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Abstract. Interdependent values make basic auction design tasks – in
particular maximizing welfare truthfully in single-item auctions – quite
challenging. Eden et al. recently established that if bidders’ valuation
functions are submodular over their signals (a.k.a. SOS), a truthful 4-
approximation to the optimal welfare exists. We show existence of a
mechanism that is truthful and achieves a tight 2-approximation to the
optimal welfare when signals are binary. Our mechanism is randomized
and assigns bidders only 0 or 1

2
probabilities of winning the item. Our

results utilize properties of submodular set functions, and extend to ma-
troid settings.
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1 Introduction

One of the greatest contributions of Robert Wilson and Paul Milgrom, the 2020
Nobel Laureates in economics, is their formulation of a framework for auction
design with interdependent values [14]. Up to their work, the standard assump-
tion underlying auction design theory was that each bidder fully knows her value
for the item being auctioned, because this value depends only on her own private
information. This assumption is, however, far from reality in very important set-
tings – for example, when the auction is for drilling rights, the information one
bidder has about whether or not there is oil to be found is extremely relevant
to how another bidder evaluates the rights being auctioned. Works like [18] and
[12] lay the foundation for rigorous mathematical research of such settings, yet
many key questions still remain unanswered.

For concreteness, consider an auction with a single item for sale (our main
setting of interest). In the interdependent values model, every bidder i ∈ [n]
has a privately-known signal si, and her value vi is a (publicly-known) function
of all the signals, i.e., vi = vi(s1, s2, ..., sn). Thus, in this model, not only the
auctioneer is in the dark regarding a bidder’s willingness to pay for the item
being auctioned; so is the bidder herself (who knows si and vi(·) but not s−i)!

This stark difference from the standard, independent private values (IPV)
model creates a big gap in our ability to perform seemingly-simple auction design
tasks. Arguably the most fundamental such task is truthful welfare maximiza-
tion. For IPV, the truthful welfare-maximizing Vickrey auction [17] is a pillar
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of mechanism design (e.g., it has many practical applications and is usually the
first auction taught in a mechanism design course). But with interdependence,
welfare and truthfulness are no longer perfectly compatible: Consider two bid-
ders reporting their signals s1, s2 to the auction, which allocates the item to
the highest-value bidder according to these reports; if the valuation functions
v1, v2 are such that bidder 1 wins when s1 = 0 but loses when s1 = 1, this
natural generalization of Vickrey to interdependence is non-monotone and thus
non-truthful. This is the case, for example, if v1 = 1 + s1 and v2 = H · s1 for
H > 2 (see [5, Example 1.2]).

The classic economics literature addressed this challenge by introducing a
somewhat stringent condition on the valuation functions called “single-crossing”,
which ensures truthfulness of the natural generalization of Vickrey (in particular,
single-crossing is violated by v1 = 1 + s1, v2 = H · s1). Recently, a breakthrough
result of Eden et al. [5] took a different approach: For simplicity consider bi-
nary signals – e.g., “oil” or “no oil” in an auction for drilling rights. Formally,
si ∈ {0, 1} (we focus on the binary case throughout the paper). The valuations
are now simply set functions over the signals, objects for which a rich mathe-
matical theory exists. Eden et al. applied a submodularity assumption to these
set functions (in particular, submodularity holds for v1 = 1+s1 and v2 = H ·s1).
Under such submodularity over the signals (SOS ), they shifted focus from maxi-
mizing welfare to approximating the optimal welfare. While they showed that no
truthful mechanism can achieve a better approximation factor than 2 (guarantee-
ing more than half the optimal welfare), they constructed a truthful randomized
mechanism that achieves a 4-approximation (guaranteeing at least a quarter of
the optimal welfare). The gap between 2 and 4 was left as an open problem.

Our Results and Organization. In this work we resolve the above open
problem of [5] for binary signals. More precisely, we show that in the binary
signal case there exists a truthful randomized mechanism that achieves a 2-
approximation to the optimal welfare (for a formal statement see Theorem 1).
Our result holds for any number n of bidders, and is constructive – that is, we
give an algorithm that gets the n valuation functions as input, and returns the
mechanism as output.1

The fact that our mechanism is randomized is unsurprising given another
result of Eden et al. [5], who show that a deterministic mechanism cannot achieve
a constant approximation to the optimal welfare even with SOS. This result is
in fact proved with the above example of v1 = 1 + s1, v2 = H · s1 and si ∈
{0, 1}. An interesting corollary of our construction is that a 2-approximation
is achievable by a mechanism that is only “slightly” randomized – the only
allocation probabilities it uses are 0 and 1

2 .

Our algorithm is arguably quite simple and streamlined – for every signal pro-
file it searches for a feasible pair of bidders whose aggregate value exceeds that

1 The algorithm runs in time polynomial in its input size, which consists of set func-
tions over n elements and so is exponential in n.
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of the highest bidder, and randomly allocates the item among these two (this ex-
plains the factor of 2 in the approximation guarantee). Only if no such pair exists,
the item is randomly either allocated to the highest bidder or left unallocated.
To maintain monotonicity, the algorithm propagates allocation probabilities to
neighboring signal profiles. Despite its relative simplicity, the algorithm requires
careful analysis, which in particular relies on new properties of collections of
submodular functions (Section 4.2). The main technical challenge is in showing
that the 2-approximation guarantee holds despite the propagations.

Example. To illustrate our method, consider again the above example of
v1 = 1+s1 and v2 = H ·s1 where si ∈ {0, 1}. Our algorithm returns a randomized
allocation rule that gives the item to bidder 1 with probability 1

2 if s1 = 0, and
randomly allocates it to one of the two bidders if s1 = 1.2 This allocation rule is
monotone (unlike the natural generalization of Vickrey), and leads to a truthful
mechanism with a 2-approximation guarantee.

Extensions. In Appendix C we extend our main result to beyond single-item
settings, namely to general single-parameter settings in which the set of winning
bidders must satisfy a matroid constraint [15]. As in [5], we can also extend our
positive results from welfare to revenue maximization using a reduction of [4].

Organization. After presenting the preliminaries in Section 2, we state our
main theorem and give an overview of our algorithm in Section 3. The analysis
appears in Section 4 and Appendix B. Section 5 summarizes with future direc-
tions. Appendix A includes the algorithm and running time, Appendix C the
extension to matroids and Appendix D our results for non-binary signals.

Additional Related Work. Interdependent values have been extensively stud-
ied in the economic literature (see, e.g., [3,8,11,1]). In computer science, most
works to date focus on the objective of maximizing revenue [2,16,10,4]. The work
of [4] considers welfare maximization with a relaxed c-single-crossing assump-
tion, where parameter c ≥ 1 measures how close the valuations are to satisfying
classic single-crossing. This work achieves a c-approximation for settings with
binary signals. Their mechanisms also use propagations but otherwise are quite
different than ours. The work of [7] also focuses on welfare but does not assume
single-crossing; instead it partitions the bidders into ` “expertise groups” based
on how their signal can impact the values for the good, and using clock auc-
tions achieves approximation results parameterized by ` (and by the number of
possible signals). The main paper our work is inspired by is [5]. It introduces
the Random Sampling Vickrey auction, which by excluding roughly half of the
bidders achieves a 4-approximation to the optimal welfare for single-parameter,
downward-closed SOS environments. The authors also show positive results for
combinatorial SOS environments under various natural constraints. Finally, [6]

2 Our algorithm has two iterations: At s1 = 0, an appropriate pair is not found and so
the highest bidder (bidder 1) wins the item with probability 1

2
, which is propagated

forward to this bidder at s1 = 1. At s1 = 1, an appropriate pair is again not found
and so the highest bidder (bidder 2) wins the item with probability 1

2
.
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also study welfare maximization in single- and multi-parameter environments
but by simple, non-truthful parallel auctions.

2 Setting

Signals. As our main setting of interest we consider single-item auctions with n
bidders. Every bidder i has a binary signal si ∈ {0, 1}, which encompasses the
bidder’s private bit of information about the item. It is convenient to identify a
signal profile s = (s1, s2, ..., sn) with its corresponding set S = {i | si = 1} (by
treating si as an indicator of whether i ∈ S).

