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Abstract

In this work we study the metric distortion problem in voting theory under a limited
amount of ordinal information. Our primary contribution is threefold. First, we consider
mechanisms which perform a sequence of pairwise comparisons between candidates. We
show that a widely-popular deterministic mechanism employed in most knockout phases
yields distortion O(logm) while eliciting only m − 1 out of Θ(m2) possible pairwise com-
parisons, where m represents the number of candidates. Our analysis for this mechanism
leverages a powerful technical lemma recently developed by Kempe [Kem20a]. We also
provide a matching lower bound on its distortion. In contrast, we prove that any mecha-
nism which performs fewer than m− 1 pairwise comparisons is destined to have unbounded
distortion. Moreover, we study the power of deterministic mechanisms under incomplete
rankings. Most notably, when every agent provides her k-top preferences we show an upper
bound of 6m/k + 1 on the distortion, for any k ∈ {1, 2, . . . ,m}. Thus, we substantially im-
prove over the previous bound of 12m/k recently established by Kempe [Kem20a, Kem20b],
and we come closer to matching the best-known lower bound. Finally, we are concerned
with the sample complexity required to ensure near-optimal distortion with high probabil-
ity. Our main contribution is to show that a random sample of Θ(m/ε2) voters suffices
to guarantee distortion 3 + ε with high probability, for any sufficiently small ε > 0. This
result is based on analyzing the sensitivity of the deterministic mechanism introduced by
Gkatzelis, Halpern, and Shah [GHS20]. Importantly, all of our sample-complexity bounds
are distribution-independent.

From an experimental standpoint we present several empirical findings on real-life vot-
ing applications, comparing the scoring systems employed in practice with a mechanism
explicitly minimizing (metric) distortion. Interestingly, for our case studies we find that the
winner in the actual competition is typically the candidate who minimizes the distortion.
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1 Introduction

Aggregating the preferences of individuals into a collective decision lies at the heart of social
choice, and has recently found numerous applications in areas such as information retrieval,
recommender systems, and machine learning [VZ14, VLZ12, BCJ11, FH10, LN05]. According
to the classic theory of Von Neumann and Morgenstern [vNM44] individual preferences are cap-
tured through a utility function, which assigns numerical (or cardinal) values to each alternative.
Yet, in voting theory, as well as in most practical applications, mechanisms typically elicit only
ordinal information from the voters, indicating an order of preferences over the candidates.
Although this might seem at odds with a utilitarian framework, it has been recognized that it
might be hard for a voter to specify a precise numerical value for an alternative, and providing
only ordinal information substantially reduces the cognitive burden. This begs the question:
What is the loss in efficiency of a mechanism extracting only ordinal information with respect
to the utilitarian social welfare, i.e. the sum of individual utilities over a chosen candidate? The
framework of distortion introduced by Procaccia and Rosenschein [PR06] measures exactly this
loss from an approximation-algorithms standpoint, and has received considerable attention in
recent years.

As it turns out, the approximation-guarantees we can hope for crucially depend on the
assumptions we make on the utility functions. For example, in the absence of any structure
Procaccia and Rosenschein observed that no ordinal mechanism can obtain bounded distortion
[PR06]. In this work we focus on the metric distortion framework, introduced by Anshelevich
et al. [ABP15], wherein voters and candidates are thought of as points in some arbitrary metric
space; this is akin to some models in spatial voting theory [CE03]. In this context, the voters’
preferences are measured by means of their “proximity” from each candidate, and the goal
is to output a candidate who (approximately) minimizes the social cost, i.e. the cumulative
distances from the voters. A rather simplistic view of this framework manifests itself when
agents and candidates are embedded into a one-dimensional line, and their locations indicate
whether they are “left” or “right” on the political spectrum. However, the metric distortion
framework has a far greater reach since no assumptions whatsoever are made for the underlying
metric space. Indeed, the dimensionality of the space is potentially unbounded, while we are
not even restricted in Euclidean spaces.

Importantly, this paradigm offers a compelling way to quantitatively compare different
voting rules commonly employed in practice [SE17, Kem20a, GKM17, ABP15], while it also
serves as a benchmark for designing new mechanisms in search of better distortion bounds
[GHS20, MW19]. A common assumption made in this line of work is that the algorithm has
access to the entire total rankings of the voters. However, there are many practical scenarios in
which it might be desirable to truncate the ordinal information elicited by the mechanism. For
example, requesting only the top preferences could further relieve the cognitive burden since it
might be hard for a voter to compare alternatives which lie on the bottom of her list (for addi-
tional motivation for considering incomplete or partial orderings see [FKS21, CLWA13, BLP04],
and references therein), while any truncation in the elicited information would also translate
to more efficient communication. These reasons have driven several authors to study the decay
of distortion under missing information [Kem20b, AP16, GAX17, FGMP19], potentially allow-
ing some randomization (see our related work subsection). In this work we follow this line of
research, offering several new insights and improved bounds over prior results.

1.1 Contributions & Techniques

First, we study voting rules which perform a sequence of pairwise comparisons between two
candidates, with the result of each comparison being determined by the majority rule over the
entire population of voters. This class includes many common mechanisms such as Copeland’s
rule [SM96] or the minimax scheme of Simpson and Kramer [LN95], and has received consider-
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able attention in the literature of social choice; cf., see [LPR+07], and references therein. Within
the framework of (metric) distortion the following fundamental question arises:

How many pairwise comparisons between two candidates are needed to guarantee
non-trivial bounds on the distortion?

For example, Copeland’s rule (and most of the common voting rules within this class)
elicits all possible pairwise comparisons, i.e.

(
m
2

)
= Θ(m2), and guarantees distortion at most 5

[ABP15]. Thus, it is natural to ask whether we can substantially truncate the number of elicited
pairwise comparisons without sacrificing too much the efficiency of the mechanism. We stress
that we allow the queries to be dynamically adapted during the execution of the algorithm. In
this context, we provide the following strong positive result:

Theorem 1.1. There exists a deterministic mechanism which elicits only m− 1 pairwise com-
parisons and guarantees distortion O(logm).

Our mechanism is particularly simple and natural: In every round we arbitrarily pair the
remaining candidates and we only extract the corresponding comparisons. Next, we eliminate
all the candidates who lost and we continue recursively until a single candidate emerges victo-
rious. Interestingly, this mechanism is widely employed in practical applications, for example
in the knockout phases of most competitions, with the difference that typically some “prior” is
used in order to construct the pairings. The main technical ingredient of the analysis is a pow-
erful lemma developed by Kempe via an LP duality argument [Kem20a]. Specifically, Kempe
characterized the social cost ratio between two candidates when there exists a sequence of inter-
mediate alternatives such that every candidate in the chain pairwise-defeats the next one. We
also supplement our analysis for this mechanism with a matching lower bound on a carefully
constructed instance. Moreover, we show that any mechanism which performs (strictly) fewer
than m− 1 pairwise comparisons has unbounded distortion. This limitation applies even if we
allow randomization either during the elicitation or the winner-determination phase. Indeed,
there are instances for which only a single alternative can yield bounded distortion, but the
mechanism simply does not have enough information to identify the “right” candidate.

Next, we study deterministic mechanisms which only receive an incomplete order of pref-
erences from every voter, instead of the entire rankings as it is usually assumed. This setting
has already received attention in the literature, most notably by Kempe [Kem20b], and has
numerous applications in real-life voting systems. Arguably the most important such consid-
eration arises when every voter provides her k-top preferences, for some parameter k ∈ [m].
Kempe showed [Kem20b] that there exists a deterministic mechanism which elicits only the
k-top preferences and whose distortion is upper-bounded by 79m/k; using a powerful tool de-
veloped in [Kem20a] this bound can be improved all the way down to 12m/k. However, this
still leaves a substantial gap with respect to the best-known lower bound, which is 2m/k if we
ignore some additive constant factors. Thus, Kempe [Kem20b] left as an open question whether
the aforementioned upper bound can be improved. In our work we make substantial progress
towards bridging this gap, proving the following:

Theorem 1.2. There exists a deterministic mechanism which only elicits the k-top preferences
and yields distortion at most 6m/k + 1.

We should stress that the constant factors are of particular importance in the framework
of metric distortion; indeed, closing the gap even for the special case of k = m has received
intense scrutiny in recent years [ABP15, MW19, Kem20a, GHS20]. From a technical standpoint
the main technique for proving such upper bounds consists of identifying a candidate for which
there exists a path to any other node such that every candidate in the path pairwise-defeats the
next one by a sufficiently large margin (which depends on k). Importantly, the derived upper
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bound crucially depends on the length of the path. Our main technical contribution is to show
that there always exists a path of length 2 with the aforedescribed property, while the previous
best result by Kempe established the claim only for paths of length 3.

Although our approach can potentially bring further improvements, closing the gap in-
evitably requires different techniques. In particular, a promising direction appears to stem from
extending some of the claims established by Gkatzelis et al. [GHS20]. Indeed, we observe that
a natural generalization of the main technical ingredient in [GHS20] would lower the upper
bound to 4m/k− 1 (Proposition 4.7), which appears to be optimal when k is close to m. More
precisely, the authors in [GHS20] proved that a certain graph always has a perfect matching
when the entire rankings are available; we conjecture that under k-top preferences there always
exists a perfect matching for a subset of a k/m fraction of the voters (see Conjecture 4.6 for a
more precise statement).

