Skip to main content

Distributed Top-k Pattern Mining

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Abstract

Frequent pattern mining (\(\mathsf {FPM}\)) on a single large graph has been receiving increasing attention since it is crucial to applications in a variety of domains including e.g., social network analysis. The \(\mathsf {FPM}\) problem is defined as finding all the subgraphs (a.k.a. patterns) that appear frequently in a large graph according to a user-defined frequency threshold. In recent years, a host of techniques have been developed, while most of them suffers from high computational cost and inconvenient result inspection. To tackle the issues, in this paper, we propose an approach to mining top-k patterns from a single graph G under the distributed scenario. We formalize the distributed top-k pattern mining problem by incorporating viable support and interestingness metrics. We then develop a parallel algorithm, that preserves early termination property, to efficiently discover top-k patterns. Using real-life and synthetic graphs, we experimentally verify that our algorithm is rather effective and outperforms traditional counterparts in both efficiency and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amazon. http://snap.stanford.edu/data/amazon-meta.html

  2. Pokec social network. http://snap.stanford.edu/data/soc-pokec.html

  3. Abdelhamid, E., Abdelaziz, I., Kalnis, P., Khayyat, Z., Jamour, F.T.: ScaleMine: scalable parallel frequent subgraph mining in a single large graph. In: West, J., Pancake, C.M. (eds.) Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC, pp. 716–727. IEEE Computer Society (2016)

    Google Scholar 

  4. Abdelhamid, E., Canim, M., Sadoghi, M., Bhattacharjee, B., Chang, Y., Kalnis, P.: Incremental frequent subgraph mining on large evolving graphs. IEEE Trans. Knowl. Data Eng. 29(12), 2710–2723 (2017)

    Article  Google Scholar 

  5. Ashraf, N., et al.: WeFreS: weighted frequent subgraph mining in a single large graph. In: Perner, P. (ed.) Advances in Data Mining - Applications and Theoretical Aspects, 19th Industrial Conference, ICDM, pp. 201–215. IBAI publishing (2019)

    Google Scholar 

  6. Aslay, Ç., Nasir, M.A.U., Morales, G.D.F., Gionis, A.: Mining frequent patterns in evolving graphs. In: Cuzzocrea, A., et al. (eds.) Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM, pp. 923–932. ACM (2018)

    Google Scholar 

  7. Bhuiyan, M., Hasan, M.A.: An iterative MapReduce based frequent subgraph mining algorithm. IEEE Trans. Knowl. Data Eng. 27(3), 608–620 (2015)

    Article  Google Scholar 

  8. Chen, H., Liu, M., Zhao, Y., Yan, X., Yan, D., Cheng, J.: G-miner: an efficient task-oriented graph mining system. In: Oliveira, R., Felber, P., Hu, Y.C. (eds.) Proceedings of the Thirteenth EuroSys Conference, EuroSys, pp. 32:1–32:12. ACM (2018)

    Google Scholar 

  9. Chi, Y., Xia, Y., Yang, Y., Muntz, R.R.: Mining closed and maximal frequent subtrees from databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng. 17(2), 190–202 (2005)

    Article  Google Scholar 

  10. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. TPAMI 26(10), 1367–1372 (2004)

    Article  Google Scholar 

  11. Dhifli, W., Aridhi, S., Nguifo, E.M.: MR-Simlab: scalable subgraph selection with label similarity for big data. Inf. Syst. 69, 155–163 (2017)

    Article  Google Scholar 

  12. Elseidy, M., Abdelhamid, E., Skiadopoulos, S., Kalnis, P.: GRAMI: frequent subgraph and pattern mining in a single large graph. PVLDB 7(7), 517–528 (2014)

    Google Scholar 

  13. Fan, W., Wang, X., Wu, Y.: Performance guarantees for distributed reachability queries. PVLDB 5(11), 1304–1315 (2012)

    Google Scholar 

  14. Fiedler, M., Borgelt, C.: Subgraph support in a single large graph. In: Workshops Proceedings of the 7th IEEE International Conference on Data Mining, pp. 399–404. IEEE Computer Society (2007)

    Google Scholar 

  15. Gong, N.Z., et al.: Evolution of social-attribute networks: measurements, modeling, and implications using google+. In: IMC (2012)

    Google Scholar 

  16. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx: graph processing in a distributed dataflow framework. In: 11th USENIX Symposium on Operating Systems Design and Implementation (2014)

    Google Scholar 

  17. Gudes, E., Shimony, S.E., Vanetik, N.: Discovering frequent graph patterns using disjoint paths. IEEE Trans. Knowl. Data Eng. 18(11), 1441–1456 (2006)

    Article  Google Scholar 

  18. Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs from graph databases. In: SIGKDD (2004)

    Google Scholar 

  19. Husain, M.F., Doshi, P., Khan, L., Thuraisingham, B.M.: Storage and retrieval of large RDF graph using Hadoop and MapReduce. In: CloudCom, pp. 680–686 (2009)

    Google Scholar 

  20. Kang, U., Faloutsos, C.: Big graph mining: algorithms and discoveries. SIGKDD Explor. 14(2), 29–36 (2012)

    Article  Google Scholar 

  21. Le, N., Vo, B., Nguyen, L.B.Q., Fujita, H., Le, B.: Mining weighted subgraphs in a single large graph. Inf. Sci. 514, 149–165 (2020)

    Article  MathSciNet  Google Scholar 

  22. Le, T., Vo, B., Huynh, V., Nguyen, N.T., Baik, S.W.: Mining top-k frequent patterns from uncertain databases. Appl. Intell. 50(5), 1487–1497 (2020)

    Article  Google Scholar 

  23. Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M., Haridi, S.: Ja-be-ja: a distributed algorithm for balanced graph partitioning. In: SASO (2013)

    Google Scholar 

  24. Ray, A., Holder, L., Choudhury, S.: Frequent subgraph discovery in large attributed streaming graphs. In: Proceedings of the 3rd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, volume 36 of JMLR Workshop and Conference Proceedings, pp. 166–181 (2014)

    Google Scholar 

  25. Rowe, M.: Interlinking distributed social graphs. In: Proceedings of Linked Data on the Web Workshop, WWW (2009)

    Google Scholar 

  26. Shao, Y., Cui, B., Chen, L., Ma, L., Yao, J., Xu, N.: Parallel subgraph listing in a large-scale graph. SIGMOD (2014)

    Google Scholar 

  27. Talukder, N., Zaki, M.J.: A distributed approach for graph mining in massive networks. Data Min. Knowl. Discov. 30(5), 1024–1052 (2016)

    Article  MathSciNet  Google Scholar 

  28. Teixeira, C.H.C., Fonseca, A.J., Serafini, M., Siganos, G., Zaki, M.J., Aboulnaga, A.: Arabesque: a system for distributed graph mining. In: Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Symposium on Operating Systems Principles, pp. 425–440. ACM (2015)

    Google Scholar 

  29. van Leeuwen, M., Bie, T.D., Spyropoulou, E., Mesnage, C.: Subjective interestingness of subgraph patterns. Mach. Learn. 105(1), 41–75 (2016)

    Article  MathSciNet  Google Scholar 

  30. Yan, D., Qu, W., Guo, G., Wang, X.: Prefixfpm: a parallel framework for general-purpose frequent pattern mining. In: 36th IEEE International Conference on Data Engineering, ICDE, pp. 1938–1941. IEEE (2020)

    Google Scholar 

  31. Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 286–295. ACM (2003)

    Google Scholar 

  32. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.: Mining top-k large structural patterns in a massive network. VLDB 4(11), 807–818 (2011)

    Google Scholar 

  33. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed graph processing system. In: Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, pp. 301–316. USENIX Association (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2021). Distributed Top-k Pattern Mining. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12859. Springer, Cham. https://doi.org/10.1007/978-3-030-85899-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85899-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85898-8

  • Online ISBN: 978-3-030-85899-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics