Skip to main content

Fault-Tolerant Consensus in Wireless Blockchain System

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12937))

Abstract

In recent years, the blockchain system on multi-agents has drawn much attention from both of the broad academic research and industries due to its popular applications, such as Bitcoin [15]. Meanwhile, it is also an important part in city/industrial Internet-of-Things and artificial intelligence areas. In this paper, we investigate the fault-tolerant consensus problem in wireless blockchain system. Considering that the multi-agents in reality are inevitable to break down or send wrong messages because of some uncertain errors, in this paper, we propose a fault-tolerant consensus protocol, which can achieve consensus over multi-agents in wireless blockchain network within \(O((f+1)\log n)\) time steps with high probability. f is the upper bound of invalid agents, and n is the number of agents in the blockchain system. Rigorous theoretical analysis and extensive simulations are given to show the efficiency of our algorithm.

This work was partially supported by National Key R&D Program of China under Grant 2020YFB1005900, the Blockchain Core Technology Strategic Research Program of Ministry of Education of China (No. 2020KJ010301), and NSFC (No. 61971269, No. 620722278, No. 61832012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the probability of \(1-n^{-c}\) for some constant \(c>1\) and w.h.p. for short.

References

  1. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s proof of work via proof of stake [extended abstract]y. SIGMETRICS Perform. Eval. Rev. 42(3), 34–37 (2014)

    Article  Google Scholar 

  2. Bitcoinwiki: Proof of stake (2014). https://en.bitcoin.it/wiki/Proof_of_Stake

  3. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE Symposium on Security and Privacy (2015)

    Google Scholar 

  4. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI (1999)

    Google Scholar 

  5. Chan, W., Chin, F.Y.L., Ye, D., Zhang, G., Zhang, Y.: On-line scheduling of parallel jobs on two machines. J. Discrete Algorithms 6(1), 3–10 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chan, W., Zhang, Y., Fung, S.P.Y., Ye, D., Zhu, H.: Efficient algorithms for finding longest common increasing subsequence. J. Comb. Optim. 13(3), 277–288 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chin, F.Y.L., et al.: Competitive algorithms for unbounded one-way trading. Theor. Comput. Sci. 607(1), 35–48 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony (preliminary version). In: PODC (1984)

    Google Scholar 

  9. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_29

    Chapter  Google Scholar 

  10. Gazi, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake blockchains. In: CVCBT (2018)

    Google Scholar 

  11. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  12. King, S., Nadal, S.: PPcoin: peer-to-peer crypto-currency with proof-of-stake (2012). https://peercoin.net/assets/paper/peercoin-paper.pdf

  13. Li, F., Luo, J., Shi, G., He, Y.: ART: Adaptive fRequency-Temporal co-existing of ZigBee and WiFi. IEEE Trans. Mobile Comput. 16(3), 662–674 (2017)

    Article  Google Scholar 

  14. Li, F., Yu, D., Yang, H., Yu, J., Karl, H., Cheng, X.: Multi-Armed-Bandit-based spectrum scheduling algorithms in wireless networks: a survey. IEEE Wirel. Commun. 27(1), 24–30 (2020)

    Article  Google Scholar 

  15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  16. O’Dwyer, K.J., Malone, D.: Bitcoin mining and its energy footprint. In: ISSC/CIICT (2014)

    Google Scholar 

  17. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  Google Scholar 

  18. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9

    Chapter  Google Scholar 

  19. Yu, D., Duan, X., Li, F., Liang, Y., Yang, H., Yu, J.: Distributed scheduling algorithm for optimizing age of information in wireless networks. In: IPCCC (2020)

    Google Scholar 

  20. Xu, Q., Zou, Y., Yu, D., Xu, M., Shen, S., Li, F.: Consensus in wireless blockchain system. WASA 1, 568–579 (2020)

    Google Scholar 

  21. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: HotStuff: BFT consensus with linearity and responsiveness. In: PODC (2019)