We also provide some other interesting bounds for deterministic mechanisms under missing
information. Most notably, if the voting rule performs well on an arbitrary (potentially adver-
sarially selected) subset of the voters can we quantify its distortion over the entire population?
We answer this question with a sharp upper bound in Theorem 4.3. In fact, we use this result
as a tool for some of our other proofs, but nonetheless we consider it to be of independent
interest. It should be noted that even in the realm of partial or incomplete rankings there exists
an instance-optimal mechanism via linear programming; this was first observed by Goel et al.
[GKM17] when the total orders are available, but it directly extends in more general settings.
Interestingly, we show that the recently introduced mechanism of Gkatzelis et al. [GHS20] which
always obtains distortion at most 3 can be substantially outperformed by the LP mechanism.
Namely, for some instances the mechanism of Gkatzelis et al. [GHS20] yields distortion almost
3 while the instance-optimal mechanism yields distortion close to 1.

Finally, we consider mechanisms which receive information from only a “small” random
sample of voters; that is, we are concerned with the sample complexity required to ensure
efficiency, which boils down to the following fundamental question:

How large should the size of the sample be in order to guarantee near-optimal dis-
tortion with high probability?

More precisely, we are interested in deriving sample-complexity bounds which are indepen-
dent on the number of voters n. This endeavor is particularly motivated given that in most
applications n � m. Naturally, sampling approximations are particularly standard in the lit-
erature of social choice. Indeed, in many scenarios one wishes to predict the outcome of an
election based on small sample (e.g. in polls or exit polls), while in many other applications
it is considered even infeasible to elicit the entire input (e.g. in online surveys). In this con-
text, we will be content with obtaining near-optimal distortion with high probability (e.g. 99%).
This immediately deviates from the line of research studying randomized mechanisms (cf. see
[AP16]) wherein it suffices to obtain a guarantee in expectation. We point out that it has been
well-understood that a guarantee only in expectation might be insufficient in many cases; for
example, Fain et al. [FGMP19] considered as the objective the squared distortion as a proxy
in order to limit as much as possible the variance in the distortion. In fact, the authors in
[FGMP19] are also concerned with sample complexity issues, but from a very different stand-
point.

We stress that we only allow randomization during the preference elicitation phase; for a
given random sample, which corresponds to the entire rankings of the voters, the mechanisms
we consider act deterministically. Specifically, we analyze two main voting rules along this vein.

Theorem 1.3 (Approximate Copeland). For any sufficiently small ε > 0 there exists a mecha-
nism which takes a sample of size Θ(log(m)/ε2) voters and yields distortion at most 5 + ε with
probability 0.99.
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The techniques required for the proof of this theorem are fairly standard. More importantly,
we analyze the sample complexity of PluralityMatching, the mechanism of Gkatzelis et al.
[GHS20] which recovers the optimal distortion bound of 3 (among deterministic mechanisms).
In this context, we establish the following result:

Theorem 1.4 (Approximate PluralityMatching). For any sufficiently small ε > 0 there
exists a mechanism which takes a sample of size Θ(m/ε2) voters and yields distortion at most
3 + ε with probability 0.99.

More precisely, the main ingredient of PluralityMatching is a maximum-matching sub-
routine for a certain bipartite graph. Our first observation is that the size of the maximum
matching can be determined through a much smaller graph which satisfies a “proportional-
ity” condition with respect to a maximum-matching decomposition. Although this condition
cannot be explicitly met since the algorithm is agnostic to the decomposition, our observation
is that sampling (with sufficiently many samples) will approximately satisfy this requirement,
eventually leading to the desired conclusion.

We stress that we do not guarantee that the winner in our sample will coincide with that
over the entire population. In fact, the sample complexity bounds for the winner determination
problem—for virtually every reasonable voting rule—depend on the margin of victory (see
[DB15]); however, we argue that this feature is undesirable. For one thing the algorithm does
not have any prior information on the margin, and hence it is unclear how to tune this parameter
in practice. More importantly, in many scenarios the margin might be very small, leading to
a substantial overhead in the sample-complexity requirements of the mechanism. One of our
conceptual contributions is to show that we can circumvent such limitations once we espouse a
utilitarian framework. Indeed, observe that all of our bounds are distribution-independent (and
instance-oblivious).

We should also point out that although we are emphasizing on sample-complexity consid-
erations, we believe that our results have another very clear motivation. Namely, given that
in most applications n � m, it is important to provide sublinear algorithms whose running
time does not depend on n. In this context, we provide a Monte Carlo implementation of
PluralityMatching whose time complexity scales independently of n.

To conclude, we provide several experimental findings in real-life voting applications from
the standpoint of the (metric) distortion framework. We are mostly concerned with com-
paring the results of the scoring systems used in practice against a mechanism which explic-
itly attempts to minimize the distortion; the latter is realized with the linear programming
mechanism of Goel et al. [GKM17]. Specifically, we analyze the efficiency of the scoring
rule used in the Eurovision song contest and the Formula One world championship. In-
terestingly, on both occasions we find that the winner in the actual competition is usually
the candidate who minimizes the distortion. Our implementation is publicly available at
https://github.com/ioannisAnagno/Voting-MetricDistortion.

1.2 Related Work

Research in the metric distortion framework was initiated by Anshelevich et al. [ABP15]. Specif-
ically, they analyzed the distortion of several common voting rules, most notably establishing
that Copeland’s rule has distortion at most 5, with the bound being tight for certain instances.
They also conjectured that the ranked pairs mechanism always achieves distortion at most 3,
which is also the lower bound for any deterministic mechanism. This conjecture was disproved
by Goel et al. [GKM17],1 while they also studied fairness properties of certain voting rules.
Moreover, Skowron and Elkind [SE17] established that a popular rule named single transferable
vote (STV) has distortion O(logm), along with a nearly-matching lower bound. The barrier

1A tight bound of Θ(
√
m) for the ranked pairs mechanism was subsequently given by Kempe [Kem20a].
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of 5 set out by Copeland was broken by Munagala and Wang [MW19], presenting a novel de-
terministic rule with distortion 2 +

√
5. The same bound was obtained by Kempe [Kem20a]

through an LP duality framework, who also articulated sufficient conditions for proving the
existence of a deterministic mechanism with distortion 3. This conjecture was only recently
confirmed by Gkatzelis et al. [GHS20], introducing the plurality matching mechanism. Closely
related to our study is also the work of Gross et al. [GAX17], wherein the authors provide a
near-optimal mechanism which only asks m + 1 voters for their top-ranked alternatives. The
main difference with our setting is that we require an efficiency-guarantee with high probability,
and not in expectation.

Broader Context. Beyond the metric case most focus has been on analyzing distortion under
a unit-sum assumption on the utility function, ensuring that agents have equal “weights”. In
particular, Boutilier et al. [BCH+15] provide several upper and lower bounds, while they also
study learning-theoretic aspects under the premise that every agent’s utility is drawn from a
distribution (cf., see [PZPR09]). Moreover, several multi-winner extensions have been studied
in the literature. Caragiannis et al. [CNPS16] studied the committee selection problem, which
consists of selecting k alternatives that maximize the social welfare, assuming that the value of
each agent is defined as the maximum value derived from the committee’s members. We also
refer to [BNPS17] for the participatory budgeting problem, and to [BPQ19] when the output of
the mechanism should be a total order over alternatives (instead of a single winner).

More special cases were considered in [FFG16, FGMS17], strengthening some of the results
we previously described. The trade-off between efficiency and communication has been ad-
dressed in [MPSW19, MSW20], while Amanatidis et al. [ABFV20] investigated the decay of
distortion under a limited amount of cardinal queries—in addition to the ordinal information.
We should also note a series of works analyzing the power of ordinal preferences for some fun-
damental graph-theoretic problems [FFZ14, AS16a, AS16b, AZ18]. Finally, we point out that
strategic issues are typically ignored within this line of work. We will also posit that agents
provide truthfully their preferences, but we refer to [BDG18, CFF+16, CFNV18] for rigorous
considerations on the strategic issues that arise. We refer the interested reader to the survey of
Anshelevich et al. [AFRSV21], as we have certainly not exhausted the literature.

2 Preliminaries

A metric space is a pair (M, d), where d : M×M 7→ R constitutes a metric on M, i.e., (i)
∀x, y ∈ M, d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles), (ii) ∀x, y ∈ d(x, y) = d(y, x)
(symmetry), and (iii) ∀x, y, z ∈ M, d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). Consider a
set of n voters V = {1, 2, . . . , n} and a set of m candidates C = {a, b, . . . , }; candidates will be
typically represented with lowercase letters such as a, b, w, x, but it will be sometimes convenient
to use numerical values as well. We assume that every voter i ∈ V is associated with a point
vi ∈M, and every candidate a ∈ C to a point ca ∈M. Our goal is to select a candidate x who
minimizes the social cost : SC(x) =

∑n
i=1 d(vi, cx). This task would be trivial if we had access

to the agents’ distances from all the candidates. However, in the standard metric distortion
framework every agent i provides only a ranking (a total order) σi over the points in C according
to the order of i’s distances from the candidates. We assume that ties are broken arbitrarily,
subject to transitivity, but we will not abuse the tie-breaking assumption.

