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Abstract

Contemporary component-based systems often manifest themselves as service-based
architectures, where a central activity is the management of their software updates. How-
ever, stringent security constraints in mission-critical settings often impose compulsory
network isolation among systems, also known as an air gap; a prevalent choice in different
sectors including private, public and governmental organizations where data security
is a fundamental requirement. This raises several issues involving updates, stemming
from the fact that controlling the update procedure of a distributed service-based system
centrally and remotely is precluded by network isolation policies. A dedicated software
architecture is thus required, where key themes are: dependability of the update process,
interoperability with respect to the software supported and auditability regarding up-
date actions previously performed. We adopt an architectural viewpoint and present a
technical framework for updating service-based systems in air-gapped environments. We
describe the particularities of the domain characterized by network isolation and provide
suitable notations for service versions, whereupon satisfiability is leveraged for dependency
resolution; those are situated within an overall architectural design. Finally, we evaluate
the proposed framework over a real case study of an international organization, and
assess the performance of dependency resolution procedures for practical problem sizes.
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CHAPTER 1
Introduction

Contemporary software architectures reflect decades-long software engineering research
and practice, where separation of concerns with respect to the wide-ranging functionality
available throughout a software system is strongly emphasized. This leads to systems
formed through the composition of loosely coupled independent software components,
which are also often distributed. The trend towards breaking down software into increas-
ingly smaller pieces introduces numerous advantages; however, it increases overall system
complexity, including over its maintenance and managed evolution. This component-
based view has culminated in service orientation, where service-oriented architectures
(SOA) have seen wide applicability.

Software systems however are not static, but rather evolve, undergoing continual change,
with software maintenance thus constituting a major activity [Leh80]. This is evident also
in service-oriented component-based architectures, where software is designed, developed
and maintained by different teams often applying Agile methodologies. As such, software
updates are a central theme in such contemporary systems. Those challenges are
exacerbated in mission-critical settings where stringent security constraints impose
compulsory network isolation among distributed systems, also known as air gap. Even
though network isolation does not counter all security concerns [Byr13, GKKE14, GZE19],
such design is a prevalent choice in different sectors involving critical systems, be it in
private, public or governmental organizations. However, challenges arise when there
is a need to initially provision and later update distributed service-based software
products – an update of a software service/component may introduce breaking changes
to other dependent products. 1 Air-gapped isolation generally imposes challenges in the
lifecycle management of service-based software systems, the lack of constant availability
of resources being a major issue, and is in contrast with the spirit of modern DevOps
practices [MYV18]. In working environments where an air gap is in place, the lack of
internet connectivity also harms productivity [WW18].

1Throughout the thesis "component" and "service" are used interchangeably, unless otherwise specified.
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1. Introduction

In particular, air-gapped service-based systems typically reside in physical locations while
being isolated from other networks. In such a scenario, the software is developed in
some organizational setting, and software deployment involves physically transferring
services/components to the air-gapped system. Accordingly, this impacts the development
process and the procedure by which software is updated; including: (i) older versions
of services may already be deployed in the air-gapped system, especially relevant since
(ii) services exhibit dependencies between them; (iii) while the configuration of services
already deployed in the air-gapped system may be unknown. Naturally, software updates,
their modelling and dependency resolution are problems that have been treated by the
community extensively and in several forms [MBC+06, ADCBZ09, ADCTZ12, ACGZ20].

However, updating air-gapped systems raises several issues from a software architecture
perspective, especially given the overall mission-critical setting; those include: (i) the
configuration of components produced to update the system should be verifiably correct,
since there is significant cost-to-repair for incorrect updates, (ii) service-based architectures
entail containerized services, with support of different runtime environments, and (iii)
update actions should be recorded in a traceable manner, in order to support auditability
and regulatory compliance.

We adopt an architectural viewpoint and address the challenges imposed by the particular-
ities of updating air-gapped service-based systems. In this thesis, a technical framework
for updating distributed software systems in air-gapped environments is presented. Our
main contributions are as follows:

• We detail the domain characterized by network isolation and provide suitable
modelling notations for component versions;

• We leverage satisfiability for dependency resolution, providing alternative strategies
with correctness guarantees and address the trade-off between their execution time
and resolution quality;

• We evaluate the proposed framework over a realistic case drawn from an inter-
national organization and assess the performance of the dependency resolution
procedures for practical problem sizes.

1.1 Updating service-based air-gapped systems
An air gap is a security measure employed to ensure that a computer system is physically
network-isolated from others, such as the internet or local area networks. The air gap
design may manifest in computers having no network interfaces to others, while residing
in a physically isolated location. This is because a network connection – often used to
update software – represents a security vulnerability or regulatory violation. To transfer
data (or programs) between the network-connected world and air-gapped systems, one
would typically use a removable physical medium such as a hard drive, while access is
regulated and controlled [TPGN18]. The key concept is that an air-gapped system can

2



1.2. Methodological Approach

generally be regarded as closed in terms of data and software and cannot be accessed
from the outside world. However, this has implications regarding contemporary software
systems, which may need to be upgraded as part of software maintenance activities.
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Figure 1.1: Updating service-based air-gapped systems – an overview

Figure 1.1 provides a schematic overview of the proposed approach. On the problem
domain (left part of Figure 1.1) a series of air-gapped systems host software services,
each having some version, in all comprising the service version configuration state of each
air-gapped system, which is assumed to be known or adequately communicated. Software
development takes place off-site – as such, services may need to be updated. Services –
as software components – have dependencies, specified at development time. To perform
an update on an air-gapped system (right part of Figure 1.1), the developer resolves
dependencies of services per air-gapped system, building a valid service configuration
taking into account its current configuration state – appropriate artefacts (such as
containers) are pulled from development repositories and stored in a physical medium.
Subsequently, the air-gapped system is visited, the service configuration is verified against
the local state, and the update is performed.

1.2 Methodological Approach
The methodological approach consists of the following steps:

1. Case study
To form a case study that tackles the outlined problem, requirements elicitation and
final evaluation based on the on-site inspection (OSI) pillar of the Comprehensive
Nuclear Test-Ban Treaty Organization (CTBTO) is used. We adopt the Volere
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1. Introduction

template for efficient and structured requirements engineering procedure [RR00].
One CTBTO staff member is appointed as the main contact person.

2. Modelling Dependency Resolution and Software Versioning
The problem setting implies us tackling such topics as software versioning and
dependency resolution. To solve the issue with verifying version consistency across
an air gap, we develop a suitable model of a dependency resolution algorithm
capable of satisfying our needs. As a consequence, software versions must be
modelled too in order to make them compatible with the mentioned algorithm.

3. Research and literature review
An extensive literature review is done primarily in the context of service-based and
distributed systems. We are specifically focused on the following fields of studies:
software evolution management, software versioning, dependency resolution, version
consistency, deployment in air-gapped environments and software delivery with
Docker containerization technology.

4. Proof-of-concept Development
Plan, design, and construct a software solution as a proof of concept which solves
the stated problem.

5. Evaluation
We illustrate the applicability of the proposed solution by applying it to a typical
scenario. To derive a realistic scenario and later evaluate the results, we engage
in interviews with domain experts and stakeholders. We conduct a quantitative
performance evaluation of the dependency solving procedure. The evaluated metrics
are execution time to resolve dependencies and memory footprint. Additionally,
we show those metrics using varying input data to cover the whole range of cases:
from most simple to extreme ones.

1.3 Research Questions
This work aims to answer the following research questions:

• RQ1: How can provisioning and updating distributed service-based software systems
be performed in air-gapped environments?

• RQ2: How can the domain be modelled to support dependency resolution?

• RQ3: Given the domain model, how can dependencies be resolved to support
update in air-gapped systems?

• RQ4: How can software dependency resolution be performed without reliably
knowing what components are installed and which are their respective versions?

• RQ5: How can the dependency resolution be implemented efficiently?

