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Abstract. Unmanned Aerial vehicles (UAV) or drones have significant market poten-

tial due to their high mobility and cost savings. Simultaneously, the hybrid delivery 

system in which collaborative use of trucks and drones is also receiving much attention 

and intensively studied as traveling salesmen problem with drone (TSP-D). This deliv-

ery system has significant advantages since it can selectively exploit the strength of 

each vehicle.  However, in many cases, drones are only used as an assistant method of 

supporting truck delivery. In this paper, as a reverse idea, we present a new model, 

named drone routing problem with truck (DRP-T), in the form of a truck assisting 

drones' delivery.  We present a mathematical model formulated as mixed-integer linear 

programming (MILP) and conduct a comparative analysis with one of the existing TSP-

D models with an actual map-based case study. Our experiments show that it is possible 

to have substantial savings with the proposed model compared to the truck-only and 

TSP-D model. 

Keywords: Routing, Drone, Mixed integer programming. 

1 Introduction 

Logistic companies are always looking for the most costless methods to distribute 

goods across their networks. Unmanned aerial vehicles (UAV), drone, is the emerging 

technology-driven opportunity that recently received much attention for parcel deliv-

ery [1]. Compared to a regular delivery vehicle, a drone has essential advantages such 

as no costly human pilot are required, high mobility avoiding the congestion of road 

networks, spending much lower transportation cost per kilometer. Even though drones 

are fast and relatively inexpensive per mile, there are inherent limitations in their 

practical use. Since most drones are battery-powered, their flying range and loading 

capacity are much more limited than fuel-based trucks. 

One way to overcome this limitation is by adopting a collaborative use of trucks 

and drones. The problem of this collaborative system is defined as a variant of the 

traveling salesman problem (TSP), the TSP with drones (TSP-D) [2]. The first model 

of the collaboration was suggested by Murray and Chu (2015), called "Flying Side-

kick Traveling Salesman Problem (FSTSP)" [3]. In the model, the delivery truck 

moves between different customer locations to make deliveries, and the drone simul-

taneously serves another customer, launching from and returning to the truck each 

delivery. After the FSTSP, many following studies were poured out. TSP-D with 
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minimizing operational cost including transportation cost and the cost [4], FSTSP 

with considering drone's energy consumption and no-fly zone as FSTSP-ECNZ [5], 

extended TSP-D with multiple vehicles as mTSP-D [6] and similarly extending 

FSTSP to multi-drone case as m-FSTSP [7]. 

The above TSP-D based models are using both truck and drones the same or the 

drone as a secondary delivery method, despite the fact that the drone is faster and 

cheaper than the truck. In this paper, we present the drone routing problem with truck 

(DRP-T) that uses only drones as the final delivery method and trucks as supportive 

means to help deliver drones. In DRP-T, trucks are not delivering packages to cus-

tomers but carrying drones to parking locations, and drones are serving customers 

directly and returning to trucks. Compared to the TSP-D, the DRP-T limits the truck's 

use and maximizes drones' use, thoroughly enjoying the wealth of drones' mobility 

and costlessness. This paper proposes a new delivery model DRP-T with a new 

mixed-integer linear programming (MILP) formulation. The performance of the new 

delivery model was verified with comparative analysis with existing models, TSP, 

and mFSTSP. 

2 Problem description 

The DRP-T can be considered an extension of the traveling salesman problem 

(TSP), which uses a single vehicle to serve all the customers. The FSTSP, or TSP-D, 

is an extension of TSP that first appeared that adds a subsidiary delivery vehicle, a 

drone, to help serve a part of customers in the existing route of TSP. As an extension 

of the FSTSP, Murray et al. recently proposed m-FSTSP, expanding the single drone 

availability to multi-drones that achieved further improvement in delivery time while 

increasing the problem's complexity [7]. 

 

The DRP-T is not an extension of the existing mFSTSP but is a model with a dif-

ferent approach to two delivery vehicles. In contrast to m-FSTSP, which uses drones 

as an auxiliary delivery method for the truck, DRP-T uses drones as the primary de-

livery method, and the truck does not directly serve the customers but only carrying 

drones to a parking location. This routing strategy constitutes an entirely different 

delivery network with m-FSTSP. The DRP-T can be defined as an extended model of 

the Two-Echelon Vehicle Routing Problem (2E-VRP) when replacing the parking 

location with a satellite that has flexible routing for delivery vehicles (drones) not 

restricted to the assigned satellite (parking location) and having flight endurance limit 

due to drone battery capacity. Fig 1 illustrates the routes of 4 different problems TSP, 

FSTSP, mFSTSP, and DRP-T. 
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Fig. 1. Example of solutions for TSP, FSTSP, mFSTSP, and DRP-T. 
 

2.1 Mathematical model 

The DRP-T aims to minimize the truck's arrival time at the depot after serving all the 

customers. The truck selectively visits parking location j (j∈J), close enough for 

drones to make delivery. After the truck arrives at a particular location, more than one 

drone is launched to serve the customer i (i∈I). While drones are delivering items to 

customers, the vehicle moves to another location and collects returning drones. The 

following represent notations and the mathematical model of DRP-T. 

Notations 

Variables 

I : Set of customer locations. 

J : Set of parking locations and depot locations. 

0,|J| : Starting and ending depot location (0, |J| ∈J). 

N : Set of all locations. (I, J⊂N). 

K : Set of vehicles flights 

τij’ : Traveling time (sec) between location j and j’ by truck 

τnn’
d : Traveling time (sec) between location n and n’ by drone  

E : Maximum flight time (sec) of drones 

M : Positive and large number 

Decision variables 

xjj : Binary decision variable, 1 if carrier travels from location j to j’  

ynn'
k : Binary decision variable, 1 if vehicles travel from location n to n’ in k-th 

flight. 

zjj’ : Integer decision variable, equal to available vehicles when carrier travel from 

location j to j’. 

bn
k : Real number decision variable, equal to available endurance of vehicle k 

when vehicle visit location n. 

Tt
j : Real number decision variable, time when the truck arrives at location j. 

Tdn
k : Real number decision variable, time when the vehicle k arrives at location n. 

 

Mixed integer linear programming  
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The objective function (1) seeks to minimize the truck's returning time to the depot 

after completing the delivery job. Constraint (2) and (3) describe that the truck has a 

fixed start and end location to the depot. Constraint (4) preserves the truck routing by 

forcing it to depart from node j' when visiting node j'. Constraints (5) and (6) allow all 

drones to depart/return only to the parking location that has been visited by the truck. 

In constraint (7), each customer should be served precisely once by drones. Constraint 

(8) works the same way as a constraint (4), providing flow balance for the drones. 

Constraint (9) cumulatively calculates the arrival time at each parking location j that 

has been visited by the truck. Constraint (10) calculates the arrival time of drones at 

customer i that has been visited just after launched from the carrier. The constraint 

(11) works under the same logic as a constraint (9), which calculates the arrival time 

at each node n that drones have visited. Constraint (12) allows both truck and drone to 

wait for each other at rendezvous points.  

  

The constraints (13) to (15) ensure that the available number of drones exceeds when 

the truck launch drones. First, constraint (13) states that the initial number of drones 

when the truck departs from the depot should be equal to the drone's index. The con-

straint (14) updates the number of available drones whenever the drones are launched 

or returned to the truck. In constraint (15), the number of drones launched from trucks 

should not exceed the number of drones available on the truck at that moment. 

The Fig 2 illustrates the way of how the decision variable zjj works as an example. 

 

 

The available flight time is calculated through constraints (16) and (17). Constraint 

(16) accounts for the drone's flight time in node i where is the first visit after drone 

launch. From the second visit, the flight time is updated in the constraint (17). Since 

the drones' available flight time is limited to its endurance in constraint (19), the flight 

time from launch to return will not exceed the drone's endurance. The flight time limit 

mechanism is illustrated in detail through an example in Fig 3. 