In this work we are considering a substantially more general setting, wherein every agent
provides a subset of σi. More precisely, we assume that agent i provides as input a set Pi of
ordered pairs of distinct candidates, such that (a, b) ∈ Pi =⇒ a �i b, where a, b ∈ C; it will
always be assumed that Pi corresponds to the transitive closure of the input. We will allow Pi
to be the empty set, in which case i does not provide any information to the mechanism; with
a slight abuse of notation we will let Pi ≡ σi when i provides the entire order of preferences.
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We will say that the input P = (P1, . . . ,Pn) is consistent with the metric d if (a, b) ∈ Pi =⇒
d(vi, ca) ≤ d(vi, cb),∀i ∈ V , and this will be denoted with d . P. We will represent with top(i)
and sec(i) i’s first and second most preferred candidates respectively. We may also sometimes
use the notation ab = {i ∈ V : a �i b}.

A deterministic social choice rule is a function that maps an election in the form of a 3-tuple
E = (V,C,P) to a single candidate a ∈ C. We will measure the performance of f for a given
input of preferences P in terms of its distortion, namely, the worst-case approximation ratio it
provides with respect to the social cost:

distortion(f ;P) = sup
SC(f(P))

mina∈C SC(a)
, (1)

where the supremum is taken over all metrics such that d .P. The distortion of a social choice
rule f is the maximum of distortion(f ;P) over all possible input preferences P. In other words,
once the mechanism selects a candidate (or a distribution over candidates if the social choice
rule is randomized) an adversary can select any metric space subject to being consistent with the
input preferences. Similarly, in Section 3 where we study mechanisms which perform pairwise
comparisons, the adversary can select any metric space consistent with the elicited comparisons.
We should point out the following:

Proposition 2.1. Under any given preferences P, there exists a metric space consistent with
P.

This proposition follows directly from Proposition 1 in [ABP15], which established the claim
when P = σ.

2.1 Instance-Optimal Voting

An important observation is that under any input preferences P there exists a deterministic
instance-optimal mechanism; this was noted by Goel et al. [GKM17] (see also [BCH+15]) when
P = σ, but their mechanism directly applies for our more general setting. We briefly present
their idea, as we will also employ this mechanism for our experiments.

The first ingredient is an optimization problem that allows to compare a pair of distinct
candidates, subject to the set of preferences given to the mechanism. Specifically, for a, b ∈ C,
with a 6= b, consider the following linear program Metric-LP(a, b):

maximize
∑n

i=1 xi,a

subject to
∑n

i=1 xi,b = 1;

xi,p ≤ xi,q, ∀(p, q) ∈ Pi, ∀i ∈ V ;

xi,i = 0, ∀i ∈ V ∪ C;

xi,j = xj,i, ∀i, j ∈ V ∪ C;

xi,j ≤ xi,k + xk,j ,∀i, j, k ∈ V ∪ C.

(2)

First of all, observe that the output of this linear program does not necessarily yield a
metric space, but rather a pseudo-metric on V ∪ C, given that it is possible that xi,j = 0 for
i 6= j. Nonetheless, this issue can be easily resolved by “merging” all the elements i, j ∈ V ∪ C
such that xi,j = 0; the consistency of this approach follows by the “triangle inequalities”—the
final constraint of the linear program. It should be pointed out that some of the constraints in
Metric-LP are redundant, in the sense that they are implied by others, but we will not dwell
on such optimizations here.
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We will represent with D(a|b) the value of the linear program Metric-LP(a, b); if it is
unbounded we let D(a|b) = +∞. Note that the linear program is always feasible by virtue of
Proposition 2.1. In this context, the mechanism of Goel et al. [GKM17] consists of the following
steps:

• For any pair a, b ∈ C, with a 6= b, compute D(a|b); also let D(a|a) = 1.

• Set D(a) = maxb∈C D(a|b).

• Return the candidate b with the minimum value D(a) over all a ∈ C; ties are broken
arbitrarily.

This mechanism will be referred to as Minimax-LP, to distinguish from the minimax voting
scheme of Simpson and Kramer [LN95]. The Minimax-LP rule essentially performs brute-
force search over all possible metrics in order to identify the candidate which minimizes the
distortion; nonetheless, it can be solved in poly(n,m) time given that the Metric-LP admits
a strongly polynomial time algorithm; this follows because the bit complexity L—the number
of bits required to represent it [Kar84]—is small: L = O(log(n + m)). Moreover, it is easy to
establish the following:

Theorem 2.2. For any given preferences P, the Minimax-LP rule is instance-optimal in terms
of distortion.

In particular, when P = σ note that Minimax-LP always yields distortion 3 by virtue of an
upper-bound by Gkatzelis et al. [GHS20]. However, in this work we will be mostly interested
in providing upper bounds on the distortion of Minimax-LP under incomplete rankings.

3 Sequence of Pairwise Comparisons

In this section we are considering voting rules which perform a sequence of pairwise comparisons
between two candidates, with the result of each comparison being determined by the majority
rule over the entire population of voters. To put it differently, consider the tournament graph
T = (C,E) where (a, b) ∈ E if and only if candidate a pairwise-defeats candidate b; it will
be tacitly assumed—without any loss of generality—that ties are broken arbitrarily so that T
is indeed a tournament. We are studying mechanisms which elicit edges from T , and we are
interested in establishing a trade-off between the number of elicited edges and the distortion of
the mechanism. We commence with the following lower bound:

Proposition 3.1. There are instances for which any deterministic mechanism which elicits
(strictly) fewer than m− 1 edges from T has unbounded distortion.

Sketch of Proof. Consider a family of tournaments T as illustrated in Figure 1, with the set
C∗ containing a single candidate. Then, there are metric spaces for which all the voters are
arbitrarily close to the candidate in C∗ and arbitrarily far from any other candidate. Thus,
every mechanism with bounded distortion has to identify the candidate in C∗. However, it is
easy to see that any pairwise comparison can eliminate at most one candidate from being in C∗.
As a result, if T̂ = (C, Ê) is the subgraph based on the elicited edges, there will be at least two
distinct candidates which could lie in C∗ for some tournament in T consistent with T̂ , leading
to the desired conclusion.

In fact, the same limitation applies even if we allow randomization, either during the elic-
itation or the winner-determination phase. Importantly, we will show that m − 1 edges from
T suffice to obtain near-optimal distortion. To this end, we will employ a powerful technical
lemma by Kempe, proved via an LP-duality argument.

7



Figure 1: A hard instance when fewer than m− 1 pairwise comparisons are elicited.

Lemma 3.2 ([Kem20a]). Let a1, a2, . . . a` be a sequence of distinct candidates such that for
every i = 2, . . . , ` at least half of the agents prefer candidate ai−1 over candidate ai. Then,
SC(a1) ≤ (2`− 1)SC(a`).

Armed with this important lemma we introduce the DominationRoot mechanism, which
determines a winning candidate with access only to a pairwise comparison oracle; namely, O
takes as input two distinct candidates a, b ∈ C and returns the losing candidate based on the
voters’ preferences (recall that in case of a tie the oracle returns an arbitrary candidate).

DominationRoot Mechanism
Input: Set of candidates C, Pairwise comparison oracle O
Output: Winner w ∈ C

1. Initialize S := C

2. Construct arbitrarily a set Π of bS/2c pairings from S

3. For every {a, b} ∈ Π remove O(a, b) from S

4. If |S| = 1 return w ∈ S; otherwise, continue from step 2

We refer to Figure 2 for an illustration of DominationRoot. The analysis of this mecha-
nism boils down to the following simple claims:

Claim 3.3. DominationRoot elicits exactly m− 1 edges from T .

Proof. The claim follows given that for every elicited edge we remove a candidate for the rest
of the mechanism, until only a single candidate survives.

Claim 3.4. DominationRoot returns a candidate w which can reach every other node in T
in paths of length at most dlogme.

Proof. Consider the partition of candidates C1, . . . , Cr such that Ci contains the candidates
who were eliminated during the i-th round for i ∈ {1, 2, . . . , r−1}, and Cr = {w}. Observe that
every candidate a ∈ Ci (with i ∈ {1, 2, . . . , r − 1}) was pairwise-defeated by some candidate in
Cj for j > i; thus, the claim follows inductively since r = dlogme.

Theorem 3.5. DominationRoot elicits only m − 1 edges from T and guarantees distortion
at most 2dlogme+ 1.
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Figure 2: An implementation of DominationRoot for m = 14 candidates. We have high-
lighted with different colors pairwise comparisons that correspond to different rounds of the
mechanism; also notice that the “height” of every candidate indicates the order of elimination.

Proof. The theorem follows directly from Claim 3.3, Claim 3.4, and Lemma 3.2.