    Google Scholar 

  22. Yu, D., Ning, L., Zou, Y., Yu, J., Cheng, X., Lau, F.C.M.: Distributed spanner construction with physical interference: constant stretch and linear sparseness. IEEE/ACM Trans. Netw. 25(4), 2138–2151 (2017)

    Article  Google Scholar 

  23. Yu, D., Wang, Y., Halldórsson, M.M., Tonoyan, T.: Dynamic adaptation in wireless networks under comprehensive interference via carrier sense. In: IPDPS (2017)

    Google Scholar 

  24. Yu, D., Zhang, Y., Huang, Y., Jin, H., Yu, J., Hua, Q.: Exact implementation of abstract MAC layer via carrier sensing. In: INFOCOM (2018)

    Google Scholar 

  25. Yu, D., et al.: Stable local broadcast in multihop wireless networks under SINR. IEEE/ACM Trans. Netw. 26(3), 1278–1291 (2018)

    Article  Google Scholar 

  26. Yu, D., Zou, Y., Wang, Y., Yu, J., Cheng, X., Lau, F.C.M.: Implementing the abstract MAC layer via inductive coloring under the Rayleigh-fading model. IEEE Trans. Wirel. Commun. https://doi.org/10.1109/TWC.2021.3072236

  27. Yu, D., et al.: Competitive age of information in dynamic IoT networks. IEEE Internet Things J. (2020). https://doi.org/10.1109/JIOT.2020.3038595

  28. Yu, D., et al.: Implementing the abstract MAC layer in dynamic networks. IEEE Trans. Mob. Comput. 20(5), 1832–1845 (2021)

    Article  Google Scholar 

  29. Yu, D., et al.: Distributed dominating set and connected dominating set construction under the dynamic SINR model. In: IPDPS (2019)

    Google Scholar 

  30. ḃibitemch112704 Yu, D., Zou, Y., Zhang, Y., Sheng, H., Lv, W., Cheng, X.: An exact implementation of the abstract MAC layer via carrier sensing in dynamic networks. IEEE/ACM Trans. Netw. (2021) https://doi.org/10.1109/TNET.2021.3057890

  31. Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial IoTs. IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020)

    Article  Google Scholar 

  32. Zhu, S., Cai, Z., Hu, H., Li, Y., Li, W.: zkCrowd: a hybrid blockchain-based crowdsourcing platform. IEEE Trans. Ind. Inform. 16(6), 4196–4205 (2020)

    Article  Google Scholar 

  33. Zhang, Y., Chen, J., Chin, F.Y.L., Han, X., Ting, H.-F., Tsin, Y.H.: Improved online algorithms for 1-space bounded 2-dimensional bin packing. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6507, pp. 242–253. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17514-5_21

    Chapter  MATH  Google Scholar 

  34. Zhu, S., Li, W., Li, H., Tian, L., Luo, G., Cai, Z.: Coin hopping attack in blockchain-based IoT. IEEE Internet Things J. 6(3), 4614–4626 (2019)

    Article  Google Scholar 

  35. Zou, Y., Xu, M., Sheng, H., Xing, X., Xu, Y., Zhang, Y.: Crowd density computation and diffusion via Internet of Things. IEEE Internet Things J. 7(9), 8111–8121 (2020)

    Article  Google Scholar 

  36. Zou, Y., et al.: Fast distributed backbone construction despite strong adversarial jamming. In: INFOCOM (2019)

    Google Scholar 

  37. Zou, Y., Yu, D., Yu, J., Zhang, Y., Dressler, F., Cheng, X.: Distributed Byzantine-Resilient multiple-message dissemination in wireless networks. In: IEEE/ACM Trans. Netw. (2021). https://doi.org/10.1109/TNET.2021.3069324

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, Y., Li, Y., Yu, D., Li, F., Zheng, Y., Zhang, Y. (2021). Fault-Tolerant Consensus in Wireless Blockchain System. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12937. Springer, Cham. https://doi.org/10.1007/978-3-030-85928-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85928-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85927-5

  • Online ISBN: 978-3-030-85928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics