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1 Department of Management, Ca’ Foscari University of Venice, Italy
2 SKEMA Business School, Université Côte d’Azur, France

3 Department of Law, Economics, and Human Sciences, Mediterranea University of
Reggio Calabria, Italy

4 Department of Economics, Management, and Quantitative Methods, University of
Milan, Italy

Abstract. Supply Chains have been more and more suffering from un-
expected industrial, natural events, or epidemics that might disrupt the
normal flow of materials, information, and money. The recent pandemic
triggered by the outbreak of the new COVID-19 has pointed out the
increasing vulnerability of supply chain networks, prompting compa-
nies (and governments) to implement specific policies and actions to
control and reduce the spread of the disease across the network, and
to cope with exogenous shocks. In this paper, we present a stochastic
Susceptible-Infected-Susceptible (SIS) framework to model the spread of
new epidemics across different distribution networks and determine social
distancing/treatment policies in the case of local and global networks.
We highlight the relevance of adaptability and flexibility of decisions in
unstable and unpredictable scenarios.

Keywords: Networks, Stochastic Disruption Shocks, Stochastic Logis-
tics, COVID-19

1 Introduction

Supply Chains (SCs) have been more and more suffering from unexpected in-
dustrial, natural events, or epidemics that might disrupt the normal flow of
materials, information, and money [2][3][5]. Indeed, in recent years, studies on
supply chain disruptions are getting increased attention to both academics and
practitioners. Previous scholars (i.e. [6]) distinguished supply chain risks into
operational and disruption risks. While the operational risks relate to ordinary
issues in the SC operations (i.e. demand fluctuations), the disruption risks con-
cern mainly events which occur with low frequency but high impacts [4] such
as epidemic outbreaks. These are special category of risks in terms of duration
(from middle to long term), high uncertainty, and ripple effects’ propagation
[5]. It has been observed that pandemics can threaten SC resilience and robust-
ness. Resilience concerns the ability of SCs to recover their performance after
having absorbed change, disturbance, and the disruption effects [4]. Robustness
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refers to SCs’ ability to maintain its planned performance after a disruption
impacts [9]. Both impact on productivity performances. Throughout the his-
tory of public health, Cholera Pandemics (1817-1923), Spanish Flu (1918-1919),
HIV/AIDS (1981-present), SARS (2002-2003), Ebola (2014-2016), and MERS
(2015-present) are some of the most famous and brutal diseases that out-broke
across international borders. On March 11, 2020, the World Health Organiza-
tion officially declared COVID-19 a pandemic, causing 3.881.561 deaths until
June 15, 2021 [14]. Scientists, policymakers, and managers all over the world
have tried to forecast the pandemic evolution while at the same time keeping
it under control by implementing specific policies to manage and reduce the
spread of the disease. COVID-19 initially impacted China, which is at the center
of many Global Value Chains, thus strong disruptions on supply chains raised.
Moreover, the demand side has been affected by lockdown and consumers’ phys-
ical spending increasing the challenges on the market. The COVID-19 outbreak
re-exposes the importance of epidemic researches and the development of math-
ematical models to describe the behavior of epidemics [11]. Modeling describes
the dynamic of epidemics and helps to take informed public health interventions
[1]. Although previous research papers have successfully described the mecha-
nism by which epidemics would spread, some control strategies (i.e., vaccination
treatment, quarantine, social distancing, etc.) have been often neglected. In this
paper, we contribute to the extant literature by adopting a modified Susceptible-
Infectious-Susceptible (SIS) framework with a stochastic logistic-type formula-
tion. In this way, we can consider exogenous and external events (i.e. the Indian
COVID-19 variant) that might impact on the resilience policy, and thus on the
productivity of a supply chain. Our results can help the global supply chain
manager to understand the evolution of the epidemics and, therefore, determine
the best counteractions to be put in place. The paper is structured as follows.
Section 2 presents the Susceptible-Infected-Susceptible (SIS) Model. Section 3
points out the role played by stochastic shocks and Section 4 illustrates the shock
propagation. In Section 5, we present the numerical simulation of our model and
Section 6 concludes as usual.