4



1.4. Structure

1.4 Structure
This thesis is structured as follows:

• Related work is discussed in Chapter 2.

• Fundamental concepts, terms and technologies which serve as the basis are covered
in Chapter 3.

• In Chapter 4 we introduce requirements engineering aspects, user stories, de-
pendency resolution and versioning considerations, modelling and rationale for
technologies selection.

• Chapter 5 is dedicated to one of the main contributions of this work – satisfiability
modulo theories (SMT) based dependency verification and resolution module,
covering modelling and implementation.

• In Chapter 6 we discuss the proposed software solution’s architecture. More
specifically, we tackle different architectural aspects such as security, artefacts
storage, containerization technology in production, plugins, etc.

• Chapter 7 discusses evaluation, consisting of qualitative and quantitative aspects,
also outlining lessons learned.

• Finally, we conclude in Chapter 8, discussing possible directions for future work.

5





CHAPTER 2
Related Work

The architectural framework proposed is founded on the general area of updating software
systems. Accordingly, in this chapter we classify related work into software evolution
management (Section 2.1) and related approaches dealing with air-gapped environments
(Section 2.2). In these sections we only present the related work without comparing it to
ours. In the final Section 2.3 we elaborate on how our work differs from the current state
of the art.

2.1 Software Evolution Management
The process of updating component-based distributed software systems has been exten-
sively studied primarily in the context of the so-called dynamic updates [BGMLM16,
PLM12, ALS06]. 1 This is in line with the booming popularity of cloud-based deployment,
where the the focus is on reducing downtime while an update is performed. There are
different techniques and approaches to achieve this.

As an example, the authors of [PLM12] present a model-driven approach to support
software evolution of component-based distributed systems. It requires building a model,
interface automata, to identify the specific class of update automatically. The class is
derived based on information locally available in the component and indicates in which
state and under which environmental conditions the system can be correctly updated.

Baresi et al. [BGMLM16] proposes version consistency as a criterion for safe and efficient
dynamic updates. Their approach is mainly focused on updates during a distributed
transaction. Since such a transaction is distributed, version consistency cannot be checked
on all components participating in the transaction, as they are not co-located. Thus
there is a need to identify a condition that is verifiable locally i.e., on the component(s)

1We denote component-based distributed software systems as those systems which, for example,
adopt either service-oriented or microservice architecture. Please refer to Chapter 3 for more details.

7



2. Related Work

to update, and yet ensures global version consistency. The authors present a solution to
the problem – a distributed algorithm for checking version consistency. It formalizes the
proposed approach through a graph transformation system and verifies its correctness
through model checking.

An alternative solution to distributed software updates over a network, which is not
focused on reducing or avoiding downtime, is to take advantage of the mobile agent
paradigm [BDNL02, Lan98]. The software packages are updated on a central server, then
the mobile agents installed on the client receive the update. It is arguably a classical
approach to deliver updates in a company to the employees’ computers. We think however
that it is only partially related to this work. Firstly, as pointed out, this approach usually
targets client computers of end-users and not servers. Secondly, it is not meant to be
applied in air-gapped networks, as it relies on at least occasional network connectivity
for transferring updates.

Software updating usually relies on dependency resolution (also known as dependency
solving) to identify suitable components and compatible versions. Dependency resolution
has been approached by using various types of solvers such as boolean satisfiability (SAT),
Mixed Integer Linear Programming (MILP), Answer Set Programming (ASP), Quantified
Boolean Formulae (QBF), etc. [ADCTZ12, ADCBZ09, LBP08, LB10]. There is high
competition among the solvers in terms of performance, as the dependency resolution
problem is considered to be NP-Complete [Rus16, ADCTZ12].

Abate et al. [ADCTZ12] argue dependency solving should be treated as a separate
concern from other component management concerns. They propose a modular software
construct with the main goal to decouple the evolution of dependency solving from
that of specific package managers and component models. One of their contributions is
a Domain Specific Language (DSL) called CUDF. It positions itself as the “interface”
between package managers and dependency solvers. For example, it can be used to
encode components metadata and user updating request.

2.2 Air-gapped Environments
Gravity is an open-source application delivery system that lets engineers deliver and run
cloud-native applications in regulated, restricted, or remote environments without added
complexity [gra]. 2 It allows packaging complex Kubernetes clusters into portable images
to later deliver them to a cloud-hosted environment independently of the provider. The
main objective is to reduce the time and operational overhead related to Kubernetes, but
also to avoid vendor lock-in, as multiple cloud providers can be used. Among others, they
specifically target deployment of cloud-native applications in air-gapped environments
[Mar19]. They allow to package a whole cluster, including the dependencies, to just
one tarball file. It eliminates the need in utilizing an internet connection during the
installation.

2More information on https://goteleport.com/gravity

8



2.3. Beyond The State Of The Art

Azab et al. [AD16] refer to a very similar problem this thesis aims to face. They deal with
TSD (Tjenester for Sensitive Data), an isolated infrastructure for storing and processing
sensitive research data, e.g. human patient genomics data. In their work, they try
to establish a procedure to provision software inside an isolated environment with the
help of Docker containers and STROLL file system. A use case of provisioning Galaxy
Bioinformatics Portal is presented. Due to its high complexity, this software should be a
suitable example of applicability of the proposed solution approach. The authors also
identify some security-related disadvantages of Docker containers and try to mitigate
them. For example, Docker does not control what users can mount, which host directories
to the containers. It poses a serious threat of data breach. They overcome this issue by
controlling the mounting with a custom script. Overall, the experiment showed that the
software could be successfully provisioned using Docker, although not without creative
workarounds. The authors state Docker is not yet mature in terms of security, however,
the article dates to 2016 and this may have been changed.

Air-gap isolation can impose a different type of challenges which is indirectly, but related
to this thesis. In the working environments where an air gap is in place, the lack of
internet connectivity can have a negative impact on the workers’ productivity. Wong et
al. [WW18] conducted a survey at a commercial software company that uses network
isolation as a security measure. Their main goal was to identify how such working
environment impacts the software development productivity. The results showed it is
indeed an issue that is often neglected and left untreated. In particular, multiple affected
areas were identified. Usually, in build dependency management, it is common to rely on
the constant availability of resources. For instance, Maven central repository cannot be
used without an internet connection as it is intended to. Approving certain packages may
be a solution, but a potentially high number of transitive dependencies again makes it
very difficult. Moreover, software engineers lose direct access to documentation; multiple
tools become unusable, such as a plugin store in an integrated development environment.
Also, collaboration tools, like those for bugs tracking, must be often duplicated to be
available both inside the secured network and outside of it.

2.3 Beyond The State Of The Art

Discussions related to software updates are clearly primarily directed towards reducing
the downtime of an application while an update is performed. The term dynamic
updates was coined therefore. As the research shows, there are numerous attempts to
reduce the downtime. Performing an update in the middle of a distributed transaction
ranks among the biggest challenges in dynamic updates. In contrast, our problem setting
is not about the reduction of downtime at all. Nevertheless, Baresi et al. [BGMLM16]
inspired us to adopt their terminology – local vs global verification. The authors refer
to it in the context of distributed transactions. In contrast to that, we introduce the
notion of local reliable knowledge versus global unreliable one to come up with a suitable
dependency resolution approach (see Section 4.6).

9



2. Related Work

At first glance, the introduced Gravity application delivery system seems to be applicable
to the problem this thesis addresses. Nevertheless, it runs only on top of the Kubernetes
platform and most importantly, it does not provide version consistency checking between
dependant air-gapped applications. By contrast, our work targets different environments
with Docker being the main one. On top of this, we do provide a mechanism to verify
version consistency across an air gap. Our flexible plugin-based architecture allows
integration of Kubernetes as an orchestration tool instead of the default Docker Swarm
one. However, our solution does not intend to package and transfer complex Kubernetes
clusters, as the Gravity application does.

We consider [AD16] it to be a valuable finding. The authors showed that Docker could
be indeed successfully applied to provision software in network-isolated environments.
This encourages us to follow this path, especially because CTBTO already uses Docker
to run their applications. Our work does target the Docker platform as well, however it
is not limited exclusively to it. Moreover, our problem setting is different, because we
deal with provisioning and updating of spatially distributed server-hosted applications,
whereas the authors of [AD16] are focused more on traditional desktop software. The
authors’ remark regarding Docker’s security issues and other research related to Docker
secure deployment [Yas18, XJR+18] makes us aware of what security aspects should be
taken into account.

The contribution of Wong et al. [WW18] is only distantly related to our work, because it
is human-centred as opposed to our purely technical treatment of the problem. However,
our proposed software solution should indeed ease the working conditions of software
engineers in air-gapped environments.

This work most importantly differs from the related research efforts described, as follows:

1. The setting that we treat does not require reducing downtime during an update.
Therefore dynamic updates are not of interest in our case.

2. We seek dependencies resolution for isolated distributed components. The ma-
jor challenge is that there could be no reliable knowledge of what versions and
components are installed, unless the isolated servers are physically visited one by
one.

3. We seek a well-defined procedure to safely and reliably deliver updates across one
or multiple air gaps targeting different execution platforms with Docker being the
most important one.

10



CHAPTER 3
Fundamentals

3.1 Component-Based Development
Component-Based Development (CBD) facilitates reusing well-designed and tested soft-
ware components to avoid code duplication and speed up the development process[Bro00,
CLC05]. Many different attempts have been made towards CBD, varying from a simple
encapsulation of source code into modules to advanced microservice-based architectures.
In this Section we briefly cover different relevant component-based software development
approaches.

3.1.1 Software services
If we look at the CBD developments within the last two decades, there is a clear trend
towards modularization and breaking code into smaller and smaller entities. The so-called
Service-Oriented Architecture (SOA) belongs to one of the milestones on this path. SOA
was especially highly discussed in the first decade of the 21st century. According to
Arsanjani, this concept is based on an architectural style that defines an interaction model
between three primary parties: the service provider, who publishes a service description
and provides the implementation for the service, a service consumer, who can either
use the uniform resource identifier for the service description directly or can find the
service description in a service registry and bind and invoke the service [Ars04]. Sprott
et al. emphasize the similarity between SOA and object-oriented programming (OOP).
Components in SOA, like objects or classes in OOP, do the following: they combine
information and behaviour, hide the internal workings from outside intrusion and present
a relatively simple interface to the rest of the organism [SW04]. Moreover, a service in
SOA is usually published and discovered by the outside world in order to be consumed.
This is again similar, for example, to finding and importing an external library in an
object-oriented programming language in order to use it. Web services in SOA can be
described formally using Web Services Description Language (WSDL), Simple Object
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3. Fundamentals

Access Protocol (SOAP) for communication or other web-related standards. In this work,
however, we do not focus on the technical side of SOA, but rather on its global effect
on software engineering, operations, availability, etc. We do back up the opinion that
SOA is not just an architecture of services seen from a technology perspective, but the
policies, practices, and frameworks by which we ensure the right services are provided
and consumed [SW04].

In the second decade of the 21st century, a new architectural style emerged, making it
the next highly discussed topic in the community – microservice-based architecture. The
main difference to SOA is a much finer granularity. A microservice is usually fairly small
and lightweight, making it easy to be managed by a small team of engineers. Moreover,
if needed, its small size allows it to be easily re-implemented, as well as scaled up. The
communication protocol for services to talk to each other is also usually much more
lightweight and flexible. A "trendy" choice is Representational State Transfer (REST)
protocol which is leveraged by HTTP. Fowler and Lewis [FL14] significantly contributed
to the sometimes difficult definition of microservice-based architecture:

"In short, the microservice architectural style is an approach to developing a
single application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP resource
API. These services are built around business capabilities and independently
deployable by fully automated deployment machinery. There is a bare mini-
mum of centralized management of these services, which may be written in
different programming languages and use different data storage technologies".

While as multiple sources imply (see [NSS14, FL14]) one of the biggest advantages is that
a microservice is fully independent and can be deployed or updated separately. Albeit,
it imposes the need to adopt new deployment techniques and strategies. In the next
Section we shed light on containerization technology which serves as the main driver for
deployment and operations of software services.

3.1.2 Container-based virtualization
In traditional virtualization of operating systems, a virtual machine (VM) hosts a fully
independent system using the so-called hypervisor. It is often done to optimize the
utilization of a computing unit’s resources. For example, in a data centre, the resources
of a server can be dynamically allocated to multiple customers depending on their needs.
Before virtualization it meant that the whole server would be allocated to a customer,
which is not always optimal. Compared to virtual machines, containers offer similar
functionality. They allow hosting a guest operating system on top of another system.
The biggest difference is that they are much more lightweight and demonstrate better
performance. The reason is that containers share the OS kernel instead of fully emulating
it, as it is done in a VM.
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Currently, the most prominent technologies on the market enabling container-based
virtualization are Linux Containers (LXC) and Docker. To be more specific, Docker
leverages and runs on top of LXC technology. It adds a very convenient additional
level of abstraction which greatly simplifies container management. Container-based and
hypervisor-based virtualization do not directly compete with each other but rather pursue
different goals. Scheepers [Sch14] makes a macro-benchmark performance comparison
between two implementations of these technologies – Xen (full virtualization) and LXC
(container-based). The outcome is that both technologies cover different use cases. If
it is important that resources are distributed equally, and performance should be less
dependent on other tasks, executed on the same system, Xen is a good option. However,
if you want to optimise hardware or if you wish to execute a lot of small isolated processes,
LXC is a better option, since it introduces less overhead and has higher performance
[Sch14]. Thus, the portability of a container makes it very suitable for running just
one single application. Combined with a convenient workflow introduced by Docker to
package containers with the needed dependencies, it has become a popular choice for
microservice-based architecture.

3.2 Software Dependencies
Re-usability of software components has always been part of the best software engineering
practices. The idea of creating components that are self-contained, portable, hence also
reusable, is as old as software development itself. In the software engineering community,
a package or a piece of external software, which another software is dependant on, is
called a dependency. Another term for dependency which is commonly used is inter-
dependency [DPS+19]. Reusing components implies numerous advantages, as we just
briefly mentioned, but there is also one major disadvantage – dependability. The reused
component may introduce a breaking change in a newer version, meaning it is not
backwards-compatible[RvDV17]. It makes reusing components challenging and needs
special attention to the versioning approach.

We differentiate between different types of dependencies: application-level and component-
level. Application-level dependencies are those that are required by software to be
successfully built and functioning at runtime. A good example is the use of open-source
frameworks or libraries. Component-level dependencies are needed during runtime to
consume/provide data or computational power. For instance, in SOA each service is
independently built and run, however, to fully leverage their functionality communication
among them is needed. This kind of dependency is at the component-level.

3.2.1 Application-level dependencies
It is ubiquitous for software engineers to make use of Free and Open Source Software
(FOSS) in their projects. This means adopting frameworks, libraries, etc. which are openly
accessible and free of charge. We denote this kind of dependencies as application-level
ones. German et al. [GGBR07] classifies application-level dependencies as follows:

13



3. Fundamentals

• Type can be explicit or abstract. Explicit dependencies are those that the software
engineers directly specify. For example, in an Apache Maven project, this would be
adding JUnit with a version to the pom.xml file. Abstract dependencies are those
which can usually be easily exchanged. For example, usually, ORM frameworks
such as Hibernate can work with multiple different database implementations.

• Importance dictates if dependencies are required or optional. Optional ones
would enable some additional feature(s). Required dependencies is a must, since
the software cannot be built otherwise.

• Stage refers to the time when the dependencies are needed. It can be build-time,
installation or run-time. Build-time dependencies are needed, for example, by the
compiler to build the software. Installation ones refer to additional tools used when
installing the application, for instance, to modify some settings. Lastly, run-time
ones are required to execute a software or part of the software.

• Usage methods describe the method how a dependency is used. These are stand-
alone programs (database management systems), middleware-based (httpd or web
application server), plug-ins in a plug-in architecture, and linkable libraries (dlls in
C++), etc.

3.2.2 Component-level dependencies
In contrast to application-level dependencies, we define another class of dependencies/-
components – component-level dependencies. In SOA such dependencies are frequently
used. They can be built fully separately; however, they may or may not be dependant on
each other at run-time. An example of an optional dependency would be the following.
Imagine a software application consisting of two components which can communicate
over a network and thus be deployed fully separately. Let us assume, one of the two
components is the main one, being the heart of the application. Another one is responsible
only for calculating statistical data. The main component views the other one as purely
optional, since it only provides data to it, but does not depend on it. Vice versa, the
statistics component does depend on the main one. We want to point out that it can be
started up isolated without any problems, but it will be useless, as it will not be able to
process any data.

Pawan et al. studied inter-dependencies in SOA-based systems by using formal modelling
through coloured Petri nets [RK15]. Alongside they introduced four types of service
dependency: control dependency, data dependency, sequence dependency and composition
dependency.

• Control Dependency
"A control dependency between two services Si and Sj specifies the conditions under
which service Sj is allowed to enter a state stj based on the state sti of service
Si". The following example describes control dependency. Supposing, a customer
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makes an order through the order service, the order service passes the control to
the payment service so that the customer can pay for the good. Once the payment
is successful, the control is back at the order service.

• Data Dependency
"Execution of S1 needs some data which can provide service S2? In this case, service
S1 is data-dependent on service S2. Service S1 calls service S2 and service S2
provides information needed by service S1". For example, if one service requires to
get some data in order to proceed with the execution, this service is data-dependent
on another service.

• Sequence Dependency
"Sequence dependency among services means the execution of services takes place
one by one, i.e. output of the first service is the input of the second service". Let
us assume a customer can make an order only after he/she has logged in. This
would mean the login service needs to confirm successful login first, so that the
order service can proceed.

• Composition Dependency
"When a service S is constructed using the services S1, S2, S3 ... Sm, service S is
composed of services S1, S2, S3...Sm". Multiple services can be aggregated in a
way that they operate as one service.

The authors of [KC00] differentiate between two distinct kinds of dependencies: require-
ments for loading an inert component into the runtime system, fitting our definition of
application-level dependencies type, and dynamic dependencies between loaded compo-
nents in a running system. The dynamic dependencies embrace the inter-connectivity
of components, thus, fit our definition of component-level dependencies. Kon et al.
introduce hooks, components and clients. Each component C has a set of hooks other
components can be connected to. The hooked components are dependencies of C. There
are also clients which depend on C. Additionally, there is a basic set of events such as
DELETED, FAILED, RECONFIGURED, REPLACED, and MIGRATED. For example,
the JVM implementation is updated, so a REPLACED event is propagated to all clients
which are dependant on this component. When replacing a component, it might be
feasible to transfer the current state. Also the communication to the old component must
be stopped, redirected, etc.

According to [GNAK03], dependency relation between two components can be expressed
with a strength (p). If component A depends on B with strength p, then p is the
probability a given activity period of A contains an activity period of B. The authors
state the above type is a true dependency. They argue the number p comes very close to
the probability that a given execution of A invokes, directly or indirectly and at least
once, the component B, and finishes only after the invocation to B returns. So if A calls
B on each request, then per their definition, p is 1.
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3.2.3 Discovery

Discovering dependencies can be an uneasy task in some cases. For example, by inspecting
a JavaScript application that uses npm package manager, the explicit dependencies
are clearly visible and can be automatically retrieved. However, some other types of
dependencies, like build-time ones, are usually enumerated in descriptive files such as in
README, or INSTALL ones [GGBR07]. There are also numerous attempts to discover
dependencies automatically by analyzing the source code [OBL10, GG01].

An alternative way to approach dependency discovery can be in using existing performance
monitoring infrastructure available in middle-ware, such as web application or database
servers [GNAK03]. A special data-mining algorithm using this kind of data can obtain
"probabilistic" dependencies between components.

3.2.4 Resolution

Dependency resolution, also known as dependency resolving, is a process of finding the
right combination of software components while preserving certain constraints such as ver-
sion compatibility. The underlying dependency resolution problem is NP-Complete
[Rus16, ADCTZ12] in most of the cases which makes it challenging to tackle. In
Component-Based Software Systems dependency resolution is especially important. In
case of Free and Open Source Software (FOSS) distribution, the software components
are commonly called packages and are handled by package managers. Despite the
fact that package managers differ in how they handle dependency resolution, some
common traits can be extracted. According to Abate et al. [ADCBZ09, ADCTZ12]
dependencies/packages usually have these properties defined:

1. Name and version

The name and version must be set to make a package uniquely identifiable.

2. Dependencies

Dependencies or positive requirements describe what components of what versions
must be installed.

3. Conflicts

In contrast to positive requirements, conflicts express negative ones – compo-
nents/versions which must be absent.

4. Features

Features are names of virtual components provided by a component.They may be
used to satisfy the dependencies of other components.
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3.3 Software Versioning
Software versioning is used to uniquely identify different states of a software while it
evolves. Most commonly, software is versioned by adopting semantic versioning [PW19].
This approach uses three numbers separated by a dot, e. g. "2.4.1". The first number
indicates major release and usually introduces breaking changes, making it incompatible
with the previous major version release. The middle number reflects minor version
change. Typically, it signalizes new functionality that has been added, however, full
backwards compatibility is preserved. The last number stands for patch or micro
changes which indicates bug fixes. Patch changes are also fully backwards compatible.

Software dependencies do not necessarily have to be strict. As discussed, minor and patch
version numbers ideally do not introduce breaking changes. Thus, software engineers can
choose to not depend on one specific version of the software, but rather, for example,
only on major versions. This yields automatic adoption of any minor or patch release
without explicitly stating it. Dietrich et. al. [DPS+19] devised a comprehensive list of
classifications of version constraints, as shown in Table 3.1.
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Classification Description
fixed A dependency on a fixed version (of another package), such as 1.2.3.
soft Dependency on a fixed version, such as 1.2.3, but the package manager

may choose another version in order to resolve dependency constraints,
using some notion of closeness or similarity.

var-micro Uses a wildcard for the micro part of the version string, such as 1.2.*,
indicating that the project may depend on any version of a package
with a version number starting with 1.2. This may include additional
bounds, such as 1.2.* , < 1.2.4.

var-minor Uses a wildcard for the minor part of the version string, such as 1.*,
indicating that the project may depend on any version of a package
with a version number starting with 1. This may include an additional
bound.

any Indicating that a project may use any version of the package it depends
on, the package manager has unconstrained freedom to decide which
one.

at-least Indicating a dependency on any version following a specific version
(inclusive or exclusive), such as [1.2.3,*].

at-most Indicating a dependency on any version up to a specific version (inclu-
sive or exclusive), such as [*,2.0.0].

range A custom range, such as [1.2.0,2.0.0), indicating that a project depends
on any version from 1.2.0 to 2.0.0. Either range bound can be inclusive
or exclusive.

latest The dependency should always be resolved to the latest version available,
possibly with some qualifier (such as latest-stable, excluding beta
versions.

not A dependency is declared that explicitly excludes a certain version,
usually this is caused by a known issue in this version. Some custom
pattern, for instance, a complex boolean formula combining any of the
resolved category.

unresolved The dependency string contains unresolved variable references. This
case occurs because libraries.io scans project metadata such as (Maven)
POMs without understanding their semantics. A dependency might
be declared in a POM by a reference to a variable declared elsewhere,
such as $project.version.

unclassified Default value of none of the mapping rules can be applied.

Table 3.1: Different classifications of version constraints as according to [DPS+19]
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CHAPTER 4
Requirements and Design

In this chapter we discuss the requirements and design of the software solution presented
in this work.