Values. The bidders have interdependent values for the item being auctioned:
Every bidder i’s value vi is a non-negative function of all bidders’ signals, i.e.,
vi = vi(s1, s2, ..., sn) ≥ 0. We adopt the standard assumption that the valuation
function vi is weakly increasing in each coordinate and strongly increasing in si.
Using the set notation we also write vi = vi(S).3 This makes vi(·) a monotone
set function over subsets of [n].

Who knows what. A setting is summarized by the valuation functions v1, . . . , vn,
which are publicly known (as is the signal domain {0, 1}). The instantiation of
the signals is private knowledge, that is, signal si is known only to bidder i.

SOS Valuations. The term SOS valuations was coined by Eden et al. [5]
to describe interdependent valuation functions that are submodular over the
signals (see also [2,4,13]).4 With binary signals, valuations are SOS if vi(·) is a
submodular set function for every i ∈ [n].

Definition 1 (Submodular set function). A set function vi : 2[n] → R is
submodular if for every S, T ⊆ [n] such that S ⊆ T and i ∈ [n] \ T it holds that
vi(S ∪ {i})− vi(S) ≥ vi(T ∪ {i})− vi(T ).

A weaker definition that will also be useful for us is subadditivity. Every
submodular set function is subadditive, but not vice versa.

Definition 2 (Subadditive set function). A set function vi : 2[n] → R is
subadditive if for every S, T ⊆ [n] is holds that f(S) + f(T ) ≥ f(S ∪ T ).

Given a set function vi and a subset S ⊆ [n], we use vi(· | S) to denote the
following set function: vi(T | S) = vi(T ∪ S) − vi(S) for every T ⊆ [n]. It is
known that submodularity of vi implies subadditivity of vi(· | S):

Proposition 1 (e.g., Lemma 1 of [9]). If vi is submodular then vi(· | S) is
subadditive for every subset S ⊆ [n].

3 This notation is not to be confused with the value for a set of items S; in our model
there is a single item, and a bidder’s interdependent value for it is determined by
the set of signals, i.e., which subset of signals is “on”.

4 As mentioned above, submodularity over signals is not to be confused with submod-
ularity over items in combinatorial auctions.
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We refer to an ordering S1, S2, . . . , S2n of all subsets of the ground set of
elements [n] as inclusion-compatible if for every pair Sk, S` such that Sk ⊂ S`,
it holds that k < ` (the included set is before the including one in the ordering).

Notation. Consider a set function vi and two elements j, k ∈ [n]. For brevity
we often write vi(j) for vi({j}), and vi(jk) for vi({j, k}).

2.1 Auctions with Interdependence

Randomized mechanisms. Due to strong impossibility results for deterministic
mechanisms [5], we focus on randomized mechanisms as follows: A randomized
mechanism M = (x, p) for interdependent values is a pair of allocation rule x
and payment rule p. The mechanism solicits signal reports from the bidders, and
maps a reported signal profile s to non-negative allocations x = (x1, ..., xn) and
expected payments p = (p1, ..., pn), such that the item is feasibly allocated to
bidder i with probability xi (feasibility means

∑n
i=1 xi(s) ≤ 1).

Truthfulness. With interdependence, it is well-established that the appropri-
ate notion of truthfulness is ex post IC (incentive compatibility) and IR (in-
dividual rationality). Mechanism M is ex post IC-IR if the following holds for
every bidder i, true signal profile s and reported signal s′i: Consider bidder i’s
expected utility when the others truthfully report s−i:

xi(s−i, s
′
i)vi(s)− pi(s−i, s′i);

then this expected utility is non-negative and maximized by truthfully reporting
s′i = si.

5

Similarly to independent private values, the literature on interdependent val-
ues provides a characterization of ex post IC-IR mechanisms – as the class of
mechanisms with a monotone allocation rule x. Allocation rule x satisfies mono-
tonicity if for every signal profile s, bidder i and δ ≥ 0, increasing i’s signal
report by δ while holding other signals fixed increases i’s allocation probability:

xi(s−i, si) ≤ xi(s−i, si + δ).

The characterization also gives a payment formula which, coupled with the
monotone allocation rule, results in an ex post IC-IR mechanism. In more detail,
the expected payment of bidder i is achieved by finding her critical signal report
and plugging it into her valuation function while holding others’ signals fixed
(see [16] for a comprehensive derivation of the payments).

Welfare maximization. Our objective in this work is to design ex post IC-IR
mechanisms for interdependent values that maximize social welfare. For a given
setting and true signal profile s, the optimal welfare OPT(s) is achieved by giv-
ing the item to the bidder with the highest value, i.e., OPT(s) = maxi{vi(s)}.
Given a randomized ex post IC-IR mechanism M = (x, p) for this setting,
ALG(s) is its welfare in expectation over the internal randomness, i.e., ALG(s) =

5 Note the difference from dominant-strategy IC, in which this guarantee should hold
no matter how other bidders report.
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i=1 xi(s)vi(s).We say mechanismM achieves a c-approximation to the optimal

welfare for a given setting if for every signal profile s, ALG(s) ≥ 1
c OPT(s) (note

that the required approximation guarantee here is “universal”, i.e., should hold
individually for every s). Since Eden et al. [5] devise a setting for which no ran-
domized ex post IC-IR mechanism can achieve better than a 2-approximation,
we aim to design mechanisms that achieve a c-approximation to the optimal
welfare where c ≥ 2 (the closer to 2 the better).

3 Main Result and Construction Overview

Our main result is the following:

Theorem 1. For every single-item auction setting with n bidders, binary signals
and interdependent SOS valuations, there exists an ex post IC-IR mechanism that
achieves a 2-approximation to the optimal welfare.

Our proof of Theorem 1 is constructive – we design an algorithm (Algo-
rithm 1) that gets as input the valuation functions v1, . . . , vn, and outputs an
allocation rule x. Note that the main goal of the algorithm is to establish ex-
istence. Rule x is guaranteed to be both feasible and monotone. Thus, coupled
with the appropriate expected payments p (based on critical signal reports), it
constitutes an ex post IC-IR mechanism M = (x, p). The main technical chal-
lenge is in showing that mechanism M has the following welfare guarantee: for
every signal profile s, ALG(s) ≥ 1

2 OPT(s). We prove this approximation ratio
and establish x’s other properties like monotonicity in Section 4. The algorithm
itself appears in Appendix A; we now give an overview of its construction.

3.1 Construction Overview

In this section we give an overview of Algorithm 1. The algorithm maintains
an “allocation table” with rows corresponding to the n bidders, and columns
corresponding to subsets S ⊆ [n]. At termination, column S will represent the
allocation rule x(S), with entry (i, S) encoding xi(S). For clarity of presentation
the encoding is via colors: At initiation, all entries of the table are colored white
to indicate they have not yet been processed. During its run, the algorithm colors
each entry (i, S) of the table either red or black. Once a cell has been colored
red or black, its color remains invariant until termination. The colors represent
allocation probabilities as follows:

• red = bidder i gets the item with probability 1
2 at signal profile S;

• black = i does not get the item at S (i.e., gets the item with probability 0).

As an interesting consequence, the allocation rule achieving the 2-approximation
guarantee of Theorem 1 uses only two allocation probabilities, namely 1

2 and 0.
Note that for feasibility, no more than two entries in a single column should be
colored red, and the remaining entries should be colored black.
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We now explain roughly how the colors are determined by the algorithm.
Consider an inclusion-compatible ordering of all subsets of [n]. The algorithm
iterates over the ordered subsets, with S representing the current subset. We
say bidder i can be colored red at iteration S if at the beginning of the iteration,
(i, S) is colored either white or red. We define a notion of favored bidder(s) at
iteration S – these are the ones the algorithm “favors” as winners of the item
given signal profile S, and so will color them red at S. First, if there is a pair of
bidders i 6= j for which the following conditions all hold, we say they are favored
at iteration S with Priority 1:

1. Bidder i and j’s signals both belong to S (i.e., si = sj = 1);
2. Bidders i and j can both be colored red at iteration S;
3. No other bidder k 6= i, j is colored red at the beginning of iteration S;
4. The sum of values vi(S) + vj(S) is at least OPT(S) (recall that OPT(S) is

the highest value of any bidder for the item given signal profile S).

If such a pair does not exist, but there exists a bidder i who satisfies the following
alternative conditions, we say i is favored at iteration S with Priority 2:

1. Bidder i can be colored red at iteration S;
2. The value vi(S) equals OPT(S).

Our main technical result in the analysis of the algorithm is to show that,
unless at the beginning of iteration S two bidders are already colored red, then
one of the two cases above must hold. That is, in every iteration S with no two
reds, there is always either a favored pair with Priority 1, or a single favored
bidder with Priority 2. Assuming this holds, the algorithm proceeds as follows.
At iteration S it checks whether two bidders are already red, and if so continues
to the next iteration. Otherwise, it colors the favored bidder(s) red by priority,
and all other bidders black. The algorithm then performs propagation to other
subsets S′ in order to maintain monotonicity of the allocation rule (the term
propagation was introduced in our context by [5]):

• If bidder i /∈ S is colored red at subset S, then red is propagated forward to
bidder i at subset S′ = S ∪ {i}.

• If bidder i ∈ S is colored black at subset S, then black is propagated backward
to bidder i at subset S′ = S \ {i}.

This completes the overview of our construction.

4 Proof of Theorem 1

We begin with a simple but useful observation:

Observation 1 Consider a subset S ⊆ [n] and i /∈ S. If during iteration S
bidder i is colored red then vi(S) = OPT(S).

Proof. The algorithm colors a bidder with a low signal red only if this bidder
has Priority 2, and in this case her value must be highest among all bidders.
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We now prove our main theorem, up to three lemmas which we prove in Sec-
tions 4.1-4.3, respectively. Section 4.2 also develops a necessary tool for the proof
in Section 4.3.

Proof (Theorem 1). We show that Algorithm 1 returns an allocation rule that
is feasible, monotone, and achieves a 2-approximation to the optimal welfare.
For such an allocation rule there exist payments that result in an ex post IC-IR
mechanism (see Section 2.1), establishing the theorem.

Let x be the allocation rule returned by Algorithm 1. We first show x is
feasible. That is, for every subset S ⊆ [b], the algorithm colors (i, S) either red
or black for every bidder i, and at most two bidders are colored red in column S.
To show this we invoke Lemma 1 below, by which Algorithm 1 never reaches one
of its error lines. Given that there are no errors, observe that the algorithm goes
over all subsets, and for every subset S ⊆ [n] either (i) skips to the next subset
(if two bidders are already red), or (ii) finds a Priority 1 pair or Priority 2
bidder and colors them red. Indeed, by Lemma 4, if (i) does not occur then (ii) is
necessarily successful. Once a Priority 1 pair or Priority 2 bidder is found,
the rest of the column is colored black. Furthermore, once any two bidders in a
column are colored red, the rest of the column is colored black. This establishes
feasibility.

We now show x is monotone. Since the only allocation probabilities x assigns
are 1

2 and 0 (and one of these is always assigned), it is sufficient to show that for
every S ⊆ [n] and i /∈ S, if x(i, S) = 1

2 then x(i, S ∪ {i}) = 1
2 . This holds since

every time the algorithm calls ColorRed to color (i, S), it propagates the color
red forward to (i, S ∪ {i}) as well.

It remains to show that x achieves a 2-approximation to the optimal welfare.
By definition of Priority 1 and Priority 2, if such bidders are colored red then
a 2-approximation is achieved for the corresponding signal profiles. It remains
to consider signal subsets S for which at the beginning of iteration S, two cells
i, j in the column are already colored red. These reds propagated forward from
vi(S\{i}) and vj(S\{j}). Let vk(S) be the highest value at S. By Observation 1,
vi(S \ {i}) and vj(S \ {j}) are highest at S \ {i} and S \ {j}, respectively:

vi(S \ {i}) ≥ vk(S \ {i});
vj(S \ {j}) ≥ vk(S \ {j}).

Applying Lemma 2 to the above inequalities, it cannot simultaneously hold that
vk(S) > vi(S) + vj(S). So vi(S) + vj(S) ≥ vk(S), and the approximation guar-
antee holds, completing the proof. ut

4.1 No errors

In this section we show that the algorithm runs without producing an error.

Lemma 1 (No errors). Algorithm 1 never reaches error lines 35, 41 or 55.
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Proof. We first establish that ColorRed is only called on white or red cells
(so line 35 is never reached). In Algorithm 1’s main procedure Allocate, sub-
procedure ColorRed is called on cells that correspond to bidder b of Priority 1
or Priority 2 (see lines 16-17 and 25), i.e., it is called only after verifying b is
not colored black (lines 13 and 23). Sub-procedure ColorRed also calls itself
(line 50), after being called on S from Allocate; in this case the color red is
being propagated forward from S to S∪{b}. Assume for contradiction (b, S∪{b})
is already colored black. This means ColorBlack was called on (b, S ∪ {b}).
But then due to backward propagation, (b, S) would already be black too, in
contradiction to ColorRed being called on it from Allocate.

We now show ColorBlack is only called on white or black cells (so line 55
is never reached). Sub-procedure ColorBlack is called from Allocate (line
27) inside a condition verifying the current color is white. ColorBlack is also
called from ColorRed at (line 46); in this case the current subset S already
has two red bidders, on which ColorBlack is not called, and there can never
be more than two reds due to the condition at line 41 of ColorRed. Finally,
ColorBlack also calls itself (line 62), after being called on S from Allocate
or from ColorRed; in this case the color black is being propagated backward
from S ∪ {b} to S. Assume for contradiction (b, S) is already colored red. This
means ColorRed was called on (b, S). But then due to forward propagation,
(b, S ∪ {b}) would already be red too, in contradiction to ColorBlack being
called on it from Allocate or from ColorRed.

It remains to show that Algorithm 1 never reaches error line 41, i.e., never
attempts to color more than two bidders red for a given subset S. Note that such
an attempt will not be made from Allocate due to the conditions at lines 8 and
14. Assume for contradiction it happens because of forward propagation from S
to S ∪ {b}. Then there are two bidders b1 6= b2 distinct from b who are already
colored red for signal profile S ∪{b} at the beginning of iteration S. This means
that all other bidders including b are colored black for signal profile S ∪ {b} at
the beginning of iteration S (see lines 44-48, in which after every time a bidder
is colored red the algorithm checks if there are now two red bidders and if so
colors all other bidders black). But then (b, S ∪ {b}) is black when Algorithm 1
attempts to color it red during forward propagation, contradiction. ut

4.2 Properties of SOS Valuations

In this section we state and prove two lemmas for SOS valuations. The first is
used in the proof of Theorem 1, and the second is the workhorse driving the proof
in Section 4.3 that either Priority 1 or Priority 2 always hold. Very roughly,
the first lemma (Lemma 2) states that if bidders i, j have higher values than
bidder k when their own signals are low, then bidder k’s value cannot exceed their
sum when their signals are high. The second lemma (Lemma 3) is more complex,
and to give intuition for what it states we provide a visualization in Figures 1-5
(we use a similar visualization to sketch our main proof in Section 4.3). The
proof is by induction and is deferred to Appendix B.1.
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Lemma 2. Consider a subset S′ ⊆ [n] and three bidders i, j, k (not necessarily
distinct) with SOS valuations over binary signals; let S∗ = S′ ∪ {i, j}. If the
following three inequalities hold simultaneously then they all hold with equality:

• vi(S
∗ \ {i}) ≥ vk(S∗ \ {i});

• vj(S
∗ \ {j}) ≥ vk(S∗ \ {j});

• vk(S∗) ≥ vi(S∗) + vj(S
∗).

Proof. Define ui(·) = vi(· | S′) for every i ∈ [n]. Using this notation, to prove
the lemma we need to show that if the following three inequalities hold simulta-
neously, they must all hold with equality:

• ui(j) + vi(S
′) ≥ uk(j) + vk(S′);

• uj(i) + vj(S
′) ≥ uk(i) + vk(S′);

• uk(ij) + vk(S′) ≥ ui(ij) + vi(S
′) + uj(ij) + vj(S

′).

Assume the inequalities hold. Summing them and simplifying we get

ui(j) + uj(i) + uk(ij) ≥ uk(j) + uk(i) + vk(S′) + ui(ij) + uj(ij). (1)

We now use the fact that uk(·) is subadditive (Proposition 1), so uk(ij) ≤ uk(j)+
uk(i). Thus by Inequality (1),

ui(j) + uj(i) ≥ vk(S′) + ui(ij) + uj(ij).

By monotonicity of set functions ui and uj , ui(j) ≤ ui(ij) and uj(i) ≤ uj(ij). We
conclude that vk(S′) ≤ 0, which can hold only with equality. But this equality
would be violated if one of the three inequalities was strict, completing the proof.

ut

Lemma 3. Consider a subset S′ ⊆ [n] and 3 + `1 + `2 + `3 bidders E = {i, j, k,
t1, . . . , t`1 ,t′1, . . . , t

′
`2

,t′′1 , . . . , t
′′
`3
} (not necessarily distinct) with SOS valuations

over binary signals. Let t`1+1 = k, t′`2+1 = k, t′′`3+1 = i, and S∗ = S′ ∪ E. If the
following 3 + `1 + `2 + `3 inequalities hold simultaneously then they all hold with
equality:

• vi(S
∗ \ {i}) ≥ vt1(S∗ \ {i}) + vj(S

∗ \ {i});
• ∀h ∈ [`1] : vth(S∗\{i, t1, ..., th}) ≥ vth+1

(S∗\{i, t1, ..., th})+vj(S∗\{i, t1, ..., th});
• vj(S

∗ \ {j}) ≥ vt′1(S∗ \ {j}) + vi(S
∗ \ {j});

• ∀h ∈ [`2] : vt′h(S∗\{j, t′1, ..., t′h}) ≥ vt′h+1
(S∗\{j, t′1, ..., t′h})+vi(S∗\{j, t′1, ..., t′h});

• vk(S∗ \ {k}) ≥ vt′′1 (S∗ \ {k}) + vj(S
∗ \ {k});

• ∀h ∈ [`3] : vt′′h (S∗ \ {k, t′′1 , ..., t′′h}) ≥ vt′′h+1
(S∗ \ {k, t′′1 , ..., t′′h}) + vj(S

∗ \
{k, t′′1 , ..., t′′h}).

Visualization of Lemma 3.

Consider the case `1 = `2 = `3 = 0. The first inequality of Lemma 3 in this case,
using that t1 = t`1+1 (which equals k by definition), is:

vi(S
∗ \ {i}) ≥ vk(S∗ \ {i}) + vj(S

∗ \ {i}). (2)
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Fig. 1. Visualization of Inequality (2).

Fig. 2. Visualization of the inequalities of Lemma 3 for `1 = `2 = `3 = 0.

We introduce a visualization of Inequality (2) as the 2 × n “block” shown in
Fig. 1. The columns of the block correspond to the bidders. The first row of the
block represents which bidders participate in the inequality (in this case i, j, k),
with the bidder on the greater (left) side of the inequality depicted in striped
red (in this case i); the second row represents the signal set in the inequality (in
this case S∗ \ i), with the signals not in the set depicted in white (in this case i).

We can use the above visualization to depict all inequalities of Lemma 3. For
the case that `1 = `2 = `3 = 0, these are shown in Fig. 2. Consider now the case
`1 = `2 = `3 = 1, with the following inequalities (among others):

vi(S
∗ \ {i}) ≥ vj(S∗ \ {i}) + vt1(S∗ \ {i});

vt1(S∗ \ {i, t1}) ≥ vj(S∗ \ {i, t1}) + vk(S∗ \ {i, t1}).

In this case we have a fourth bidder t1 who “bridges” between i, j, k. Instead
of an inequality requiring that vi ≥ vj + vk directly, here it is required that
vi ≥ vj + vt1 , and in turn vt1 ≥ vj + vk but with a different set of signals. The
full system of inequalities for this case (with 6 inequalities) appears in Fig. 3.

More generally, Lemma 3 holds for any number of “bridge” bidders. The
general case is shown in Fig. 5 in Appendix B.1.

4.3 When Are Priorities 1 or 2 Guaranteed

In this section we prove the following lemma (some details of the proof are
deferred to Appendix B.1):

Lemma 4. Assume Algorithm 1 runs on n bidders with SOS valuations over
binary signals. Then for every S ⊆ [n], if at the beginning of iteration S there
are less than two red bidders, either Priority 1 or Priority 2 must hold.

We begin with two observations that will be useful in the proof of Lemma 4.
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Fig. 3. Visualization of the inequalities of Lemma 3 for `1 = `2 = `3 = 1.

Observation 2 If at the beginning of iteration S no bidder is colored red, and
during the iteration bidder i whose signal is low (i /∈ S) is colored red, then for
every pair j, k ∈ S, vi(S) ≥ vj(S) + vk(S).

Proof. Assume for contradiction that vj(S)+vk(S) > vi(S), then since j, k both
have high signals and can be colored red at iteration S, they have Priority 1
and should be colored in place of bidder i, contradiction. ut

Observation 3 If at the beginning of iteration S only bidder t whose signal is
high (t ∈ S) is colored red, and during the iteration bidder i whose signal is low
(i /∈ S) is colored red, then for every j ∈ S, vi(S) ≥ vj(S) + vt(S).

Proof. Assume for contradiction that vj(S) + vt(S) > vi(S), then since j, t both
have high signals and can be colored red at iteration S (t is already red and j
can be colored red since there are no other reds besides t), they have Priority 1
and should be colored in place of bidder i, contradiction. ut

We can now prove our main lemma; missing details appear in Appendix B.1.

Proof (Lemma 4, sketch). Fix an iteration S with < 2 red bidders at its begin-
ning. By highest bidder we mean the bidder whose value at S equals OPT(S).
We split the analysis into cases; the most challenging cases technically are when
the highest bidder is colored black in column S, and there are either no red cells
or a single red cell in this column at the beginning of the iteration. Here we focus
on the first among these cases and remark at the end how to treat the second,
showing in both why a Priority 1 pair exists in column S. The remaining cases
are addressed in Appendix B.1.

Case 1: No red cells. Assume that at the beginning of iteration S, the highest
bidder is colored black and there are no red cells in column S. Denote the
highest bidder by k and observe that its color must have propagated backward
from (k, S ∪ {k}); let S∗ = S ∪ {k}. In column S∗ there must therefore be two
red bidders, whom we refer to as i and j, due to which k is colored black in
this column. Red must have propagated forward to column S∗ from S∗ \ {i}
and S∗ \ {j}. Fig. 4 shows the allocation status of the relevant bidders at the
beginning of iteration S for subsets S, S∗, S∗ \ {i}, S∗ \ {j} – we use the same
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Fig. 4. Colorings at S, S∗, S∗ \ {i} and S∗ \ {j} given that (k, S) is black.

visualization as in Section 4.2, but with colors in the first row representing those
set by the algorithm and arrows representing propagations.

Towards establishing existence of a Priority 1 pair in column S, consider
first the case in which the following two conditions hold:

1. At the beginning of iteration S∗ \ {i}, no cells in that column are red;
2. At the beginning of iteration S∗ \ {j}, no cells in that column are red.

By Observation 2,

vi(S
∗ \ {i}) ≥ vj(S∗ \ {i}) + vk(S∗ \ {i}); (3)

vj(S
∗ \ {j}) ≥ vi(S∗ \ {j}) + vk(S∗ \ {j}). (4)

If both (3) and (4) hold, by Lemma 3 with `1 = `2 = `3 = 0 it cannot simul-
taneously hold that vk(S) > vi(S) + vj(S) (see Fig. 2 and related text). Thus
vi(S) + vj(S) ≥ vk(S), and pair i, j has Priority 1.

Now consider the case in which one of the two conditions does not hold,
w.l.o.g. Condition (1). That is, at the beginning of iteration S∗ \ {i}, a bidder t1
is colored red. (There is only one such bidder since we know bidder i cannot be
red at the beginning of that iteration – no forward propagation as i /∈ S∗ \ {i}
– and that i is colored red during the iteration.) By Observation 3,

vi(S
∗ \ {i}) ≥ vj(S∗ \ {i}) + vt1(S∗ \ {i}). (5)

Since (t1, S
∗ \ {i}) is red at the beginning of iteration S∗ \ {i}, the color red

necessarily propagated forward from S∗ \ {i, t1}. If Condition (1) now holds for
S∗ \ {i, t1} then by Observation 2,

vt1(S∗ \ {i, t1}) ≥ vj(S∗ \ {i, t1}) + vk(S∗ \ {i, t1}) (6)

If Inequalities (4)-(6) hold simultaneously, then by Lemma 3 with `1 = 1, `2 =
`3 = 0 we can again conclude that vi(S) + vj(S) ≥ vk(S), and pair i, j has
Priority 1. Notice that t1 is the “bridge” bidder we discussed in Section 4.2.
For visualization we note that Inequality (4) is the one depicted in Fig. 2 (middle)



14 A. Amer and I. Talgam-Cohen

while Inequalities (5)-(6) are shown in Fig. 3 (left); these are the inequalities that
correspond to `1 = 1 and `2 = 0.

If Condition (1) does not hold for subset S∗\{i, t1}, then there is an additional
“bridge” bidder t2 that is colored red at S∗ \ {i, t1}, and we can possibly apply
Lemma 3 with `1 = 2. If not, we continue in this way until either Condition (1)
holds or only j, k remain in the subset. In either case, denote the final number of
“bridge” bidders by `1. In the latter case, either Observation 2 or Observation 3
hold, and so

vt`1 ({j, k}) ≥ vj({j, k}) + vk({j, k}).

By applying Lemma 3 with `1 > 0 (and `2 = `3 = 0) we conclude that pair i, j
has Priority 1.

Observe that the same analysis holds if both Condition (1) and Condition (2)
are relaxed. In this case Lemma 3 applies with `1 > 0, `2 > 0 (and `3 = 0).

Case 2: Single red cell. Finally, we address the case in which there exists a red
bidder t′′1 in column S at the beginning of iteration S. We can write S as S∗\{k};
the color red of t′′1 necessarily propagated forward from S∗ \ {k, t′′1}. Assume the
following third condition holds:

3. At the beginning of iteration S∗ \ {k, t′′1}, no cells in that column are red.

By Observation 2,

vt′′1 (S∗ \ {k, t′′1}) ≥ vj(S∗ \ {k, t′′1}) + vi(S
∗ \ {k, t′′1}). (7)

If Inequality (7) holds (alongside previous inequalities) then Lemma 3 applies
with `1 > 0, `2 > 0, `3 = 1. If Condition (3) does not hold for subset S∗ \{k, t′′1},
we continue as above, denoting the final number of “bridge” bidders by `3. By
applying Lemma 3 with `1 > 0, `2 > 0 and `3 > 0, we conclude that pair i, t′′1
has Priority 1. ut

5 Summary and Future Directions

Tension between optimization and truthfulness is an important theme of al-
gorithmic game theory. With interdependent values, this tension appears even
without computational considerations. Since with interdependence there is an
inherent clash between welfare maximization and truthfulness, the approxima-
tion toolbox comes in handy. We apply it to arguably the simplest possible
setting (single-item auctions with binary signals), and get a tight understanding
of the tradeoff (i.e., what fraction of the optimal welfare can be guaranteed by
a truthful mechanism). Our results extend beyond single items.

Two promising future directions are: (i) generalizing our results beyond
binary signals, and (ii) designing an “on the fly” tractable version of the 2-
approximation truthful mechanism (i.e., a version that gets signal reports and
returns an allocation only for the reported signal profile). For the former direc-
tion, non-binary signals pose additional challenges since two priorities are no
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longer sufficient in the algorithm, and additionally the propagation is more com-
plex. In Appendix D we present progress towards resolving these challenges (in
particular, Lemma 5 extends Lemma 3 to functions over general integer signals).
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A Main Algorithm

In this section we give the pseudocode of our main algorithm (Algorithm 1),
which proves Theorem 1 by returning a truthful, 2-approximate welfare maxi-
mizing mechanism for any given setting v1, . . . , vn. The algorithm’s main proce-
dure is Allocate, and it contains two sub-procedures ColorRed and Color-
Black. For completeness, in Appendix A.1 we analyze the algorithm’s running
time as a function of n.

Algorithm 1 Mechanism Construction

1: Input: Set of bidders E = {1, . . . , n} and their valuation functions V =
(v1, . . . , vn), where value(b, S) for b ∈ E and S ⊆ [n] returns vb(S).

2: Output: Allocation rule x, where allocation(b, S) returns xb(S) represented by the
following colors – red represents xb(S) = 1

2
and black represents xb(S) = 0.

3: Initialization: For every b, S, initialize allocation(b, S)=white. Let S1, S2, . . . , S2n

be an inclusion-compatible ordering of all subsets of [n].
4:
5: function Allocate(E, V )
6: for S ∈ (S1, S2, . . . , S2n) do
7: cnt reds ← |{b ∈ E s.t. allocation(b, S) = red}|
8: if cnt reds = 2 then
9: continue; . go to next subset

10: end if
11: max v ← max{value(b, S) : b ∈ E} . max v = OPT(S)
12: if ∃b1, b2 s.t. b1 6= b2 and {b1, b2} ⊆ S then
13: if allocation(b1, S) 6= black and allocation(b2, S) 6= black then
14: if @b3 /∈ {b1, b2} s.t. allocation(b3, S)=red then
15: if value(b1, S) + value(b2, S) ≥ max v then
16: ColorRed(b1, S) . Priority 1
17: ColorRed(b2, S) . Priority 1
18: continue;
19: end if
20: end if
21: end if
22: end if
23: if ∃b1 s.t. allocation(b1, S) 6= black then
24: if value(b1, S) = max v then
25: ColorRed(b1, S) . Priority 2
26: for b2 s.t. allocation(b2, S) = white do
27: ColorBlack(b2, S)
28: end for
29: end if
30: end if
31: end for
32: end function
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33: function ColorRed(b, S)
34: if allocation(b, S) = black then
35: Error(“Cannot color a black cell red”)
36: end if
37: if allocation(b, S) = red then
38: return
39: end if
40: if ∃b1, b2 s.t. b1, b2 6= b and b1 6= b2, and allocation(b1, S) = allocation(b2, S)

= red then
41: Error(“Cannot color more than two cells red”)
42: end if
43: allocation(b, S) ← red
44: if ∃b1 6= b s.t. allocation(b1, S) = red then . Two cells b, b1 are red
45: for b′ 6= b, b1 do
46: ColorBlack(b′, S) . Color the others black
47: end for
48: end if
49: if b /∈ S then
50: ColorRed(b, S ∪ {b}) . Propagate forward
51: end if
52: end function .

———————————————————————————————————–
53: function ColorBlack(b, S)
54: if allocation(b, S) = red then
55: Error(“Cannot color a red cell black”)
56: end if
57: if allocation(b, S) = black then
58: return
59: end if
60: allocation(b, S) ← black
61: if b ∈ S then
62: ColorBlack(b, S \ {b}) . Propagate backward
63: end if
64: end function
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Fig. 5. Visualization of the inequalities of Lemma 3 for the general case.

A.1 Computational Complexity

The loop in line 36 iterates over all subsets of bidders, that is, over 2n sets. For
each set:

1. We count the red bidders in line 7 which takes O(n);
2. We find the maximum value in line 11 which takes O(n);
3. In lines 12-15 we search for two bidders that satisfy Priority 1, for which

we iterate over all bidders once more to check there is no other red bidder.
This takes O(n3);

4. When two bidders are found, we call ColorRed twice. In ColorRed we
check if two are already red, which takes O(n), and if so we color all the
others black with ColorBlack (which takes O(1)). Thus, ColorRed in
total takes O(n);

5. In lines 23-26 we iterate over all bidders and search for a bidder with Pri-
ority 2. If found we call ColorRed, which takes O(n);

In total, the algorithm’s runtime complexity is O(n3 · 2n).

B Missing Proofs from Section 4

B.1 Proof of Lemma 3

In this section we prove that if the inequalities of Lemma 3 (as depicted in Fig. 5)
hold simultaneously, then they must all hold with equality.
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Proof. The proof is by induction. For the base cases define ui′(x) = vi′(x | S′)
for every i′ ∈ [n]. Note that we provide the analysis of Base Cases 2-4 to build
intuition (Base Case 1 is sufficient to complete the proof).

Base cases.

Base Case 1: `1 = `2 = `3 = 0. For any three bidders i, j, k, consider the
following three inequalities:

• ui(jk) + vi(S
′) ≥ uj(jk) + vj(S

′) + uk(jk) + vk(S′);
• uj(ik) + vj(S

′) ≥ ui(ik) + vi(S
′) + uk(ik) + vk(S′);

• uk(ij) + vk(S′) ≥ ui(ij) + vi(S
′) + uj(ij) + vj(S

′).