This theorem along with Proposition 3.1 imply a remarkable gap depending on whether the
mechanism is able to elicit at least m − 1 pairwise comparisons. We also provide a matching
lower bound for DominationRoot.

Proposition 3.6. There exist instances for which DominationRoot yields distortion at least
2 logm+ 1.

Proof. We will first show that the bound established in Lemma 3.2 is tight. Indeed, consider
a set of ` candidates {1, 2, . . . , `} and two voters (the instance directly extends to an arbitrary
even number of voters) positioned according to the pattern of Figure 3a. Observe that—at
least under some tie-breaking—candidate i pairwise-defeats candidate i − 1 for i = 2, 3, . . . , `.
Moreover, it follows that SC(i) = 2i − 1, for all i, implying that SC(`)/SC(1) = 2` − 1, as
desired.

Now consider m candidates such that m is a power of 2. We first consider ` = logm + 1
candidates positioned according to our previous argument (Figure 3a); the rest of the candidates
are located arbitrarily far from the voters. It is easy to see that there exists a sequence of pairings
(Figure 3b) such that c` will be declared victorious, leading to a distortion of 2 logm + 1 by
virtue of our previous argument.

A metric embedding of voters and candida-
tes establishing that Lemma 3.2 is tight.

A sequence of pairings such that c` emerges victori-
ous. We have highlighted with different colors pair-
ings that correspond to different rounds.
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4 Distortion of Deterministic Rules under Incomplete Orders

We commence this section with another useful lemma by Kempe [Kem20a].

Lemma 4.1 ([Kem20a]). Consider three distinct candidates w, y, x ∈ C such that |wy| ≥ αn > 0
and |yx| ≥ αn > 0. Then,

SC(w)

SC(x)
≤ 2

α
+ 1. (3)

In particular, notice that if w is the winner in Copeland’s rule it follows that for any candidate
x there exists some other candidate y such that w pairwise-defeats y and y pairwise-defeats x
[Mou86]; thus, applying Lemma 4.1 for α = 1/2 implies that the winner in Copeland’s rule has
distortion upper-bounded by 5, as initially articulated in [ABP15].

As a warm-up, we first employ this lemma to characterize the distortion when for all pairs
of candidates at least a small fraction of voters has provided their pairwise preferences. We
stress that all of our upper bounds are attainable by the Minimax-LP rule, but nonetheless
our proofs are constructive in the sense that we provide (efficient) mechanisms which obtain
the desired bounds.

Proposition 4.2. Consider an election E = (V,C,P) such that for every pair of distinct can-
didates a, b ∈ C, it holds that

∑n
i=1 1 {(a, b) ∈ Pi ∨ (b, a) ∈ Pi} ≥ α · n. Then, there exists a

voting rule which obtains distortion at most 4/α+ 1.

Proof. Consider a complete, weighted and directed graph G = (C,E,w) such that

wa,b =

∑n
i=1 1{(a, b) ∈ Pi}

n
. (4)

In words, wa,b represents the fraction of voters who certainly prefer a to b; observe that if
we had the complete rankings it would follow that wa,b + wb,a = 1, but here we can only say
that wa,b + wb,a ≤ 1. Moreover, by assumption we know that wa,b + wb,a ≥ α, implying that
wa,b ≥ α/2 or wb,a ≥ α/2. With that in mind, we construct from G an unweighted and directed

graph Ĝ = (C, Ê) according to the following threshold rule: (a, b) ∈ Ê ⇐⇒ wa,b ≥ α/2. We

argued that our assumption implies that (a, b) ∈ Ê ∨ (b, a) ∈ Ê. As a result, we can deduce
that Ĝ contains as a subgraph a tournament; thus, there exists a king vertex w so that every
node a ∈ C is reachable from w in at most 2 steps, and our claim follows from Lemma 4.1.

We remark that this upper bound is tight up to constant factors, at least for certain instances.
Indeed, if we only have an α fraction of the votes in the presence of 2 candidates it is easy to
show an Ω(1/α) lower bound for any mechanism, even if we allow randomization. Interestingly,
Proposition 4.2 suggests one possible preference elicitation strategy: collect the information
about the preferences in a “balanced” manner.

4.1 Missing Voters

Consider an election E = (V,C,P) and a mechanism which has access to the votes of only a
subset V \ Q of voters, where Q ⊂ V is the set of missing voters such that |Q| = ε · n. If
the mechanism performs well on V \Q can we characterize the distortion over the entire set of
voters as ε increases? Observe that this setting is tantamount to Pi = ∅ for all i ∈ Q. In the
following theorem we provide a sharp bound:

Theorem 4.3. Consider a mechanism with distortion at most ` w.r.t. an arbitrary subset with
(1 − ε) fraction of all the voters, for some ε ∈ (0, 1). Then, the distortion of the mechanism
w.r.t. the entire population is upper-bounded by

`+
ε

1− ε
(`+ 1). (5)

10



Proof. Consider a candidate b ∈ C with distortion at most ` w.r.t. the agents in V \ Q.
Moreover, consider some arbitrary candidate a ∈ C, and let Sb =

∑
i∈V \Q d(vi, cb), and Sa =∑

i∈V \Q d(vi, ca); observe that (by assumption) Sb/Sa ≤ `. Our analysis will distinguish between
the following two cases:

Case I: Sb ≥ Sa > 0.2 Then, for all i ∈ Q it follows that

Sbd(vi, ca) + Sad(ca, cb) ≥ Sa(d(vi, ca) + d(ca, cb)) ≥ Sad(vi, cb), (6)

and hence,

Sad(vi, cb) ≤ Sad(ca, cb) + Sbd(vi, ca) + d(ca, cb)d(vi, ca); (7)

summing over all i ∈ Q gives

Sa
∑
i∈Q

d(vi, cb) ≤ |Q|Sad(ca, cb) + Sb
∑
i∈Q

d(vi, ca) + d(ca, cb)
∑
i∈Q

d(vi, ca)

≤ |Q|Sad(ca, cb) + Sb
∑
i∈Q

d(vi, ca) + |Q|d(ca, cb)
∑
i∈Q

d(vi, ca). (8)

Moreover, observe that

(8) ⇐⇒
Sb +

∑
i∈Q d(vi, cb)

Sa +
∑

i∈Q d(vi, ca)
≤ Sb + |Q|d(ca, cb)

Sa
. (9)

Next, we have that d(ca, cb) ≤ d(vi, ca) + d(vi, cb), ∀i; summing over all i ∈ V \ Q implies that
(n− |Q|)d(ca, cb) ≤ Sa + Sb ≤ (`+ 1)Sa. Therefore, along with (9) we obtain that

SC(b)

SC(a)
≤ `+

|Q|
n− |Q|

(`+ 1) = `+
ε

1− ε
(`+ 1). (10)

Case II: Sb < Sa. In this case we can simply observe that

SC(b)

SC(a)
≤
Sb +

∑
i∈Q d(vi, ca) + |Q|d(ca, cb)

Sa +
∑

i∈Q d(vi, ca)
≤ 1 + |Q|d(ca, cb)

Sa
. (11)

Thus, the proof follows given that (n− |Q|)d(ca, cb) ≤ Sa + Sb < 2Sa.

A few remarks are in order. First of all, if all the voters in the set V \Q had provided their
entire rankings we would derive a similar result via Proposition 4.2, but nonetheless Theorem 4.3
gives a more precise characterization. Indeed, we claim that the derived bound is tight. For
example, consider an instance on the line with only two candidates a, b, so that every candidate
receives half of the votes among the voters in V \ Q; assume without loss of generality that a
is selected as the winning candidate, having distortion 3 w.r.t. the voters in V \ Q. However,
we have to accept that (1− ε)/2 fraction of the voters could reside in the midpoint (ca + cb)/2,
while the rest of the agents could all lie in cb; thus, the distortion of candidate a is

SC(a)

SC(b)
=

1−ε
2

d(ca,cb)
2 + 1−ε

2 d(ca, cb) + εd(ca, cb)

1−ε
2

d(ca,cb)
2

= 3 + 4
ε

1− ε
, (12)

which matches our derived bound in Theorem 4.3.

2The case where Sa = 0 can be trivially handled. Indeed, it implies that Sb ≤ `×Sa = 0, which in turn yields
that d(ca, cb) = 0; thus, SC(a) = SC(b).
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4.2 Top Preferences

In this subsection we investigate how the distortion increases when every voter provides only
her k-top preferences, for some parameter k ∈ [m]. It should be noted that the two extreme
cases are well understood. Specifically, when k = m the mechanism has access to the entire
rankings and we know that any deterministic mechanism has distortion at least 3, which is also
the upper bound established in [GHS20]. On the other end of the spectrum, when k = 1 the
plurality rule—which incidentally is the optimal deterministic mechanism when only the top
preference is given—yields distortion at most 2m − 1 [ABP15]. Consequently, the question is
quantify the decay of distortion as we gradually increase k. We commence by reminding a lower
bound given by Kempe [Kem20b]:

Proposition 4.4. Any deterministic mechanism which elicits only the k-top preferences from
every voter out of the m alternatives has distortion Ω(m/k).