2 The Susceptible-Infected-Susceptible Model

The Susceptible-Infected-Susceptible Model is one of the simplest and most
widely used framework in mathematical epidemiology. It allows to describe the
evolution of a number of infectious diseases which do not confer permanent im-
munity after recovery as in the case of COVID-19. If we denote by N the total
population, by I(t) the number of infected people, and by S(t) = N − I(t) the
number of susceptible ones, the model reads as:{

İ(t) = αI(t)S(t)− δI(t)

Ṡ(t) = αI(t)S(t) + δI(t)
(1)

where α is the infection rate and δ is the recovery parameter. By doing the
substitution S(t) = N − I(t) the model boils down to:
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İ(t) = αI(t)(N − I(t))− δI(t) (2)

which is a Bernoulli differential equation whose solution is known and pro-
vided by the following expression:

I(t) =
(1− δ

α )Ce(α−δ)t

1 + Ce(α−δ)t
(3)

where C =
1− δ

α−I(0)
I(0) ([7]). The SIS model can be used to analyze the spread

of common diseases, such as the seasonal flu and the common cold, but also of
emerging diseases. This model also applies to the analysis of as COVID-19 since
thus far there exists no evidence that people who have recovered from COVID-
19 and have antibodies are protected from a second infection ([12,13,14]). In
the following we suppose that the total population N is normalized to 1. The
following Fig. 1 shows the behavior of COVID infected with the following pa-
rameters’ values: α = 0.1328 and the recovery rate δ = 0.0476 (see [7]). In this
scenario the amount of infected converges to a plateau representing the long run
endemic equilibrium. Fig. 2, instead, shows the behavior of COVID-19 infected
people with the following parameters’ values: α = 0.1328 and the recovery rate
δ = 0.476. This scenario corresponds to the case in which the adoption of treat-
ment o vaccination campaigns produces an increment of the recovery parameter.
As a result we can observe that the number of infected people gets reduced in
the long run; we also notice that disease eradication is not possible in finite time.

Fig. 1. Deterministic evolution of the number of infected I(t)
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Fig. 2. Deterministic evolution of the number of infected I(t)

3 SIS with Stochastic Shocks

The previous section presented a fully deterministic SIS model. In the following
paragraph we make an effort to model the effects of exogenous shocks on the
epidemic evolution in order to present a more realistic scenario. Therefore we
suppose that the number of infected people is subject to exogenous shocks driven
by a Wiener process W (t) as follows:

dI(t) = [α− δ − αI(t)] I(t)dt+ σI(t)dW (t), I(0) = I0 (4)

Let us recall that a Wiener process is characterized by the following proper-
ties:

1. W (0) is deterministic and given,
2. W (t) has independent increments,
3. W (s)−W (t) is normally distributed with zero mean and variance equal to
t− s

Other stochastic processes could be considered as well. For instance Levy-
type or jump processes could be used to model other possible non-continuous
shocks. From the perspective of the extant literature, this model can be identified
as the geometric stochastic Verhulst diffusion [10]. Verhulst work was built on a
previous paper by Malthus [8] who was among the first to notice the existence
of two different regimes in the growth of world population. Verhulst model has
been at the heart of an interdisciplinary work by researcher coming from many
different field. In this context the notion of deterministic equilibrium has to be
replaced by the notion of steady state or stationary density. If we denote by
g[I(s), s; I(t), t] the probability density of I(s) at time s, conditional upon its
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value I(t) at time t, then it is well known that g satisfies the Fokker-Planck
equation, which reads as:

∂g(I, t)

∂t
= −∂ (g(I, t)I(α− δ − αI))

∂I
+

1

2
σ2 ∂

2
(
g(I, t)I2

)
∂I2

. (5)

The steady state density g(I(∞),∞, s; I(t), t) can be found by solving the

stationary equation ∂g(I,t)
∂t = 0. This yields to a second order ordinary differential

equation for g whose solution is provided by:

g[I(∞),∞, s; I(t), t] =
Id−1e−cI(c)d

Γ (d)
(6)

which is the Gamma distribution. Mean and variance of this distribution are
known and provided by υ−1

c = (θ − σ2

2α ) and θσ2

2α −
σ4

4α2 , respectively. Under the

condition that d = 2(α−δ)
σ2 − 1 > 0 the previous quantities are strictly positive.

Fig. 3 shows the stochastic behavior of COVID-19 infected people with the
following parameters’ values: α = 0.1328m, δ = 0.0476, and σ2 = 0.01. This
corresponds to the scenario in which the number of infected people fluctuates
around an endemic equilibrium. Fig. 4 shows the behaviour of I(t) with the
following parameters’ values: α = 0.1328m, δ = 0.0476, and σ2 = 0.05. A greater
value of the variance causes more amplified oscillations around the endemic
equilibrium and thus more challenges for SC managers.