We sum the inequalities and replace vi(S
′) + vj(S

′) + vk(S′) by A to get:

ui(jk)+uj(ik)+uk(ij)+A ≥ uj(jk)+uk(jk)+ui(ik)+uk(ik)+ui(ij)+uj(ij)+2A.

Since all factors are non-negative, A ≤ 2A and so:

ui(jk) + uj(ik) + uk(ij) ≥ uj(jk) + uk(jk) + ui(ik) + uk(ik) + ui(ij) + uj(ij).

By subadditivity we know that:

• ui(j) + ui(k) ≥ ui(jk);
• uj(i) + uj(k) ≥ uj(ik);
• uk(i) + uk(j) ≥ uk(ij).

Thus, we get:

ui(j)︸ ︷︷ ︸
1

+ui(k)︸ ︷︷ ︸
2

+uj(i)︸ ︷︷ ︸
3

+uj(k)︸ ︷︷ ︸
4

+uk(i)︸ ︷︷ ︸
5

+uk(j)︸ ︷︷ ︸
6

≥

uj(jk)︸ ︷︷ ︸
4

+uk(jk)︸ ︷︷ ︸
6

+ui(ik)︸ ︷︷ ︸
2

+uk(ik)︸ ︷︷ ︸
5

+ui(ij)︸ ︷︷ ︸
1

+uj(ij)︸ ︷︷ ︸
3

Notice that for each pair of summands with the same number, the left-hand side
is at most the right-hand side by monotonicity. This completes the analysis of
Base Case 1.

Base Case 2: `1 = 1, `2 = `3 = 0. For any four bidders i, j, k, t, consider the
following four inequalities:

• ui(jkt) + vi(S
′) ≥ uj(jkt) + vj(S

′) + ut(jkt) + vt(S
′);

• ut(jk) + vt(S
′) ≥ uj(jk) + vj(S

′) + uk(jk) + vk(S′);
• uj(ikt) + vj(S

′) ≥ ui(ikt) + vi(S
′) + uk(ikt) + vk(S′);

• uk(ijt) + vk(S′) ≥ ui(ijt) + vi(S
′) + uj(ijt) + vj(S

′).
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We sum the inequalities and use that vi(S
′) + vt(S

′) + vj(S
′) + vk(S′) ≤

3vj(S
′) + vt(S

′) + 2vk(S′) + 2vi(S
′) to get:

ui(jkt) + ut(jk) + uj(ikt) + uk(ijt) ≥
uj(jkt) + ut(jkt) + uj(jk) + uk(jk) + ui(ikt) + uk(ikt) + ui(ijt) + uj(ijt).

By subadditivity we know that:

• ui(j) + ui(kt) ≥ ui(jkt);
• uj(i) + uj(k) + uj(t) ≥ uj(ikt);
• uk(it) + uk(j) ≥ uk(ijt).

Thus, we get:

ui(j)︸ ︷︷ ︸
1

+ui(kt)︸ ︷︷ ︸
2

+ut(jk)︸ ︷︷ ︸
3

+uj(i)︸ ︷︷ ︸
4

+uj(k)︸ ︷︷ ︸
5

+uj(t)︸ ︷︷ ︸
6

+uk(it)︸ ︷︷ ︸
7

+uk(j)︸ ︷︷ ︸
8

≥

uj(jkt)︸ ︷︷ ︸
6

+ut(jkt)︸ ︷︷ ︸
3

+uj(jk)︸ ︷︷ ︸
5

+uk(jk)︸ ︷︷ ︸
8

+ui(ikt)︸ ︷︷ ︸
2

+uk(ikt)︸ ︷︷ ︸
7

+ui(ijt)︸ ︷︷ ︸
1

+uj(ijt)︸ ︷︷ ︸
4

As above, for each pair of summands with the same number, the left-hand side
is at most the right-hand side by monotonicity. This completes the analysis of
Base Case 2.

Base Case 3: `2 = 1, `1 = `3 = 0. The analysis of this case is symmetric to that
of `1 = 1, `2 = `3 = 0.

Base Case 4: `1 = `2 = 0, `3 = 1. For any four bidders i, j, k, t′′1 , consider the
following four inequalities:

1. ui(jkt
′′
1) + vi(S

′) ≥ uj(jkt′′1) + vj(S
′) + uk(jkt′′1) + vk(S′);

2. uj(ikt
′′
1) + vj(S

′) ≥ ui(ikt′′1) + vi(S
′) + uk(ikt′′1) + vk(S′);

3. ut′′1 (ij) + vt′′1 (S′) ≥ uj(ij) + vj(S
′) + ui(ij) + vi(S

′);

4. uk(ijt′′1) + vk(S′) ≥ ut′′1 (ijt′′1) + vt′′1 (S′) + uj(ijt
′′
1) + vj(S

′).

We sum the inequalities and use that vi(S
′) + vj(S

′) + vt′′1 (S′) + vk(S′) ≤
2vi(S

′) + 3vj(S
′) + vt′′1 (S′) + 2vk(S′) to get:

ui(jkt
′′
1) + uj(ikt

′′
1) + ut′′1 (ij) + uk(ijt′′1) ≥

uj(jkt
′′
1) + uk(jkt′′1) + ui(ikt

′′
1) + uk(ikt′′1) + uj(ij) + ui(ij) + ut′′1 (ijt′′1) + uj(ijt

′′
1).

By subadditivity we know that:

• ui(j) + ui(kt
′′
1) ≥ ui(jkt′′1);

• uj(i) + uj(k) + uj(t
′′
1) ≥ uj(ikt′′1);

• uk(it′′1) + uk(j) ≥ uk(ijt′′1).
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Thus, we get:

ui(j)︸ ︷︷ ︸
1

+ui(kt
′′
1)︸ ︷︷ ︸

2

+ut′′1 (ij)︸ ︷︷ ︸
3

+uj(i)︸ ︷︷ ︸
4

+uj(k)︸ ︷︷ ︸
5

+uj(t
′′
1)︸ ︷︷ ︸

6

+uk(it′′1)︸ ︷︷ ︸
7

+uk(j)︸ ︷︷ ︸
8

≥

uj(ijt
′′
1)︸ ︷︷ ︸

6

+ut′′1 (ijt′′1)︸ ︷︷ ︸
3

+uj(jkt
′′
1)︸ ︷︷ ︸

5

+uk(jkt′′1)︸ ︷︷ ︸
8

+ui(ikt
′′
1)︸ ︷︷ ︸

2

+uk(ikt′′1)︸ ︷︷ ︸
7

+ui(ij)︸ ︷︷ ︸
1

+uj(ij)︸ ︷︷ ︸
4

.

As above, for each pair of summands with the same number, the left-hand side
is at most the right-hand side by monotonicity. This completes the analysis of
Base Case 4.

Induction step. Assuming the lemma holds for `1 − 1, `2, `3, we prove it for
`1, `2, `3. The proof is symmetric for increasing `2 or `3.

Define S = S′ ∪ {t`1} and u∗i′(x) = vi′(x | S) for every i′ ∈ [n]. Using this
notation we can rewrite the inequalities of the lemma as follows:

• u∗i (jkt1t2...t`1−1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S) ≥
u∗j (jkt1t2...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S) +
u∗t1(jkt1t2...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vt1(S);
• ∀h ∈ [`1] : u∗th(jkth+1...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vth(S) ≥
u∗j (jkth+1...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S) +
u∗th+1

(jkth+1...t`1−1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vth+1
(S);

• u∗j (ikt1t2...t`1−1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S) ≥
u∗i (ikt1t2...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S) +
u∗t′1

(jkt1t2...t`1−1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′1(S);

• ∀h ∈ [`2] : u∗t′h
(ikt1...t`1−1t

′
h+1...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′h(S) ≥
u∗i (ikt1...t`1−1t

′
h+1...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S) +
u∗t′h+1

(jkt1...t`1−1t
′
h+1...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′h+1
(S);

• u∗k(ijt1t2...t`1−1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vk(S) ≥
u∗i (ijt1t2...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S) +
u∗j (ijt1t2...t`1−1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S);
• ∀h ∈ [`3] : u∗t′′h

(ijt1...t`1−1t
′
1t
′
2...t

′
`2
t′′h+1, ..., t

′′
`3

) + vt′′h (S) ≥
u∗j (ijt1...t`1−1t

′
1t
′
2...t

′
`2
t′′h+1, ..., t

′′
`3

) + vj(S) +
u∗t′′h+1

(ijt1...t`1−1t
′
1t
′
2...t

′
`2
t′′h+1, ..., t

′′
`3

) + vth+1
(S).