More precisely, the best lower bound is 2m/k, ignoring some additive constant factors; for
completeness we provide a proof in Appendix A. In the following theorem we come closer to
matching this lower bound.

Theorem 4.5. There exists a deterministic mechanism which elicits only the k-top preferences
from every voter out of m candidates and has distortion at most 6m/k + 1.

Before we proceed with the proof it is important to point out that having only the k-top
preferences is not subsumed by our previous consideration in Proposition 4.2; e.g., even if
k = m − 2 there could be two candidates which lie on the last two positions of every voter’s
list, and hence, it is impossible to know which one is mostly preferred among the voters.

Proof of Theorem 4.5. Let Li be the set with the k-top preferences of voter i. For a candidate
a ∈ C we let

Va =

∑n
i=1 1{a ∈ Li}

n
; (13)

i.e. the fraction of voters for which a is among the k-top preferences. Notice that
∑

a∈C Va = k,
and hence, by the pigeonhole principle there exists some candidate x such that Vx ≥ k/m. Sim-
ilarly to Proposition 4.2 we consider the weighted, complete and directed graph G = (C,E,w),
so that

wa,b =

∑n
i=1 1{(a, b) ∈ Pi}

n
. (14)

Moreover, based on G we construct the unweighted and directed graph Ĝ = (C, Ê), so that
(a, b) ∈ Ê ⇐⇒ wa,b ≥ k/(3m); the constant 1/3 in the threshold was selected as the largest

number which makes the following argument work. In particular, we will show that Ĝ has a
king vertex, and then the theorem will follow by virtue of Lemma 4.1.

Let C ′ = {a ∈ C : ∃b ∈ C \ {a}.(a, b) /∈ Ê ∧ (b, a) /∈ Ê} and C∗ = C \ C ′. Observe that the
induced subgraph on C∗ contains as a subgraph a tournament, and as such, it has a king vertex
w ∈ C∗ (we will argue very shortly that indeed C∗ 6= ∅). As a result, if C ′ = ∅ the theorem
follows.

In the contrary case notice that C ′ contains at least two (distinct) nodes; let a, b ∈ C ′

be such that (a, b) /∈ Ê ∧ (b, a) /∈ Ê. An important observation is that Va ≤ 2k/(3m) and
Vb ≤ 2k/(3m). Indeed, for the sake of contradiction let us assume that Va > 2k/(3m). Given
that (a, b) /∈ Ê we can infer that b is preferred over a in at least a k/(3m) fraction of the voters;
however, this would imply that (b, a) ∈ Ê, which is a contradiction. Similarly, we can show that
Vb ≤ 2k/(3m). Consequently, x cannot belong in the set C ′, where recall that x is a candidate
for which Vx ≥ k/m, verifying that C∗ 6= ∅.
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Next, it is easy to see that for all a ∈ C ′, (x, a) ∈ Ê; this follows since Va ≤ 2k/(3m) for all
a ∈ C ′ while Vx ≥ k/m. As a result, if x = w or if there exists the edge (w, x) ∈ Ê then w can
reach every node in at most 2 steps, and the theorem follows. Otherwise, it follows that there
exists a path of length 2 from w to x since w is a king vertex in the induced subgraph on C∗

and x ∈ C∗. We shall distinguish between two cases.
First, assume that for all z ∈ C∗1 , (x, z) ∈ Ê, where C∗1 is the subset of C∗ which is reachable

from w via a single edge. Then, given that we have assumed that (w, x) /∈ Ê and the induced
graph on C∗ is a tournament, it follows that (x,w) ∈ Ê and subsequently x can reach every
node in C in paths of length at most 2, as desired.

Finally, assume that there exists some y ∈ C∗1 such that (x, y) /∈ Ê. This implies that y is
preferred over x in at least a 2k/(3m) fraction of the voters. If for every candidate a ∈ C ′ it
holds that (w, a) ∈ Ê or (z, a) ∈ Ê for some z ∈ C∗1 , we can conclude that w can reach every

node in Ĝ in at most 2 steps, again reaching the desired conclusion. On the other hand, assume
that there exists b ∈ C ′ such that (w, b) /∈ Ê and (z, b) /∈ Ê for all z ∈ C∗1 . By the definition

of the set C∗ we can infer that (b, w) ∈ Ê and (b, z) ∈ Ê for all z ∈ C∗1 . Moreover, we know
that from all of the votes candidate y received candidate b was below in at most a k/(3m)
fraction (over all the voters); otherwise it would follow that (y, b) ∈ Ê. As a result, since y is
preferred over x in at least a 2k/(3m) fraction of the voters we can conclude that (b, x) ∈ Ê,
in turn implying that b can reach every node in Ĝ in paths of length at most 2, concluding the
proof.

Figure 4: The anatomy of our proof for Theorem 4.5. The set of candidates is partitioned into
a “good” set C∗ and a “bad” set C ′; C∗ has a king vertex w, and we can essentially apply the
reasoning of Proposition 4.2. A key observation is that C ′ is always dominated by some node
in C∗, namely x.

Notably, we have shown that if k = γ · m for some γ ∈ (0, 1), the distortion is at most
6/γ + 1. Our analysis substantially improves over the previous best-known bound which was
12m/k [Kem20b, Kem20a], but nonetheless there is still a gap between the aforementioned
lower bound. Before we conclude this section, we explain how one can further improve upon
the bound obtained in Theorem 4.5.

Conjecture 4.6. If we assume that every agent provides her k-top preferences for some k ∈ [m],
there is a candidate a ∈ C and a subset S ⊆ V such that

• There exists a perfect matching M : S 7→ S in the integral domination graph of a (see
Definition 5.4 in the next section);
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• |S| ≥ n× k/m.

When k = m this conjecture was shown to be true by Gkatzelis et al. [GHS20]. On the
other end of the spectrum, when k = 1 it is easy to verify that the plurality winner establishes
this conjecture.

Proposition 4.7. If Conjecture 4.6 holds, then there exists a deterministic mechanism which
elicits only the k-top preferences and yields distortion at most 4m/k − 1.

Proof. Let a ∈ C be the candidate which satisfies Conjecture 4.6. Then, it follows that a yields
distortion at most 3 w.r.t. the voters in the set S [GHS20]. As a result, Theorem 4.3 implies
that the distortion of a is upper-bounded by

3 + 4
n− |S|
|S|

≤ 4m

k
− 1. (15)

5 Randomized Preference Elicitation & Sampling

Previously we characterized the distortion when only a deterministically (and potentially adver-
sarially) selected subset of voters has provided information to the mechanism. This raises the
question of bounding the distortion when the mechanism elicits information from only a small
random sample of voters. Here a single sample corresponds to the entire ranking of a voter.
We stress that randomization is only allowed during the preference elicitation process; for any
given random sample as input the mechanism has to select a candidate deterministically. We
commence this section with a simple lower bound, which essentially follows from a standard
result by Canetti et al. [CEG95].

Proposition 5.1. Any mechanism which yields distortion at most 3+ ε with probability at least
1− δ requires Ω(log(1/δ)/ε2) samples, even for m = 2.

Proof. Consider two candidates a, b, and assume that exactly (1 − ε)/2 fraction of the voters
prefer candidate a. It is easy to verify that a yields distortion strictly larger than 3 + ε; thus,
any mechanism with distortion at most 3 + ε has to return candidate b. However, we know
from [CEG95] that the winner determination problem with margin ε requires Ω(log(1/δ)/ε2)
samples, concluding the proof.

5.1 Approximating Copeland

Our main result in this subsection is the following:

Theorem 5.2. For any ε ∈ (0, 4] and δ ∈ (0, 1) there exists a mechanism which takes a sample
of size c = Θ(log(m/δ)/ε2) voters and yields at most 5 + ε distortion with probability at least
1− δ.

In particular, the proof essentially analyzes a sampling approximation of Copeland’s rule,
which recall that yields at most 5 distortion when the entire input is available [ABP15]. As
a result, it follows that Θ̃(m/ε2) bits of information (in total) suffice to yield 5 + ε distortion
with high probability, where the notation Θ̃(·) suppresses poly-logarithmic factors. Before we
proceed with the proof we state the following standard fact:

Lemma 5.3 (Chernoff-Hoeffding Bound). Let {X1, X2, . . . , Xc} be a set of i.i.d. random vari-
ables with Xi ∼ Bern(p) and Xµ = (X1 +X2 + · · ·+Xc)/c; then,

P(|Xµ − p| ≥ ε) ≤ 2e−2ε
2c. (16)
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Proof of Theorem 5.2. Consider the complete, weighted and directed graph G = (C,E,w) so
that wa,b = |ab|/n. We will show how to use the random sample in order to construct a

graph Ĝ = (C,E, ŵ) which approximately preserves the weights of G with high probability.
In particular, consider some parameters ε ∈ (0, 1/2) and δ ∈ (0, 1), and take a sample S of
size |S| = c = Θ(log(m/δ)/ε2) from the set of voters V ; for simplicity we assume that the
sampling occurs with replacement in order to guarantee independence, but the result holds even
without replacement given that the dependencies are negligible (e.g., see [KR08]). Now we let
ŵa,b = |{i ∈ S : a �i b}|/c. Lemma 5.3 implies that |ŵa,b − wa,b| < ε with probability at least
1− δ/m2. Thus, the union bound implies that for all distinct pairs a, b we have approximately
preserved the weights: |ŵa,b − wa,b| < ε with probability at least 1− δ.