4.1 Requirements Engineering
To gather requirements in a structured and well-established way, we use the so-called
Volere template [RR00]. We follow the guidelines provided by its creators on how to
apply this template most efficiently [RR12]. The Volere template, as the name suggests,
is a document providing a skeleton for a structured requirements engineering approach.
It consists of five main building blocks: project drivers, project constraints, functional
requirements, non-functional requirements and project issues. For our requirements
elicitation, we decided to leave out the last one. It covers conditions under which the
project will be done and, since we do not question the necessity of the project, it does
not apply to us.

In the first session of the requirements engineering, an interview was conducted with key
stakeholders to collect initial requirements and draft user stories. The following reflects
the interview broken down by individual Sections according to the Volere template.

4.2 First interview

4.2.1 Project Drivers

The Purpose of the Product

One of the main purposes of the product is to improve the process of provisioning and
updating software in air-gapped environments.
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Client, Customer, Stakeholders

The main stakeholders are OSI surrogate inspectors including the Data Flow Management
Officer (DFO), Technical Secretariat and member states of the CTBT.

Inspectors are all those who are part of an inspection team. An inspection team may
be operational during an actual inspection or a training event. The DFO belongs to
the inspection team. He or she is in charge of supporting seamless and secure data flow
between the field, receiving and working areas at the Base of Operations (BoO), software
operations and IT infrastructure. Also within the sphere of responsibility of the BoO
is to support the chain of custody of electronic media including the transfer of data of
sensitive data classified as "highly protected".

Users of the Product

One of the main users of the product is the DFO. After the CTBT’s entry into force,
Technical Secretariat shall also be responsible for software provisioning and updating.

4.2.2 Project Constrains

Mandated Constraints

One of the major restrictions is that internet connection is prohibited, and connections
to other networks restricted. This makes software provisioning and updating challenging.
Internet connection is generally prohibited on the premises during an inspection and
while it may be possible to request replacement duplicate equipment form headquarters
it remains unclear how software failures could be resolved once deployed. Only limited
communication with the Headquarters in Vienna is allowed; for example, to receive a
weather report, etc. During a training event, internet connection is permitted for support
personnel; however, it is still highly unwanted to expose deployed servers to the internet.

Naming Conventions and Definitions

The used naming conventions and definitions are in line with the ones defined for the
whole thesis and can be found in Appendix A.

Relevant Facts and Assumptions

Optimally, the software systems used during an inspection are maintained and up-to-date.
For this purpose, the Organization uses dedicated software to make sure software and
hardware maintenance are performed regularly. A final verification of software would take
place during the "launch phase" of an inspection, after an inspection request is submitted
by a member state. During this period, limited time would be available to resolve any
issues identified during the verification of systems.
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4.2.3 Functional Requirements

The Scope of the Product

The product shall be seamlessly integrated into existing set of software installation. It is
assumed to be robust and easy to use. The importance of the latter requirement should
not be underestimated since, in contrast with similar international organisations, the
CTBTO does not have permanent inspectors but relies on surrogate inspectors nominated
by member states. While skilled and trained, the fact that surrogate inspectors do not
have daily access to software systems means that any software developed on their behalf
should be intuitive and easy to use.

The Scope of the Work

The domain of the product is any of those where software is operated and maintained
in network-isolated environments. Usually, this restriction exists due to high-security
requirements.

Functional and Data Requirements

It should be possible to define what versions of what components work together. One
of the main use cases would be to update software, especially with breaking changes to
other components. It should be done with as little manual involvement as possible.

4.2.4 Non-functional Requirements

Look and Feel

It is desirable by the stakeholders that the application has a similar look and feel to
other applications in the OSI applications suite. However, since the solution should be of
general use, its look and feel will not be tailored to CTBTO’s applications. The graphical
design should be clear, simple and neutral.

Usability

Since the installed product will have to be physically carried around and connected to
various servers, it should be runnable on a portable device and have its own UI.

Performance

Performance is not critical; however, it should not be totally neglected. Downtime for
performing updates of up to 5 minutes is acceptable. Robustness, version consistency, as
well as security, are of greater concern.
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Operational

Performing updates is expected to be done mostly indoors. The systems to be updated
must not be exposed to the internet.

Maintainability and Portability

One of the concerns is to what extent technical knowledge is needed to support the
application. Can it be done by members of the inspectors, specifically the DFO? Who
will be responsible for defining the dependency constraints?

Security

A high level of security is expected. A desire was expressed to implement a two-factor
authentication when performing an update or accessing the systems.

Cultural and Political

All the components i.e., libraries or frameworks used, shall be of one of the member
states origin, as well as open-source.

Legal

It should be in line with the CTBT, the OSI operational manual and subsidiary documents
such as standard operating procedures.

4.3 Second interview
The following text crystallises the requirements identified during a second interview with
another stakeholder. Duplicate requirements are omitted.

4.3.1 Project Drivers
The Purpose of the Product

No changes.

Client, Customer, Stakeholders

Potentially a Security Officer shall be appointed to define an update strategy or internet
connection policy. He or she is more of an approval authority than a hands-on user.

Users of the Product

An inspector may be the user of the product.
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4.3.2 Project Constrains
Mandated Constraints

Currently, there is a VPN connection to the headquarters. Data can be sent there, if
the ISP agrees. So it is not generally prohibited. Yet there is no complete agreement on
what can be sent without approval.

Naming Conventions and Definitions

No changes.

Relevant Facts and Assumptions

After an inspection is conducted, only data and information in the "preliminary findings
document" prepared by the inspection team can be returned to headquarters. Whether
system/software logging information can be returned to headquarters remains the matter
of discussion among member states.

It is important to prove the product does not collect potentially classified data while
performing an update.

Again, it is unclear what would happen if a critical bug was detected during an inspection.
In principle, if the inspected state party (ISP) agrees, an update could be sent from the
headquarters to the site. At that moment, servers would not be connected to the internet
or to the headquarters via VPN to receive a software update. It is also envisaged that
each update would require approval. In the case of a critical bug, there is no agreed
update procedure; however, connecting to headquarters via VPN would be the optimal
solution.

4.3.3 Functional Requirements
The Scope of the Product

No changes.

The Scope of the Work

It is not the goal of the project to maintain other software packages (for example,
proprietary desktop software packages for the processing of inspection data such as
seismic or shallow geophysics data) or OS updates.

Functional and Data Requirements

It is desirable to collect logging information for auditing purposes and store it externally.
The hardware used during an OSI is kept afterwards by the inspected state, so this
information is lost otherwise.
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4.3.4 Non-functional Requirements
Look and Feel

No changes.

Usability

No changes.

Performance

No changes.

Operational

No changes.

Maintainability and Portability

No changes.

Security

No changes.

Cultural and Political

No changes.

Legal

All used software products during an OSI should be ideally open source.

4.4 User Stories
The structure of the user stories shall be: "As a [role], [where/when] I want [feature] so
that [reason]". Additionally, we name each of the stories to make them better identifiable.

4.4.1 UPDATE-HQ
As PTS/OSI Data Flow Management Officer, at headquarters I need to update a software,
because the contractors made an update and a new version is available.

4.4.2 UPDATE-TEST
As PTS/OSI Data Flow Management Officer, during a test event I need to update a
software ASAP, because a fault has been found and corrected.
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4.4.3 UPDATE-OSI
As inspector, I need to update software during an inspection, because an urgent update
has been released due to a serious fault.

4.4.4 DEFINE-DEPENDENCIES
As a software engineer, before releasing a new version I need to define dependencies, so
that they are taken into account when deployment is being performed.

4.4.5 NO-DATA-COLLECTION
As a user, during an inspection I want to demonstrate to the ISP the software does not
collect data so that he/she allows me to use it.

4.4.6 OVERVIEW
As a user, location independently I want to know which version of the software is installed
at location X, so that I have an overview and can decide if an update is needed.

4.4.7 VERIFY
As an inspector or Data Flow Management Officer, during launch phase I need to verify
everything is in place and update software if needed, so that inspection deployment can
be safely done.

4.5 Example software system
Based on the collected requirements, some major design considerations are discussed in
the following sections. We present an example software system that should apply to most
of the user stories. It is created and discussed to facilitate design decisions by referring to
it as needed. Figure 4.1 shows such an example system. All depicted software products
make an ecosystem of different software installations which support the operations as a
whole. The communication between the systems is of different types, depending on the
restrictions in place. We distinguish these kinds of communication:

• Two-way air-gapped data exchange (external storage)
Strict network isolation is required between the Receiving Area (RA) and Working
Area (WA), thus data transfer can be done only through an air gap. It is done by
securely copying arbitrary data to an external storage, moving it across the air gap,
then importing it on the other end.

• Two-way on-demand data transfer (LAN cable)
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On-demand connection denotes a kind of connection that is established only oc-
casionally. In some cases it must be approved beforehand. The data could be
transferred in both directions. A good example is the connection between the RA
and a field tablet. Each day before going out to the inspection area to gather
inspection data, synchronization is needed to download the inspection team Daily
Plan onto the tablets. Upon the team’s return from the field, the collected data are
reviewed and classified and are accordingly transferred to either the protected or
the highly protected servers in the RA. It is clear that the connection is not always
needed and that the data flows in both directions.

• One-way on-demand data transfer (LAN cable)
A good example of a one-way data transfer would be how LabField Application
communicates with RA. Similarly to the Field Application installed on field tablets,
LabField Application downloads the Daily Plans in RA. However, there is no data
transfer in the opposite direction.

• One-way QR-code-based data transfer
Wireless connections of any kind shall be avoided during an OSI. Therefore, Field
Application transfer data to LabField Application via a QR code. This way data
can transferred wirelessly without using technologies such as Wi-Fi, Bluetooth, etc.

• Constant LAN connection
As the name states, this type of connection is constant. For example, the core
Laboratory Application (Lab App L) is constantly connected to a Java Application
(Java App J1). The Java Application is an agent that runs on a Windows Server
machine and listens to particular events emitted by another third-party software.

Further, let us cover each of the components in more detail. To provide a better overview,
we will discuss each group of components separately.

• Planning (WA) App PWA
This group consists of a web-based application (W) that stores the data in the
database (D), displays map tiles served by the geospatial server (G) and uses a
routing server (R) for calculating optimal vehicle movements. This application is
used for inspection planning purposes and facilitating inspection search logic.

• Planning (RA) App PRA
This group consists of near identical components to those in the WA group. The
difference lies in the subset of available functions. The RA version is a stripped-down
WA version in terms of functionality.

• Inventory App I
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The structure of this group is straightforward. There are only two components –
a core web-based application (W) and a database for data persistence (D). This
application is used for inventory purposes to keep track of the equipment used
during an OSI.

• Field App F

It consists of an Android application (A) which is connected to a database (D).
The database is embedded within the app; however it is set as a separate entity
on the diagram. This application serves the purpose of collecting and aggregating
data from the field.

• LabField App LF

The structure is very similar to the one of Field App F. The difference lies within
the connection types when communicating with other components. The application
is an intermediate between the Lab App L, a web-based application, and two other
systems – Planning (RA) App PRA and Field App F. It is mostly used for data
transfer and consolidation.

• Lab App L

This group is structured like Inventory App I, which was described previously.
The main function of this application is mobile Laboratory data processing and
remote management of auxiliary equipment for detecting levels of radioactivity of
environmental samples collected in the field.

• Documentation App D

This group is structured like Inventory App I, which was described previously.
The application stores documentation in a structured way for simple search and
retrieval.

• Java App J2

This is a Java-based application that provides a RESTful interface. It is used inside
a virtual machine for passing input data of measurements for further analysis. Also,
it collects output data – analysis reports provided by users.

• Java App J1

As Java App J2, it is a Java-based application that provides a RESTful interface.
It triggers measurements on external equipment, as well as reads output data when
a measurement is done.
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Figure 4.1: Example software setup

4.6 Global vs local knowledge
Air-gapped environments assume complete isolation of networks or software systems. To
achieve resolution of application-level dependencies on a completely isolated node, global
knowledge about all related nodes must be combined with the local one. We denote global
knowledge as an assembly of information on the installed software component(s), which
is irregularly collected/updated, manually or automatically. To assess such information
automatically, each of the nodes can be visited separately. Network isolation is preserved
since none of the nodes is really exposed to the outside networks. The problem however,
is that locally a component can be deleted, updated or altered in any way, so that globally
this change is not propagated. Therefore, local knowledge shall always represent the true
state of a component, whereas, globally, the knowledge may or may not be true. We
say global knowledge is based on assumptions, and local knowledge is the single source
of truth. To denote a set of all pieces of local knowledge combined, we say global true
knowledge which is usually unknown.

Further, we formalize the introduced notion of local and global knowledge. To avoid
any misunderstandings regarding the used wordings, when we say "system", we mean
a set of "applications", and each "application" consists of further components/services.
For instance, PRA from the example system described in 4.1 would be an "application"
consisting of multiple "components" (backend, frontend, database, etc.). Additionally,
each component can have multiple versions; thus when we say "installed components",
we mean actual concrete component versions.
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Let PRAv be a set of combinations of all possible valid component versions in respect
to a particular component’s version v of PRA application. Let INSTpra be a set of all
currently installed components of the PRA application (local knowledge), INSTg be a
set of all applications/components presumably installed globally (global knowledge) and
INSTgt a set of applications truly installed globally (true global knowledge). If an update
is applied to one of the application PRA components to version v, the compatibility
with the rest of the installed applications should be verified. However, there is no
certainty which applications and components do INSTgt contain without visiting each
node beforehand. Thus the question arises what component versions should be shipped
or taken while visiting the nodes.

Let SHIPprav be a set of applications/components to ensure a successful update of
PRA’s component to version v. In other words, it is a shipment of artefacts representing
components versions. Considering we have only global unreliable knowledge when the
decision is carried out, it is not straightforward which artefacts of which components
must be included in SHIPprav . Shipping all possible versions of all artefacts may actually
be a legitimate solution, if (a) time used for copying is not an issue and (b) the storage
has enough capacity to store all the artefacts. However a more efficient solution is highly
desired, so a reduced set RSprav where ∃S ⊆ RSprav | S ∈ PRAv of needed components
should exist. A minimal reduced set, MRSprav ⊆RSprav , of needed components to include
into SHIPprav is defined as follows:

MRSprav | S = MRSprav | ∃S ∈ PRAv ∧ S = SHIPprav

Thus, for an update to succeed, the shipped artefacts have to be a subset of the minimal
reduced set: SHIPprav | MRSprav ⊆ SHIPprav .

As discussed previously, global true knowledge INSTgt is unknown unless explicitly
collected, and global knowledge INSTg is based on assumptions. Since the minimally
reduced set MRSprav is unreliable to calculate on mere assumptions and shipping all
possible versions of all artefacts may be impossible as well, let alone inefficient, shipping
all the artefacts of PRAv may be a feasible solution, as MRSprav ⊆ S | ∃S ∈ PRAv

However, the size of PRAv is variable and can reach a significant magnitude.

The introduced global and local knowledge helps us to answer the RQ4 from Section 1.3.