The last two inequalities in the second bullet are:

u∗t`1−1
(jkt′1t

′
2...t

′
`2

) + vt`1−1
(S) ≥

u∗j (jkt′1t
′
2...t

′
`2

) + vj(S) + u∗t`1
(jkt′1t

′
2...t

′
`2

) + vt`1 (S); (8)

u∗t`1
(jkt′1t

′
2...t

′
`2

) + vt`1 (S) ≥
u∗j (jkt′1t

′
2...t

′
`2

) + vj(S) + u∗k(jkt′1t
′
2...t

′
`2

) + vk(S). (9)

Combining Inequalities (8)-(9) we get that:

u∗t`1−1
(jkt′1t

′
2...t

′
`2

) + vt`1−1
(S) ≥

u∗j (jkt′1t
′
2...t

′
`2

) + vj(S) + u∗j (jkt′1t
′
2...t

′
`2

) + vj(S) + u∗k(jkt′1t
′
2...t

′
`2

) + vk(S) ≥
u∗j (jkt′1t

′
2...t

′
`2

) + vj(S) + u∗k(jkt′1t
′
2...t

′
`2

) + vk(S). (10)
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Consider replacing the last two inequalities in the second bullet with the com-
bined Inequality (10). We know from the induction assumption for `1 − 1, `2, `3
that these `1 + `2 + `3 + 2 inequalities must hold with equality. Thus, the same
holds for the `1 + `2 + `3 + 3 original inequalities. ut

B.2 Proof of Lemma 4: Supplementary

Proof (Lemma 4, missing details). Fix a subset S ⊆ [n] such that there are < 2
red bidders at the beginning of iteration S. We show by case analysis that one
of the two priorities holds.

Denote the highest bidder (whose value at S equals OPT(S)) by k. If at the
beginning of iteration S bidder k is not colored black, then k has Priority 2 (note
there is also possibly an additional pair with Priority 1), and this is sufficient
to complete the proof. The main technical challenge is if at the beginning of
iteration S, bidder k is colored black. Observe this can only happen due to back
propagation from (k, S ∪ {k}).

Let S∗ = S∪{k}. Since S ⊂ S∗ we know that at the beginning of iteration S,
Algorithm 1 did not yet reach iteration S∗. Thus, for back propagation to occur,
two reds must have propagated forward to S∗; denote the corresponding red
bidders by i, j. The forward propagation must have been from (i, S∗ \ {i}) and
(j, S∗ \ {j}), resulting in coloring (k, S∗) black (and back-propagating the color
black to (k, S)). We now split the analysis into two cases, by the number of cells
colored red at the beginning of iteration S (which is < 2 by assumption). We
use i, j, k as defined above in the case analysis:

Case 1: No red cells. As detailed in Section 4.3, Observations 2-3 imply that for
`1, `2 ≥ 0 there exist t1, t2, ..., tl1 , t

′
1, t
′
2, ..., t

′
l2

for which the following inequalities
simultaneously hold:

• vi(S
∗ \ {i}) ≥ vt1(S∗ \ {i}) + vj(S

∗ \ {i});
• ∀h ∈ [`1] : vth(S∗\{i, t1, ..., th}) ≥ vth+1

(S∗\{i, t1, ..., th})+vj(S∗\{i, t1, ..., th});
• vj(S

∗ \ {j}) ≥ vt′1(S∗ \ {j}) + vi(S
∗ \ {j});

• ∀h ∈ [`2] : vt′h(S∗\{j, t′1, ..., t′h}) ≥ vt′h+1
(S∗\{j, t′1, ..., t′h})+vi(S∗\{j, t′1, ..., t′h});

By Lemma 3 with `3 = 0, if vk(S∗ \ {k}) ≥ vi(S
∗ \ {k}) + vj(S

∗ \ {k}) then
the inequalities all hold with equality. In particular, vk(S) = vk(S∗ \ {k}) =
vi(S

∗ \ {k}) + vj(S
∗ \ {k}) = vi(S) + vj(S). In other words, by Lemma 3 either

vk(S) = vi(S) + vj(S), or else vk(S) < vi(S) + vj(S) to begin with. We conclude
that vi(S) + vj(S) ≥ vk(S). Therefore, both i and j are contained in the set
S, their aggregate value is at least that of k, and there are no bidders already
colored red at S. Thus the pair i, j has Priority 1.

Case 2: Single red cell. Denote the bidder colored red at S by t′′1 . As explained
in Section 4.3, Observations 2-3 imply that for `3 ≥ 0 there exist t′′2 , ..., t

′′
`3+1

where t′′`3+1 = i such that:

∀h ∈ [`3] : vt′′h (S \ {t′′1 , .., t′′h}) ≥ vt′′h+1
(S \ {t′′1 , .., t′′h}) + vj(S \ {t′′1 , .., t′′h}).
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These inequalities hold simultaneously with the inequalities for `1, `2 above. By
Lemma 3, if vk(S∗ \ {k}) ≥ vt′′1 (S∗ \ {k}) + vj(S

∗ \ {k}) then the inequalities all
hold with equality. As above we conclude that vt′′1 (S) + vj(S) ≥ vk(S), and that
the pair t′′1 , j has Priority 1. ut

C Matroid Auction Settings

In this appendix we establish, by reduction to the single item case, the existence
of a truthful mechanism for matroid settings that achieves a 2-approximation
to the optimal welfare. This existence result follows directly from Proposition 2
below.

A matroid auction setting is defined by a matroid ([n], I), where I contains
all independent sets of bidders, i.e., subsets of bidders who can simultaneously
win in the auction. We also refer to sets in I as feasible. For example, if there
are k units of the item to allocate in the auction, I can be all possible subsets
of k bidders. The rest of the setting is as before, i.e., every bidder i has a signal
si and a valuation vi(s1, . . . , sn) for winning. It is well known that in matroid
settings with given values, welfare maximization is achieved by greedily adding
bidders to the winner set W while keeping W feasible. We refer to this algorithm
as Greedy.

Algorithm 2 Matroid Settings

1: function MatroidMechanism((E, I), k, S = {si | si = 1}, V = (v1, . . . , vn))
2: W = ∅ . Current winning bidders
3: for j ∈ [k] do . Run k times where k is the matroid rank
4: x = Allocate(E,V )
5: b = randomly choose a bidder such that every bidder b′ ∈ E is chosen with

probability x(b′, S)
6: W = W ∪ {b} . Add b to the winning set
7: E = all bidders b′ such that W ∪ {b′} ∈ I . Remove bidders who can no

longer feasibly win
8: end for
9: end function

Proposition 2. If for single item auctions there exists a monotone feasible al-
location rule that achieves a 2-approximation to the optimal welfare, then there
exists such an allocation rule for matroid auction settings as well.

Proof. Consider the matroid auction setting and fix a signal profile S. Let k be
the rank of the matroid. Algorithm 2 gives our reduction. For the analysis we
use the following notation:

• GRDi: The welfare contribution (i.e., the valuation given S) of the ith bidder

chosen by Greedy. Using this notation, OPT =
∑k

i=1 GRDi.
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• ALGi: The expected welfare contribution of the ith bidder chosen by Algo-
rithm 2 (where the expectation is over the randomness of Allocate). Using

this notation and linearity of expectation, ALG =
∑k

i=1 ALGi.
• GRD∗i : After choosing i − 1 winners by Algorithm 2, GRD∗i is the welfare

contribution of the ith bidder chosen by Greedy.

To show that ALG ≥ 1
2 OPT, it is sufficient to show that for every i ∈ [k],

ALGi ≥ 1
2 GRD∗i ≥ 1

2 GRDi:

1. ALGi ≥ 1
2 GRD∗i : Let v∗ be the highest value among the remaining bidders

after i−1 iterations of Algorithm 2. Observe that GRD∗i = v∗. Since Alloc
guarantees a 2-approximation, ALGi ≥ 1

2v
∗ = 1

2 GRD∗i .
2. GRD∗i ≥ GRDi: Let Wi−1 be the winning set of bidders after i−1 iterations

of Algorithm 2, and let W ∗i be the winning set of bidders after i iterations
of Greedy. Observe that GRDi is the lowest among the values of bidders in
W ∗i . By the exchange property of matroids, there is a bidder in W ∗i that can
be feasibly added to Wi−1, and GRD∗i will be the highest value of such a
bidder. The inequality follows.