 
Fig. 3. Flight time monitoring formulation. 

 

 

Figure 1 Fig. 2. Tracking the number of available drones at each location. 
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3 Computational result 

This section presents the comparative analysis result of the comparison between 

mFSTSP and DRP-T with a case study. The case study uses problem instances gener-

ated by GPS data of two cities Seattle and Buffalo, which is online-available at 

https://github.com/optimatorlab/mFSTSP [8]. The instance set 1 (Seattle) has a broad-

er operation area with a longer average distance than set 2 (Buffalo). The detailed 

specification of each instance is provided in Table 1. Each instance set has 20 prob-

lems, 10 problems with 8 customers, and 10 problems with 10 customers. Each in-

stance has |I|/2.5 parking locations including the depot. The parking locations are 

centroid of customers found by k-mean clustering. The truck speed is set to 13 m/s. 

The drone of 23 m/s with a 55minute flight time is assumed according to DJI's 

MATRICE 300 RTK [9].  

Table 1. Case study map specification. 

Set 1 (Seattle)  Set 2 (Buffalo) 

Avg. 

Distance [m] 

Width [m] Length [m]  Avg. 

Distance [m] 

Width [m] Length [m] 

11,758.10 27,277.01 22,713.15  2,636.99 17,024.88 15,068.17 

 

As shown in Fig. 4, the TSP, mFSTSP, and DRP-T have a distinct difference in their 

route. The TSP displays only truck routes because TSP is truck-only delivery. In 

mFSTSP, parts of the TSP route are removed and replaced by drones, and more routes 

are replaced as drones are added. In the case of DRP-T, compared to the other two 

cases, the use of trucks decreased significantly, and drones were actively used. 

 

 
Fig. 4. Solution examples of (a) TSP, (b) mFSTSP with 1 drone, (c) mFSTSP with 2 drones, 

(d) DRP-T with 1 drone, (e) DRP-T with 2 drones. 

 

https://github.com/optimatorlab/mFSTSP
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Table 2 shows the computational results of mFSTSP [7] and DRP-T obtained by 

MILP.  The “% saving” captures the percentage difference of completion time com-

pared with the TSP, truck-only delivery. The central processing unit time (CPU time) 

is limited to 600 seconds, and the best feasible solution is recorded when reached the 

limit. The result shows that the completion time decreases consistently with a rise in 

the number of drones. Specifically, when there was only one drone, the DRP-T 

showed a slightly shorter makespan, but the difference expanded as more drones are 

used. The mFSTSP and DRP-T have a maximum of 44.5% and 55.8% saving, respec-

tively, compared to truck-only delivery.  

 

Table 2. Computational result of mFSTSP and DRP-T. 

   mFSTSP   DRP-T 

Customer  Num.  

Drones 

Obj 

value 

% 

Savings 

CPU 

time 

 Obj 

value 

% 

Savings 

CPU 

time 

8 Set 1  

(Seattle) 

1 2288.23 26.2317 15.8650  2211.25 29.2235 71.4610 

 2 1914.69 38.0834 37.3093  1646.75 47.1858 111.8248 

 3 1714.68 44.5361 49.5717  1531.63 50.8134 102.5860 

 Set 2  

(Buffalo) 

1 587.67 26.6612 14.6771  550.49 31.3512 61.6904 

 2 519.15 35.2892 33.8145  400.26 50.0400 69.0164 

 3 479.58 40.2486 21.0144  353.25 55.8329 50.0477 

10 Set 1  

(Seattle) 

1 2460.69 1.0584 495.4631  2156.96 13.4086 600.0061 
 2 2168.00 12.8826 568.6874  1597.41 36.0450 600.0182 
 3 2019.12 18.7561 481.1503  1446.93 41.9793 600.0315 
 Set 2  

(Buffalo) 

1 631.81 2.7722 520.2  547.57 15.5319 600.0162 
 2 537.75 17.2982 310.9816  405.13 37.8392 600.0148 
 3 515.84 20.8747 385.516  359.78 44.7325 600.0337 

 

In problem instance set 1 with a broader operation area, the completion time tends 

to be longer than 2 sets. Besides, the time reduction effect by the additional use of 

drones seemed stronger in a large area. Interestingly, however, savings showed alike 

in the two regions. It can be seen that the use of drone trucks in a large area can save 

more delivery time, but the saving ratio is constant regardless of the size of the area. 