4.7 Predictability
We argued before, INSTg is based on assumptions and is unreliable, but it can be fully
accurate as well. This accuracy or predictability can be expressed by an arbitrary value
pg ∈ (0, 1]. Lower value means less accuracy and less coverage of the the minimal reduced
set MRSprav , 0 represents no coverage at all. Higher value means more accuracy and
more coverage of the the minimal reduced set MRSprav , 1 represents a full coverage.
Similarly, cpra with the same range from 0 to 1, can express the completeness of PRAv.
In other words, a ratio of how many elements of sets of PRAv are included in SHIPprav ,
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however the elements with higher probability to be used are included first. For this, let
us define a function f(c) which accepts the completeness ratio c of an arbitrary set like
PRAv and returns a set of elements with the highest probability to be used. So the
elements to include into the shipment from PRA component of version v are defined as
follows:

SHIPprav = f(cpra) | 0 ≤ cpra ≤ 1

Even though c may be set to 0, and f(c) would return no elements, this behaviour is not
desirable; it is impossible to update a component without shipping any elements at all.
Another lower bound for c must be defined, so that c > 0. Thus, we introduce cmin
to express the minimal ratio, so that at least the elements based on global knowledge
INSTg are included:

SHIPprav = f(cpra) | cminpra ≤ cpra ≤ 1

We want to point out that only if we ship all possible combinations for installation of a
component of version v, such shipment is guaranteed to be fully accurate: (c = 1) =⇒
(pg = 1). However, it may happen that (c < 1) ∧ (pg = 1) holds, thereafter it is true that
(c = 1) �≡ (pg = 1). Based on this, by increasing c we generally increase the value of pg.

4.8 Maintaining global knowledge
Even though global knowledge may be unreliable and incomplete, it is still a valuable
source of information. Further, a suitable approach to collect and maintain the global
knowledge is discussed.

We believe our solution should be non-intrusive, meaning no local agents should be
installed and maintained. Another challenge is the mandatory air gap between most of
the systems which does not allow constant network connections for global knowledge
management. Thus, only on-demand connections can be utilized. Moreover, such
connections are almost inevitable during an update procedure. As a result, global
knowledge can be collected/updated piece by piece only. Let us call the abstract entity,
which is responsible for the collection of local knowledge agent for now.

The agent must satisfy the following properties based on previously discussed restrictions
and the collected requirements in Section 4.1:

1. Mobility
The agent is expected to be carried around and physically be attached to different
systems/servers. Thus, it has to be portable enough. Having its own source of
power is highly desirable.
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2. Computational capabilities
The agent requires computational capabilities, since locally dependencies must be
resolved and installed to reach a satisfiable state.

3. Usability
It is expected the agent handles most of the tasks automatically. However, user
interaction is still required. Therefore, the agent must have an external display,
and some mean for the user to input a password, IP address, etc. – a physical
keyboard or virtual one on the screen.

4. Security & data protection
Since the agent is allowed to be connected to otherwise air-gapped systems, it must
adhere to high-security standards. For example, secure authentication, encrypted
communication, etc. Moreover, it is of the most serious concern to prevent any
data breach, especially the one collected during an OSI.

Further, we shall discuss how to transform the abstract agent we just described into
a real implementation. Firstly, the choice of hardware shall be made. A traditional
server is to be excluded right away, since it is not mobile at all. Any mobile server which
requires a constant source of external power is not suitable as well. Thus, the left choices
are (a) mobile server with its own source of power, (b) traditional/workstation laptop,
or (c) small computing device like Raspberry Pi. The a option is the most expensive
one, which provides great computational power and potentially great storage capacity.
However, there is not much choice on the market, and the extended computational power
is probably not needed. The option c seems to be suitable, but an additional external
touch display is required. The limited computational power of a small computer like
Raspberry Pi is questionable, but may be sufficient. An external source of power, like a
USB power bank, can be easily attached. Nevertheless, option b seems to be the best
option so far, because a laptop is portable, has its own source of power, has a display and
a keyboard, and there is a vibrant choice on the market so that suitable computational
power can be easily reached.

The next question to be clarified is should the agent be managing both local and global
knowledge or simply the local one. In other words, should it rely on some other entity
that has global knowledge or maintain its own? According to the collected requirements,
a set of the same software products can be installed at multiple locations; however,
potentially, they will differ in versions. To satisfy the user story OVERVIEW in Section
4.4, an overview of what is installed at what location is highly desirable. Thus, it is
feasible to provide a separate entity, a server, which should maintain global knowledge
across multiple locations based on global knowledge parts collected by the agent per
location. Let us call this entity master. Since multiple locations are in questions, multiple
agents are needed; one agent simply may not always be shared, because locations can
be thousands of miles away from each other. To provide global knowledge parts to the
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master, e.i. to contribute to its global knowledge, an agent should connect to the master.
Obviously, no constant connection is possible due to the air-gapped networks an agent
will be connecting to. Moreover, during an OSI, network connection policy to the outside
world has not been yet well defined. Thus, an agent cannot rely on the master’s global
knowledge.

Let us sum up the discussion on agent and master. The architecture of an example setup
is depicted on Figure 4.2. There is always at least one agent per location, and multiple
locations can share an agent if it is reasonable. An agent is responsible for maintaining
global knowledge of the location(s) it is based at. Thus, it collects and updates local
knowledge by visiting the nodes when an update or initial provisioning is needed. Master
is responsible for providing an overview of all installations across all the locations. Agents
connect to the master occasionally and update it with the latest changes of the nodes
they serve at their location(s). The example on the Figure 4.2 shows four locations
named A, B, C and D. Location A is the main location that hosts the master. Optionally
it can have an agent as well. Location B hosts only an agent. Location C and D share
one agent, as it is logistically reasonable.

Location CLocation B

Agent

Location A

Master Agent

Location D

Agent

Figure 4.2: Master/agent architecture
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4.9 Dependency resolution and validation
In the Sections 4.6 and 4.7 we discussed the problem of not having the global true
knowledge and what artefacts should be shipped or prepared in advance. The current
subsection covers the dependency resolution and validation, which also helps us to answer
RQ3 from Section 1.3.

At first, let us describe a couple of scenarios where dependency resolution is applicable.

1. Dependency model validation
When dependencies of software artefacts are defined, it is needed to validate if the
model is satisfiable. For example, component A of version 1.2.* requires component
B of version 4.*.*. 1 However, component C requires component B of version 5.1.*.
It is clear this model is not satisfiable, as there is no combination of the components
which would satisfy all the dependency constraints. It is beneficial to discover and
fix such inconsistencies right when the model is defined.

2. Artefacts shipment
When the user decides to update a node to a certain version or perform initial
provisioning, it must be decided what artefacts are needed. Previously in Section
4.7 we extensively discussed how to make shipments as complete as possible so
that an update succeeds based on unreliable global knowledge. Thus, at this stage,
dependency resolution may deliver more than one suitable set of components.

3. Performing an update or initial provisioning
When an agent connects to a node to provision or update it, given local knowledge,
e.i. what is currently installed on the node, and given shipped artefacts, e.i. what
is available for installation, dependency resolution must be made.

A widely adopted way to approach dependency resolution is by incorporating the power
and flexibility of SAT-solvers [ADCTZ12, ADCBZ09, LBP08, LB10]. However, the
solution approach mainly needs to make a comparison between versions, thus, arguably,
an SMT-solver is a better choice. SMT stands for Satisfiability Modulo Theories and adds
the ability to handle arithmetic theories on top of the standard SAT-solver capabilities
[BT18]. To compare versions, which are essentially strings, lexicographical comparison
support would be of great help, but SMT needs extended implementation to encode and
use lexicographical comparison constraints [EF14].