From Ĝ we construct the directed graph T = (C, Ê) so that (a, b) ∈ Ê ⇐⇒ ŵa,b ≥ 1/2;
if ŵa,b = ŵb,a for some distinct candidates a, b ∈ C we only retain one of the edges arbitrarily
(this conundrum can be avoided by taking c to be odd). In this way T will be a tournament,
and as such, there exists a candidate w which can reach every node in T in at most 2 steps.
Thus, for any a ∈ C there exists some intermediate candidate b ∈ C so that |wb| ≥ 1/2− ε and
|ba| ≥ 1/2 − ε. As a result, Lemma 4.1 implies that the distortion of w is upper-bounded by
4/(1− 2ε) + 1 ≤ 5 + 16ε, for any ε ≤ 1/4. Finally, rescaling ε by a constant factor concludes the
proof.

5.2 Approximating PluralityMatching

In light of Proposition 5.1 the main question that arises is whether we can asymptotically
reach the optimal distortion bound of 3. To this end, we will analyze a sampling approx-
imation of PluralityMatching, a deterministic mechanism introduced by Gkatzelis et al.
[GHS20] which obtains the optimal distortion bound of 3. To keep the exposition reasonably
self-contained we recall some basic facts about PluralityMatching.

Definition 5.4 ([GHS20], Definition 5). For an election E = (V,C, σ) and a candidate a ∈ C,
the integral domination graph of candidate a is the bipartite graph G(a) = (V, V,Ea), where
(i, j) ∈ Ea if and only if a �i top(j).

Proposition 5.5 ([GHS20], Corollary 1). There exists a candidate a ∈ C whose integral dom-
ination graph G(a) admits a perfect matching.

Before we proceed let us first introduce some notation. For this subsection it will be con-
venient to use numerical values in the set {1, 2, . . . ,m} to represent the candidates. We let
Πj =

∑
i∈V 1{top(i) = j}, i.e. the number of voters for which j ∈ C is the top candidate. For

candidate j ∈ C we let G(j) be the integral domination graph of j, and Mj be a maximum
matching in G(j). In the sequel, it will be useful to “decompose” Mj as follows. We consider
the partition of V into V 0

j , V
1
j , . . . , V

m
j such that V k

j = {i ∈ V : Mj(i) = k} for all k ∈ [m],

while V 0
j represents the subset of voters which remained unmatched under Mj ; see Figure 5.

Moreover, consider a set S = S0
j ∪ S1

j ∪ · · · ∪ Smj such that Skj ⊆ V k
j for all k; we also let

c = |S|, and Π′j = c/n×Πj . For now let us assume that Π′j ∈ N for all j. We let GS(j) represent
the induced subgraph of G(j) w.r.t. the subset S ⊆ V and the new plurality scores Π′j . We
start our analysis with the following observation:

Observation 5.6. Assume that S is such that |Skj |/c = |V k
j |/n for all k. Then, if MSj represents

the maximum matching in GS(j), it follows that |MSj |/c = |Mj |/n.

Sketch of Proof. First, it is clear that |MSj | ≥
∑m

k=1 |Skj | = c/n
∑m

k=1 |V k
j | = c/n× |Mj |. Thus,

it remains to show that |MSj | ≤ c/n× |Mj |. Indeed, if we assume otherwise we can infer via an
exchange argument than Mj is not a maximum matching.
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Figure 5: An example of a matching decomposition in the integral domination graph of
candidate 1.

Let us denote with Φj = Mj/n; roughly speaking, we know from [GHS20] that Φj is a good
indicator of the “quality” of candidate j. Importantly, Observation 5.6 tells us that we can
determine Φj in a much smaller graph, if only we had a sampling-decomposition that satisfied the
“proportionality” condition of the claim. Of course, determining explicitly such a decomposition
makes little sense given that we do not know the sets V k

j , but the main observation is that we
can approximately satisfy the condition of Observation 5.6 through sampling. It should be
noted that we previously assumed that Π′j ∈ N, i.e. we ignored rounding errors. However, in
the worst-case rounding errors can only induce an error of at most m/c in the value of Φj ; thus,
we remark that our subsequent selection of c will be such that this error will be innocuous, in
the sense that it will be subsumed by the “sampling error” (see Lemma 5.8). Before we proceed,
recall that for p, p̂ ∈ ∆([k]),

dTV(p, p̂)
def
= sup

S⊆[k]
|p(S)− p̂(S)| = 1

2
||p− p̂||1, (17)

where || · ||1 represents the `1 norm. In this context, we will use the following standard fact:

Lemma 5.7 ([Can20]). Consider a discrete distribution p ∈ ∆([k]) and let p̂ be the empirical
distribution derived from N independent samples. For any ε > 0 and δ ∈ (0, 1), if N =
Θ((k + log(1/δ))/ε2) it follows that dTV(p, p̂) ≤ ε with probability at least 1− δ.

As a result, if we draw a set S with |S| = c = Θ((m + log(1/δ))/ε2) samples (without
replacement3) we can guarantee that

m∑
k=0

∣∣∣∣∣ |Skj |c − |V k
j |
n

∣∣∣∣∣ ≤ 2ε; (18)

m∑
k=1

∣∣∣∣∣Π̂k

c
− Πk

n

∣∣∣∣∣ ≤ 2ε, (19)

3Although the samples are not independent since we are not replacing them, observe that the induced bias is
negligible for n substantially larger than m.
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where Skj represents the subset of S which intersects V k
j , and Π̂k is the empirical plurality score

of candidate k. Thus, the following lemma follows directly from Observation 5.6 and Lemma 5.7.

Lemma 5.8. Let Φ̂j = |M̂j |/c, where M̂j is the maximum matching in the graph GS(j). Then,

if |S| = Θ((m+ log(1/δ))/ε2) for some ε, δ ∈ (0, 1), it follows that (1− ε)Φj ≤ Φ̂j ≤ (1 + ε)Φj

with probability at least 1− δ.

Theorem 5.9. For any ε ∈ (0, 4] and δ ∈ (0, 1) there exists a mechanism which takes a sample
of size Θ((m+ log(m/δ))/ε2) voters and yields distortion at most 3 + ε with probability at least
1− δ.

Proof. Fix some ε ∈ (0, 1/4) and δ ∈ (0, 1). If we draw Θ((m+log(m/δ))/ε2) samples Lemma 5.8
along with the union bound imply that (1−ε)Φj ≤ Φ̂j ≤ (1+ε)Φj for all j ∈ [m], with probability

at least 1 − δ, where Φ̂j is defined as in Lemma 5.8. Conditioned on the success of this event,

let w = arg maxj∈C Φ̂j . Proposition 5.5 implies that there exists some candidate x for which

Φx = 1; hence, we know that Φ̂w ≥ Φ̂x ≥ 1−ε, in turn implying that Φw ≥ (1−ε)/(1+ε) ≥ 1−2ε
(Lemma 5.8). As a result, it follows that there exists a subset of voters V ′ for which there exists
a perfect matching in the integral domination graph G(w), with |V ′| ≥ n(1 − 4ε). Thus, it
follows that for the subset of voters in V ′ candidate w yields distortion at most 3 (see [GHS20]),
and Theorem 4.3 leads to the desired conclusion.

6 Experiments

6.1 Synthetic Data

Here we present several synthetic experiments which illustrate the degradation of distortion
under missing information. We will employ the Minimax-LP rule, which recall is instance-
optimal under any given preferences P (Theorem 2.2). Also note that the Minimax-LP rule
returns the exact distortion of every candidate w.r.t. the given preferences. The induced LPs
in Minimax-LP rule are solved via the Gurobi software [GO21].

6.1.1 Top Preferences

First we assume that every voter provides only her k-top preferences to the mechanism, and we
illustrate the decay of distortion while k gradually increases from 1 to m. Specifically, our ex-
periments are conducted for n = 50 voters with preferences sampled from a uniform distribution
over the space of permutations. In the parlor of social choice this probabilistic model is referred
to as impartial culture,4 and arguably it is unrealistic [TRG03]; nonetheless it will suffice for
sketching the underlying qualitative behavior. Recall that according to Theorem 4.5 we expect
the distortion to decay as O(m/k). The results are shown in Figure 6 for m ∈ {4, 6, 8, 10}; it
should also be noted that for every case we presented 5 different random realizations in order
to alleviate the “bias” in the input. Interestingly, the “bottom half” of the voters’ preferences
appears to offer no real improvement.

6.1.2 Missing Voters

Next we illustrate the decay of distortion as more voters provide information to the mechanism;
here it will be assumed that (active) voters provide their total orders to the mechanism. As
before, we consider n = 50 voters from an impartial culture probabilistic model with m ∈
{3, 4, 5, 6}; for every case we consider 5 different random realizations. The results are illustrated
in Figure 7. Again, the observed curves closely match the theoretical predictions of Theorem 4.3.