However, for 10 customers cases, it was difficult to find such a trend since we often 

failed to find an optimal solution due to the limitation of computation time. Two more 

customers extended the calculation time exponentially which can be seen that the 

complexity of the problems is very sensitive to the number of customers. In most 

cases, mFSTSP takes less computation time than DRP-T, and both models consume 

more computation time in set1. The calculation time seems to increase as the number 

of drones increases, but some discrepancy has been observed. Fig. 5 illustrates the 

computational result of two models in a bar graph. 
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Fig. 5. Computational result of the case study. 

 

4 Sensitivity analysis 

Drone delivery is fundamentally limited by its battery capacity. In this section, sen-

sitivity analysis was performed to explore how these limitations work in the delivery 

performance in mFSTSP and DRP-T. This analysis used instance set 1 with 8 cus-

tomers presented in section 3. All parameters except flight time were applied the same 

and the flight time was set at intervals of 1000 from 2000 to 6000 seconds. 

 

Table 3. Computational result with different flight time. 

  mFSTSP   DRP-T 

Flight 

time 

Num.  

Drones 

Obj 

value 

% 

Savings 

CPU 

time 

 Obj 

value 

% 

Savings 

CPU 

time 

2000 1 2169.896 1.65246 17.8794  2122.861 4.576837 64.02608 
 2 1761.376 19.57147 51.35456  1483.226 32.74349 73.70463 
 3 1540.837 29.41033 43.46896  1327.384 39.47884 96.59067 
3000 1 2169.896 1.65246 16.96552  2091.502 5.898057 79.17365 
 2 1761.376 19.57146 48.53522  1470.155 33.36129 110.835 
 3 1540.837 29.41033 27.97567  1327.384 39.47884 96.57239 
4000 1 2169.896 1.65246 15.08001  2058.466 7.440601 81.24646 
 2 1761.376 19.57146 54.9315  1470.155 33.36129 104.1505 
 3 1540.837 29.41033 59.97488  1327.384 39.47884 87.4991 
5000 1 2169.896 1.65246 18.95264  2058.466 7.440601 81.0333 
 2 1761.376 19.57146 45.27003  1470.155 33.36129 110.9936 
 3 1540.837 29.41033 33.0208  1327.384 39.47884 94.08144 
6000 1 2169.896 8.326094 126.4467  2058.466 7.440601 82.34652 
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 2 1761.376 19.11009 177.7154  1470.155 33.36129 120.6758 
 3 1540.837 29.41033 81.27164  1327.384 39.47884 104.9229 

 

Table 3 provides the results of mFSTSP [7] and DRP-T with different flight time 

of drones. Among the 10 instances, 3 has appeared to be infeasible for the DRP-T 

model with 1 drone. This is because the DRP-T uses only drones, so the low flight 

time or the low number of drones can lead to unserviceability, unlike mFSTSP, which 

can serve customers by a truck when the drone's battery is not enough. Except the 

infeasibility, the result shows that there is not noticeably difference between flight 

times.  With longer flight time, the DRP-T shows slightly improved performance, but 

there was no significant change.  

5 Concluding remarks 

In this paper, we study a new type of collaborative delivery with drones and trucks. 

Empirical study shows that substantial saving is possible in the system compared to 

truck-only and previous truck-drone systems. Since this study proposed a new deliv-

ery system, there are many potential future research topics. One promising area is to 

develop a solution approach that provides a near-optimal solution with reasonable 

computational time. In addition, extension of the DRP-T problem with multiple trucks 

and consideration of drone recharging can be another interesting study. Since the 

model includes the battery monitoring formulation, a flexible recharging policy can 

be another extension. 
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