It remains to show that the algorithm maintains monotonicity. Denote:

• Wi: Indicator – bidder i wins at one of the iterations.
• W t

i : Indicator – bidder i wins at iteration t.

We need to show that E [Wi | si = 1] ≥ E [Wi | si = 0]. Note that:

E [Wi | si = 1] = E[
∑k

t=1W
t
i | si = 1] (11)

=
∑k

t=1 E [W t
i | si = 1] (12)

≥
∑k

t=1 E [W t
i | si = 0] (13)

= E [
∑k

t=1W
t
i | si = 0]] (14)

= E [Wi | si = 0], (15)

where Equations (11) and (15) are due to the fact that the bidder can only
win at one of the k iterations, equations (12) and (14) are due to the linearity
of expectation and inequality (13) is due to the fact that Allocate at each
iteration is monotone; i.e. by Theorem 1. This completes the proof. ut

D Beyond Binary Signals

An interesting open question is whether our result extends beyond binary signals.
This appendix gives two indications that the answer may be positive.

D.1 Simulations

We ran a computer simulation that constructs random values, which satisfy
SOS for a setting with 3 bidders and 3 signals each. The values are randomized
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under the SOS and monotonicity (of values) constraints. We achieve that by
constructing the values iteratively by the natural signals order to hold under the
constraints. To illustrate this, consider the valuation v1(s = (1, 1, 0)).

1. We start by constructing the valuation v1(0, 0, 0) by simply choosing a ran-
dom number;

2. We construct the valuations v1(1, 0, 0) and v1(0, 1, 0) to random numbers
in the range [v1(0, 0, 0),∞] to satisfy the constraint of monotonicity of the
valuations; i.e. v1(0, 1, 0) ≥ v1(0, 0, 0);

3. We finally construct the valuation v1(1, 1, 0) to a random number in the
range [max{v1(1, 0, 0), v1(0, 1, 0)}, v1(1, 0, 0) + v1(0, 1, 0)− v1(0, 0, 0)];

The upper bound of the range in (3) is used to satisfy the SOS constraint. By
SOS we know that:

v1(1, 1, 0)− v1(1, 0, 0) ≤ v1(0, 1, 0)− v1(0, 0, 0)

Reordering the inequality gives the upper bound:

v1(1, 1, 0) ≤ v1(1, 0, 0) + v1(0, 1, 0)− v1(0, 0, 0)

We continue to construct all the values iteratively in the same way.
We ran an extended algorithm for over 2, 000, 000 different random valua-

tions. For each run of the algorithm, we checked if the social welfare approxima-
tion of 2 was achieved. All the runs successfully passed the approximation test.
The code for the simulations is publicly available.6

The algorithm that we ran is very similar to the one shown in this paper for
binary signals but with one change. The priorities are defined differently. Given
that the range of possible signals is [k]; we ordered the priorities from k to 1. For
each signals profile s, we iterate over the signal range from k to 1 and for the
iteration of signal’s value m we check for priorities 1 and 2 as follows; Priority
1 at iteration m consists of two bidders i and j s.t.:

1. Bidder i and j’s signals are at least m;
2. Bidders i and j can both be colored red at iteration s;
3. No other bidder k 6= i, j is colored red at the beginning of iteration s;
4. The sum of values vi(s)+vj(s) is at least OPT(s) (recall that OPT(s) is the

highest value of any bidder for the item given signal profile s).

Priority 2 at iteration m consists of one bidder i s.t.:

1. Bidder i’s signal is at least m− 1;
2. Bidder i can be colored red at iteration s;
3. The value vi(s) equals OPT(s).

In this extended algorithm we get 2k priorities, 2 for each possible value of a
signal. We incorporate the sense of high and low signals by ordering the priorities
decreasingly by the signal range.

6 See https://colab.research.google.com/drive/1vkhOt3aMG5DgivaHZt5URNhPJ7q0W4J1.

https://colab.research.google.com/drive/1vkhOt3aMG5DgivaHZt5URNhPJ7q0W4J1
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D.2 Extending Lemma 3

We show that our main technical lemma, Lemma 3, extends beyond binary
signals.

Lemma 5. Consider a signals profile s′ = (s′1, ..., s
′
n) and 3+`1+`2+`3 bidders

E = {i, j, k, t1, . . . , t`1 ,t′1, . . . , t
′
`2

,t′′1 , . . . , t
′′
`3
} (not necessarily distinct) with SOS

valuations, and n values d1, d2, ..., dn. Define sh = s′h+dh for each bidder h ∈ [n]
and s = (s1, ..., sn). If the following 3+`1+`2+`3 inequalities hold simultaneously
then they hold with equality:

• vi(s
′
i, s−i) ≥ vj(s′i, s−i) + vt1(s′i, s−i)

• ∀0 < h ≤ `1: vth(s′i, s
′
t1 , ..., s

′
th
, s−{i,t1,...,th}) ≥

vj(s
′
i, s
′
t1 , ..., s

′
th
, s−{i,t1,...,th}) + vth+1

(s′i, s
′
t1 , ..., s

′
th
, s−{i,t1,...,th})

• vj(s
′
j , s−j) ≥ vi(s′j , s−j) + ut′1(s′j , s−j)

• ∀0 < h ≤ `2: vt′h(s′j , s
′
t′1
, ..., s′t′h

, s−{j,t′1,...,t′h}) ≥
vi(s

′
j , s
′
t′1
, ..., s′t′h

, s−{j,t′1,...,t′h}) + vt′h+1
(s′j , s

′
t′1
, ..., s′t′h

, s−{j,t′1,...,t′h})

• ∀0 < h ≤ `3: vt′′h (s′k, s
′
t′′1
, ..., s′t′′h

, s−{k,t′′1 ,...,t′′h}) ≥
vj(s

′
k, s
′
t′′1
, ..., s′t′′h

, s−{k,t′′1 ,...,t′′h}) + vt′′h+1
(s′k, s

′
t′′1
, ..., s′t′′h

, s−{k,t′′1 ,...,t′′h})

• vk(s′k, s−k) ≥ vt′′1 (s′k, s−k) + vj(s
′
k, s−k)

Proof. For each profile of signals s̃ define the corresponding set of signals S̃ =
{h | s̃h = sh = s′h + dh}. v(S̃) is a submodular set function, and thus, defining
ui(x) = vi(x | S′), we can rewrite the inequalities as the following:

• ui(jkt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S
′) ≥

uj(jkt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S
′) +

ut1(jkt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vt1(S′)
• ∀0 < h ≤ `1: uth(jkth+1...t`1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vth(S′) ≥
uj(jkth+1...t`1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S
′) +

uth+1
(jkth+1...t`1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vth+1
(S′)

• uj(ikt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S
′) ≥

ui(ikt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S
′) +

+ ut′1(ikt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′1(S′)
• ∀0 < h ≤ `2: ut′h(ikt1...t`1t

′
h+1...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′h(S′) ≥
ui(ikt1...t`1t

′
h+1...t

′
`2
t′′1 , ..., t

′′
`3

) + vi(S
′) +

ut′h+1
(ikt1...t`1t

′
h+1...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′h+1
(S′)

• ∀0 < h ≤ `3: ut′′h (ijt1t2...t`1t
′
1t
′
2...t

′
`2
t′′h+1, ..., t

′′
`3

) + vt′′h (S′) ≥
uj(ijt1t2...t`1t

′
1t
′
2...t

′
`2
t′′h+1, ..., t

′′
`3

) + vj(S
′) +

ut′′h+1
(ijt1t2...t`1t

′
1t
′
2...t

′
`2
t′′h+1, ..., t

′′
`3

) + vt′′h+1
(S′)

• uk(ijt1t2...t`1t
′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vk(S′) ≥
ut′′1 (ijt1t2...t`1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vt′′1 (S′) +
+ uj(ijt1t2...t`1t

′
1t
′
2...t

′
`2
t′′1 , ..., t

′′
`3

) + vj(S
′)

By Lemma 3 we know that if these inequalities hold together, they hold with
equality. ut


	Auctions with Interdependence and SOS: Improved Approximation

