1144

35-3-6 7768 >1800 7477 28 6430 164 5925 722 5860 1365 5925 >1800

40-3-6 15318 >1800 10548 36 12919 123 9155 1640 10441 >1800 12370 >1800

45-4-6 13664 >1800 11203 56 10036 238 9712 >1800 10285 >1800 12421 >1800

Average 6689 >1457 6098 23 5795 76 5423 >512 5491 >680 5932 >810

Fig. 3. Comparing computational time Fig. 4. Comparing the RPD% (Box plot)

presented and due to the high complexity of the problem, an efficient matheuris-
tic method based on the combination of genetic algorithm and a MIP-based
local search was developed. Computational results showed the efficiency of the
proposed matheuristic method especially for medium-sized problems.

Combination of scheduling and bin packing of parts in 3D-printing machines
can be an interesting topic for further research. Besides, studying the given prob-
lem with stochastic parameters (e.g, setup time, demand, and available time of
machines) brings the problem closer to more realistic conditions.
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