4To put it differently, impartial culture corresponds to the Mallows model [MAL57] with unitary spread
parameter.
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Figure 6: The decay of distortion as we gradually increase k from 1 to m.

6.2 Real Datasets

In this subsection we present some experiments conducted on real-life voting applications. In
particular, we are interested in comparing the efficiency—measured in terms of distortion—
of the voting system employed in practice with the instance-optimal mechanism, namely the
Minimax-LP mechanism.

6.2.1 Eurovision Song Contest

Here we analyze the performance of the scoring system used in the Eurovision song contest, so let
us first give a basic overview of the competition and the voting rule employed. Fist of all, we will
only focus on the final stage of the competition, wherein a set of m countries compete amongst
each other and a set of n countries—which is a strict superset of the contenders—provide their
preferences over the finalists. Eurovision employs a specific positional scoring system which
works as follows. Every country assigns 12 points to its highest preference, 10 points to its
second-highest preference, and from 8 − 1 points to each of its next 8 preferences; note that
no country can vote for itself. This scoring system shall be referred to as the Scoring rule.
It should be noted that the authors in [SE17] quantify the distortion for some specific scoring
rules (e.g. the harmonic rule). We will make the working hypothesis that for every country the
assigned scores correspond to its actual order of preferences. Nonetheless, we stress that the
assigned scores of every country have been themselves obtained by preference aggregation5, and

5For the years we are considering the scores were mainly determined by televoting, with some few exceptions.
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Figure 7: The decay of distortion as more voters (a (1−ε) fraction) provide their preferences to
the mechanism, for ε ∈ {0.8, 0.6, 0.4, 0.2, 0}. The illustrated curves correspond to m ∈ {3, 4, 5, 6}
from top-left, top-right, bottom-left, and bottom-right respectively.

as such they are themselves subject to distortion, but we will tacitly suppress this issue.6

We will focus on the competitions held between 2004 and 2008; during these years the
number of finalists (or candidates) m was 24, with the exception of 2008 where 25 countries
were represented in the final. We should note that for our experiments we used a dataset from
Kaggle. Observe that every “voter” only provides its top k = 10 preferences, while the countries
which are represented in the final are 0-decisive (see [AP16]). The main question that concerns
us is whether the Scoring rule employed for the competition yields very different results from
the optimal Minimax-LP mechanism. Our results are summarized in Table 1, while for more
detailed findings we refer to Appendix C.

Perhaps surprisingly, on all occasions the winners in the two mechanisms coincide; on the
other hand, there are generally substantial differences below the first position. It is also in-
teresting to note that on all occasions the winner has a remarkably small distortion, at least
compared to the theoretical bounds.

6We refer the interested reader to the work of Filos-Ratsikas and Voudouris [FV20].
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Table 1: Summary of our findings for the Eurovision song contests held between 2004 and
2008. For every year we have indicated the top three countries according to the Minimax-LP
rule and the Scoring system employed in the actual contest.

Year
Minimax-LP rule Scoring rule

# of Countries
Country Distortion Country Score

2004

Ukraine 1.1786 Ukraine 280

36Serbia & Montenegro 1.4444 Serbia & Montenegro 263

Turkey 1.4746 Greece 252

2005

Greece 1.4068 Greece 230

39Switzerland 1.4127 Malta 192

Moldova 1.4194 Romania 158

2006

Finland 1.3000 Finland 292

38Romania 1.4262 Russia 248

Russia 1.4407 Bosnia & Herzegovina 229

2007

Serbia 1.3235 Serbia 268

42Ukraine 1.3667 Ukraine 235

Russia 1.5231 Russia 207

2008

Russia 1.3562 Russia 272

43Greece 1.4507 Ukraine 230

Ukraine 1.4923 Greece 218

6.2.2 Formula One

Moreover, we analyze the performance of the voting system employed in the Formula One (F1)
world championship. In particular, we imagine that every competing driver constitutes a distinct
candidate, while every race in the calendar corresponds to a “voter”; the “preferences” of every
race are indicated by the order in which the drivers complete the race. We will assume that when
two drivers fail to terminate they will not be comparable (in the spirit of partial orderings). The
scoring rule employed in F1 assigns to the first 10 drivers the points 25, 18, 15, 12, 10, 8, 6, 4, 2, 1
respectively, and the driver who manages to collect the most number of points throughout
the championship is declared the winner; with a slight abuse of notation this rule will also be
referred to as the Scoring rule. We will be analyzing the championships held between 2016
and 2020, using a dataset from Kaggle. A noteworthy detail is that for the last two years the
scoring system assigned an additional point to the driver with the fastest lap, but for simplicity
the Minimax-LP will not use any such information. Our results are summarized in Table 2.
Again, the driver who won the championship is also the candidate who minimizes distortion,
with the exception of 2016, where—if we are to accept the metric distortion framework—Lewis
Hamilton should have won the championship.

7Tie with Lando Norris.
8Tie with Sebastian Vettel and Charles Leclerc.
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Table 2: Summary of our findings for the F1 world championships held between 2016 and
2020. For every year we have indicated the top three drivers according to the Minimax-LP
rule and the Scoring system employed.

Year
Minimax-LP rule Scoring rule

# of Drivers # of Races
Driver Distortion Driver Score

2020

Lewis Hamilton 1.6667 Lewis Hamilton 347

23 17Valtteri Bottas 5 Valtteri Bottas 223

Max Verstappen7 5.6667 Max Verstappen 214

2019

Lewis Hamilton 1.7059 Lewis Hamilton 413

20 21Valtteri Bottas 4 Valtteri Bottas 326

Max Verstappen8 4.4 Max Verstappen 278

2018

Lewis Hamilton 2 Lewis Hamilton 408

20 21Sebastian Vettel 3.6 Sebastian Vettel 320

Kimi Räikkönen 4.4 Kimi Räikkönen 251

2017

Lewis Hamilton 2.2 Lewis Hamilton 363

25 20Sebastian Vettel 3 Sebastian Vettel 317

Valtteri Bottas 3.1818 Valtteri Bottas 305

2016

Lewis Hamilton 2.8333 Nico Rosberg 385

24 21Nico Rosberg 3 Lewis Hamilton 380

Daniel Ricciardo 3.9091 Daniel Ricciardo 256

7 Open Problems

There are several compelling avenues for future research related to our work. First, it would be
interesting to study the performance of the DominationRoot mechanism under randomized
pairings; we suspect that this might lead to a substantial improvement since our lower bound
(Proposition 3.6) is very brittle, but we did not pursue this direction. As we previously alluded
to, in practice the pairings are typically constructed using some form of prior, so it might
be interesting to formalize the guarantees of such techniques. It would also be meaningful to
quantify the decay of distortion from O(logm) to O(1) (which is the bound achievable when
the mechanism has access to the entire tournament graph) if we gradually elicit more than
m − 1 pairwise comparisons. With regards to the power of deterministic mechanisms which
elicit only the k-top preferences, an obvious question is to settle Conjecture 4.6. As we showed
in Proposition 4.7 this would immediately improve our upper bound, but it would still require
some further work to close the gap for every value of k ∈ [m]. Finally, can we reduce the sample
complexity established in Theorem 5.9 without sacrificing the efficiency? We argued that the
dependence on ε and δ cannot be improved, but establishing the optimal dependence on the
value of m requires future research.

Acknowledgments. We are very grateful to the anonymous reviewers of SAGT for their
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A Lower Bound for k-top Preferences

In this section we present for completeness a lower bound for deterministic mechanisms which
have access only to the k-top preferences of every voter.

Proposition A.1. Any deterministic mechanism which elicits only the k-top preferences from
every voter out of the m alternatives has distortion Ω(m/k).

Proof. First of all, assume without any loss of generality that k | (m−1)9, and let n = (m−1)/k
be the number of voters. For simplicity, let us enumerate the number of candidates as C =
{1, 2, . . . , n× k} ∪ {x}. Now consider some preference profile P in which the k-top preferences
of voter i correspond to the of candidates {(i − 1)k + 1, . . . , (i − 1)k + k} according to some
arbitrary order; observe that all of these sets are pairwise disjoint.

Based on these preferences the mechanism has to select some candidate. If x is selected the
lower bound follows trivially since x could actually be the last choice for every voter. Therefore,
let us assume that candidate 1 was selected by the mechanism; this hypothesis is without loss of
generality due to the symmetry of the input P. However, the agents and the candidates could
be located on the metric space of Figure 8; indeed, it is easy to check that the induced metric
space is consistent with the given preferences. As a result, it follows that

SC(1)

SC(x)
=
D + (n− 1)× (δ + 2D)

D + (n− 1)× δ
=

1 + (n− 1)× (δ/D + 2)

1 + (n− 1)× δ/D
. (20)

Thus, for δ/D ↓ 0 we obtain that SC(1)/SC(x)→ 2n− 1 = Ω(m/k).