Fig. 3. Stochastic evolution of the number of infected I(t)

4 Shock Propagation on a Network

As we are interested in analyzing the epidemic propagation over a supply chain
we refer to a network that is modeled by a graph G, composed by N different
nodes xi, i = 1...N . Each pair of nodes (i, j) can or cannot be connected through
an edge γij . γij will be zero if the nodes are disconnected and a positive number
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Fig. 4. Stochastic evolution of the number of infected I(t)

when the nodes are connected, with the number itself providing the linking
intensity. At each node i ∈ G, the total number of infected people is described
by:

dİi(t) =

αi − δi − αiIi(t) +
∑
j 6=i

γijIj(t)

 Ii(t)dt+ σiIi(t)dWi(t), (7)

with initial conditions Ii(t0) = I0i . The above system of N stochastic differ-
ential equations describes the spread of the epidemic across the network. The
amount of infected people at the node i grows as consequence of two effects:

1. the local spread of the epidemics,

2. the immigration of infected people moving from the other nodes j, j 6= i, to
the node i

The amount of infected is also subject to exogenous shocks, all of them driven
by a Geometric Wiener Process Wi where σi is the volatility term and the co-
variance is given by:

E(dWi(t)dWj(t)) = ρi,j (8)

where ρi,i = 1. The spread of the epidemic causes a loss of productivity. If
we define by θi, i = 1...N the per-capita productivity at the node i, the total
loss of productivity L(t) is given by:

L(t) = −
∑
i=1

θiIi(t) (9)

subject to
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dİi(t) =

αi − δi − αiIi(t) +
∑
j 6=i

γijIj(t)

 Ii(t)dt+σiIi(t)dWi(t), Ii(t0) = I0i

(10)
L is a stochastic process that describes the loss of productivity over time.

When a strict lockdown policy is put in place each node of the network is isolated
and, therefore, we can assume that γij = 0. We can also suppose that the Wiener
processes Wi are independent as the nodes are totally disconnected. In this
scenario the above system boils down to:

dİi(t) = (αi − δi − αiIi(t)) Ii(t)dt+ σiIi(t)dWi(t), Ii(t0) = I0i (11)

5 Numerical Simulations

As the number of infected people can affect the productivity level of a supply
chain, our model enables decision makers to better understand the impact of
lockdown measures. Through a numerical simulation we provide a visual repre-
sentation of different scenarios. Indeed, the numerical simulations compare the
behavior of the number of infected people over medium and large size networks.
We consider two scenarios, which correspond either to the presence or to the
absence of lockdown restrictions. We also report the average behavior and thus
the impact on the supply chain networks. In particular, Figs. 5 and 6 show
the behavior over a medium size network with 11 nodes. One can immediately
observe that the absence of lockdown restrictions allows internal flows among
the different nodes thus it increases, on average, the number of infected people
even in presence of exogenous shocks (negative or positive) and localized treat-
ment policies. The same conclusion is supported by Figs. 7 and 8 that show the
behavior over a large network with 50 nodes.

This numerical simulation shows the effects of network connectivity on the
spread of the disease at the global level. As the spread of exogenous shocks
across the network might become relevant and not controllable in the case of
connected networks. Thus it is crucial to intervene combing flow barriers between
different nodes and local intervention policies. In other words, connectivity might
compromise the benefits of implementing local vaccination campaigns.

6 Conclusion

As the virus spread and most governments imposed lockdown orders, supply
chain disruptions increased. Indeed, COVID-19 illustrated that many compa-
nies are not fully aware of the vulnerability of their supply chain relationships
to global shocks. SC managers need to balance and combine actions to serve
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Fig. 5. Evolution of infected people over a connected network with 11 nodes.

Fig. 6. Evolution of infected people over a disconnected network with 11 nodes.

Fig. 7. Evolution of infected people over a connected network with 50 nodes.
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Fig. 8. Evolution of infected people over a connected network with 50 nodes.

their customers, as well as protect and support their workers. In this paper,
we aim at analyzing the stochastic effects of the epidemic spread on a supply
chain network. We present a stochastic SIS model which assumes the form of a
stochastic logistic differential equation. Exogenous shocks are modeled by means
of a stochastic Wiener process. We present a numerical simulation and we draw
insights to support local supply chain managers to decide about the social dis-
tancing policy: he/she can take into account costs, governmental policies, and
infection parameters. We also discuss the flow of infected people from one node
to another and we provide some results to control the spread of the epidemics
across the network. These results can help the global supply chain manager
to understand the evolution of the epidemic and, therefore, determine the best
counteractions to put in place: it is evident that lockdown policies and treatment
measures have to coexist. Employees around the global supply chain need to re-
ceive the vaccine on the same timescale to ensure the best results for everyone.
Further research involves the design of a stochastic optimal control model able
to identify the best compromise between economic costs of lockdown restrictions
and implementation costs of vaccination campaigns.
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