Figure 8: The metric space considered for the proof of Proposition A.1, where δ/D ↓ 0 for some
positive numbers δ and D. Naturally, the distance between two points is simply the shortest
path in the graph.

We should note that although in our worst-case example the number of voters n is smaller
than the number of candidates m, which is not the canonical case, our argument directly extends
whenever n is a multiple of (m − 1)/k, allowing n to be arbitrarily large. Moreover, a similar
construction shows an Ω(m/k) lower bound for α-decisive metrics [AP16], for any α ∈ [0, 1];
indeed, it suffices to place the voters within the “cluster” of their k-most preferred candidates.

9If it is not the case that k | (m− 1) take k′ to be the smallest number larger than k such that k′ | (m− 1),
and apply our argument for k′; given that k′ < 2k we will establish again a lower bound of Ω(m/k) even though
the mechanism had more information than the k-top preferences.
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B PluralityMatching vs Minimax-LP

In this section we compare the PluralityMatching mechanism of Gkatzelis et al. [GHS20]
with the instance-optimal mechanism, namely Minimax-LP; in this section we tacitly posit
that P = σ, i.e. all the agents provide their entire rankings to the mechanism.

B.1 Instance Optimality

The first question that arises is how far could the distortion of PluralityMatching be with
respect to the instance-optimal candidate; to this end, we commence with the following propo-
sition:

Lemma B.1 (Lemma 6, [GHS20]). For any election E = (V,C, σ), a candidate a ∈ C can be
selected by PluralityMatching only if plu(a) ≥ veto(a).

With this lemma in mind, we consider an instance with a set of m voters V = {1, 2, . . . ,m},
and a set of m candidates C = {a, . . . }. We assume that for every voter i ∈ [n− 1], sec(i) = a,
while the (single) top-preferences of all the voters i ∈ [n−1] are assumed to be pairwise-distinct.
Finally, the last voter places candidate a in her last place, while her preferences are otherwise
arbitrary. An example with four candidates {a, b, e, f} corresponds to the following input:

• b �1 a �1 e �1 f ;

• f �2 a �2 b �2 e;

• e �3 a �3 f �3 b;

• b �4 f �4 e �4 a.

In general, observe that for any candidate b ∈ C \ {a} it follows that |ab| = (m − 2)/m.
Moreover, we will use the following standard lemma:

Lemma B.2. Consider two (distinct) candidates a, b ∈ C such that |ab| ≥ αn > 0. Then,

SC(a)

SC(b)
≤ 2

α
− 1. (21)

This implies that the distortion of candidate a is 1 +O(1/m). However, given that plu(a) =
0 < 1 = veto(a), we know from Lemma B.1 that a cannot be selected by PluralityMatching.
We will show that every other candidate yields distortion close to 3. In particular, consider the
metric space illustrated in Figure 9. It is easy to verify that the induced metric space is consistent
with the given preferences. But, it follows that SC(a) = m, while SC(b) = 2+3(m−2) = 3m−4
for any b 6= a, implying that SC(b)/SC(a) = 3−O(1/m). As a result, we have arrived at the
following conclusion:

Proposition B.3. For any sufficiently small ε > 0 and m = O(1/ε) there exists a preferences
profile σ such that Minimax-LP yields distortion 1 + ε, while PluralityMatching yields
distortion at least 3− ε.

B.2 Decisive Metrics

Moreover, it is natural to compare these mechanisms in more refined metrics. Specifically, we
espouse the α-decisiveness assumption of Anshelevich and Postl [AP16], according to which
d(vi, cp) ≤ α · d(vi, cq), where p = top(i) and q = sec(i), and α ∈ [0, 1] some parameter;
notice that the general case corresponds to α = 1, while for α = 0 every voter also serves as a
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Figure 9: A metric space embedded on an unweighted and undirected graph; this example
corresponds to m = n = 4, but the pattern should be already clear.

candidate. The first observation is that this particular refinement can be addresses by simply
incorporating some additional constraints in the linear program. More precisely, for a pair of
distinct candidates a, b this leads to the following linear program Metricα-LP(a, b):

maximize
∑n

i=1 xi,a

subject to
∑n

i=1 xi,b = 1;

xi,top(i) ≤ α · xi,sec(i),∀i ∈ V ;

xi,p ≤ xi,q, ∀(p, q) ∈ Pi,∀i ∈ V ;

xi,i = 0, ∀i ∈ V ∪ C;

xi,j = xj,i, ∀i, j ∈ V ∪ C;

xi,j ≤ xi,k + xk,j , ∀i, j, k ∈ V ∪ C.

(22)

Here we have assumed that every agent i provides her most preferred candidate top(i),
as well as her second most preferred candidate sec(i). Having solved the Metricα-LP(a, b)
for every distinct pair of candidates a, b, we simply select the candidate who minimizes the
maximum cost obtained over all other candidates; this mechanism shall be referred to as the
Minimaxα-LP. Similarly to Theorem 2.2 we can establish the following:

Proposition B.4. For any given preferences P and any α ∈ [0, 1] the Minimaxα-LP rule is
instance-optimal in terms of distortion under α-decisive metrics.

We should point out that for α-decisive metrics PluralityMatching always yields a can-
didate with distortion 2 + α. Moreover, Gkatzelis et al. [GHS20] showed a lower bound of
2 +α− 2(1−α)/m′ for deterministic mechanisms, where m′ = 2bm/2c; thus, they showed that
their mechanism obtains the optimal distortion only when m → ∞ or when α = 1, leaving a
substantial gap.

We will show that Minimaxα-LP can substantially outperform PluralityMatching even
for α-decisive metrics with α close to 0. Specifically, consider an election with 3 candidates and
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2 voters10 with the following preferences: σ1 = a � b � e, and σ2 = e � b � a. For this election,
b could be returned by PluralityMatching (see [GHS20]). However, we claim that b yields
distortion 2 + α, while a and e have distortion 1 + 2α. Indeed, we will show that candidate a
has always distortion upper-bounded by 1 + 2α (by symmetry, the same holds for e), while for
candidate b there exists a metric space for which b yields distortion 2 +α. Specifically, we have
that d(ca, cb) ≤ d(v1, ca) + d(v1, cb) ≤ (1 + α)d(v1, cb); thus we obtain that

d(v1, ca) ≤ αd(v1, cb), (23)

d(v2, ca) ≤ d(v2, cb) + d(ca, cb) ≤ (1 + α)d(v1, cb) + d(v2, cb). (24)

Summing these inequalities yields that SC(a) ≤ (1+2α)d(v1, cb)+d(v2, cb) ≤ (1+2α)SC(b).
Similarly, we can prove that SC(a) ≤ (1 + 2α)SC(e). On the other hand, for candidate b
Gkatzelis et al. [GHS20] considered the following metric space:

Figure 10: A metric space embedded on a graph.

Naturally, the distance between a pair of nodes is the corresponding shortest path in the
graph. Thus, for this instance it follows that SC(e) = 1, while SC(b) = 2+α, implying that the
distortion of b is 2 + α. Thus, for α→ 0 PluralityMatching loses a factor of 2 with respect
to the optimal candidate, which would be identified by the Minimaxα-LP rule by virtue of
Proposition B.4.

Proposition B.5. There exists a preference profile σ such that Minimaxα-LP yields distortion
1 + 2α, while PluralityMatching yields distortion at least 2 + α under α-decisive metrics.

Nonetheless we should point out that PluralityMatching does not require knowing the
value of parameter α, unlike the instance-optimal mechanism.

C Additional Experiments

In this section we provide additional details about our empirical findings. Specifically, in Fig-
ure 11 we juxtapose the scores of the finalists in the Eurovision song contest (based on the
Scoring rule) with their distortion as determined by Minimax-LP. We note that we have
removed the following outliers:

• For the year 2006 the countries Malta and Spain which incurred a distortion of 24.3333
and 18.0000 respectively.

• For the year 2007 the countries Ireland and United Kingdom which incurred a distortion
of 27.0000 and 13.6667 respectively.

10This example is taken from [GHS20].
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Figure 11: Scoring rule vs Minimax-LP for the Eurovision song contests during the years
between 2004 and 2008. For every country we have indicated only the first 5 letters according
to the entry in the dataset.

• For the year 2008 the countries United Kingdom, Germany and Poland which incurred a
distortion of 20.5000, 20.5000 and 14 respectively.

Similarly, in Figure 12 we juxtapose the scores accumulated by the drives based on the
Scoring rule with their distortion as determined by Minimax-LP. These results follow after
removing the following outliers:

• For the year 2016 the driver Stoffel Vandoorne who incurred a distortion of 41.

• For the year 2017 the drivers Paul di Resta, Jenson Button, Brendon Hartley, and Antonio
Giovinazzi who incurred a distortion of ∞, ∞, 19, and 39 respectively.

• For the year 2020 the drivers Pietro Fittipaldi, Jack Aitken, and Nico Hulkenberg who
incurred a distortion of 16, 33, and 16 respectively.
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Figure 12: Scoring rule vs Minimax-LP for the F1 world championships during the years
between 2020 and 2016. For every driver we have indicated only the first 5 letters of his/her
(last) name according to the entry in the dataset.
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