4.10 Numerical representation of versions
To simplify the process of lexicographical comparison using SMT solvers, we decided
to make version strings convertible to integers to be easily compared and processed by

1The star(*) denotes any of the version on the respected level, "micro" or "patch", is accepted.
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a solver. Due to the high adoption of semantic versioning, this will be our targeted
versioning approach. The creators of semantic versioning do not limit the version numbers,
but they say it is meaningful to preston2019semantic. We propose our own conversion
procedure. As input it accepts a string of pattern "major.minor.patch", optional pre and
post-fixes, and converts it to a number. Each of the three parts is delimited by "." 12
bits are reserved with a range of values: 0 to 122 − 1. The highest version would be then
"4095.4095.4095". Optionally 14 bits before (0 to 142 − 1) and 13 after (0 to 132 − 1) are
left for custom use, making 63 bits in total. Most programming languages usually use
the 64th bit for negative numbers according to the two’s complement, a mathematical
operation on binary numbers used for signed number representation. To avoid confusion
and additional conversion, it was decided to use exactly 63 bits, thus, staying in the
positive numbers only. Again, the optional 14 and 13 bits are left for custom usage. For
example, the 13 postfix bits can be used to translate commonly used version extensions
such as "alpha", "beta", "rc", etc. 2 The Listing 4.1 shows a Java 11 implementation
for the proposed conversion approach. In the example implementation we omitted the
precondition checks. Those would be, for example, are the values within the allowed
ranges or does the string comply with the simver guidelines. This is done on purpose to
make the main contribution which is the conversion itself to stand out.

Listing 4.1: Java example
private long convert(int pre, String str, int post) {
long[] nums = Arrays.stream(str.split("\\."))

.mapToLong(Long::parseLong).toArray();
int totalBits = 63, preBits = 14, midBits = 12, postBits = 13;
return pre * (long)Math.pow(2, postBits + midBits*3) |

nums[0] * (long)Math.pow(2, postBits + midBits*2) |
nums[1] * (long)Math.pow(2, postBits + midBits) |
nums[2] * (long)Math.pow(2, postBits) |
post;

}

For example, we convert the following versions encoded as strings: "10.2.9", "10.3.17".
The proposed function would convert the strings to 1374456717312 and 1374490337280
in decimal. By comparing the numbers it is clear that 1374456717312 < 1374490337280,
resulting in "10.2.9" < "10.3.17".

4.11 Modelling
In this Section we discuss the design from the modelling perspective of view. Mostly
Unified Modelling Language (UML) is used. All diagrams were created using Visual
Paradigm software, version 16.2. 3 The modelling does not reflect the actual implementa-

2rc stands for release candidate
3More information on the official website: https://www.visual-paradigm.com/
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tion precisely. Otherwise, the diagrams would be too cluttered and filled with unnecessary
details. By simplifying the models, we want to make it clear and simple to the reader
what is the core design of the software solution. The modelling also covers the RQ2 from
1.3.

4.11.1 Use Case Diagram
The Figure 4.3 shows Use Case Diagram modelled in UML. It reflects mostly the user
stories defined in Section 4.4.

Agent

Update Software
Resolve Dependencies

extension points

Define dependencies

View Locally Installed
Software

Resolve Dependencies

Verify Installation Update Software
extension points

Verify Dependencies

Master

View Globally Installed
Software

Provision Execution Environment

Install Software

User

Administrator

<<Include>>

<<Include>>

<<Extend>>

<<Extend>>

<<Include>>

<<Include>>

Figure 4.3: UML Use Case diagram

Two main types of users are outlined: user and administrator. A user can be essentially
anyone who is interested in performing the stated tasks. Thus, it could be, for example,
an inspector, the Data Flow Management Officer or a PTS member. An administrator
could be, for example, a software engineer or a person having enough expertise to define
software dependency relations.
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The diagram shows both agent and master, as described in Section 4.8. Both of them
share a similar use case: "View Locally/Globally Installed Software". For an agent, all
installed software components are in mind at the location(s) the agent is assigned to. 4

Respectively, a master keeps track of all installed software artefacts across all locations.

The main and most important use case is "Update Software", and it is self-explanatory.
"Install Software" resembles "Update Software", however it focuses on a brand-new
installation. "Resolve Dependencies" and "Verify Dependencies" are indirect use cases
that support almost every other use case. "Define Dependencies" refers to the process
of defining dependency relations/constraints between software components. "Verify
Installation" is an activity of ensuring software components of correct versions are
installed across the nodes.

"Provision Execution Environment" use case refers to the process of setting up a new node.
For instance, it could be adding its metadata to the system, ensuring it has the needed
execution environment(s), store the node’s IP address if possible/necessary, perform other
similar tasks.

4.11.2 Class Diagram

The Figure 4.4 shows the class diagram of the most important entities that serve as the
basis for the application’s business logic. Further, we shall explain each of the classes
and talk about their roles. The Figure does not depict all properties and methods on
purpose, but only the most important ones at this stage: this way we want to avoid
cluttering and potential distractions for the reader.

As mentioned previously in Section 4.2, one agent serves multiple locations, so there
exists a separate class Location. A Location can have multiple installations (Installation
class). An Installation always refers to one software system (SoftwareSystem class), but
a software system can have multiple installations. A software system is an aggregation of
multiple components (Component class), since components cannot exist independently
and are integral parts of a Software System. For example, a typical modern Web
application consists of frontend (F), backend (B) and database (D). A frontend is
typically the graphical user interface consisting of HTML, CSS and JavaScript files.
Backend implements most of the application’s business logic and can be implemented
used a wide variety of technologies and programming languages. Let us assume there
exist an additional native mobile application (M). All these four elements are denoted as
components, instances of class Component, and aggregate a software system, an instance
of class SoftwareSystem. For convenience purposes, let us say the components F, B and
D are interconnected and must be deployed together. Thus, we can add them to one
group, an instance of ComponentGroup class. A component does not have to belong to
any group, if there is no point in doing so. M is a good example of it. It is additional

4As "software component" can be interpreted in many ways, please refer to the beginning of Section
4.6 for an explanation.
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software, essentially another GUI, which is installed completely separately. Thus it can
be left without a group assignment at all.

To handle different versions of a component, the class ComponenVersion is created. For
example, let us assume component F has three versions released: 1.0.0, 1.1.2 and 1.3.1. So
an instance of Component F shall be associated with three instances of ComponentVersion,
each with a respected version value assigned. To express dependency relations between
components, CompDepConstr class is of help. Each instance of this class is associated
with two different components. Also, each of the component version strings and rule
types must be defined. The rule types are built based on the classifications of version
constraints specified earlier in Table 3.1. Essentially, such a rule results in a Boolean
expression (X =⇒ Y ), where X denotes satisfaction of the first criterion and Y of
the second one. For instance, we want to express the dependency of F on B, such
that F with a fixed version of "1.3.1" depends on B of var-patch (var-micro) version
of "1.3.*". 5 This dependency rule can be expressed as follows: (Fver = ”1.3.1”) =⇒
(Bver ≥ ”1.3.0” ∧ Bver ≤ ”1.3.n”) | n = MAX_PATCH_V ERSION . The instances of
ConstraintType class act, therefore, like enumerations and are not meant to be changed
by the users.

Let us deviate from the abstract entities of the diagram and talk about the more realistic
ones i.e., entities that are directly related to execution. As just discussed, a component can
have multiple versions, instances of ComponentVersion class. Each component version has
at least one or more executable artefacts (ExecutableArtefact class). ExecutableArtefact
is an abstract class representing a file – archive, image, etc. – which can be executed in the
end. Since our system works primarily with Docker containers, we included DockerImage
class which extends ExecutableArtefact on the diagram. The multiplicity is 1 to many,
since theoretically, the same component version can have multiple artefacts. Think of a
Docker image and a war archive for a Java application. Another example would be a
Java jar file with all dependencies included and a jar file without any dependencies.

Every executable artefact is associated with none, one or multiple execution environments,
instances of ExecutionEnvironment class. ExecutionEnvironment is also an abstract class.
It represents an environment where an artefact can be executed. Multiple other classes
have an "is-a" relationship to this class, such as ExecutionHost and VirtualizableExecEnv.
The classes VirtualMachine and DockerEngine extend it indirectly. An instance of
an ExecutionHost can be associated with multiple instances of VirtualizableExecEnv,
meaning a server can host one/many virtual machine(s), a docker engine, etc. As
shown on the diagram: DockerImage can be executed by DockerEngine, and Android
apk file can be executed by Android OS. Other examples would be a Java jar file as
an artefact and Java VM as an environment. Similarly, a dependency constraint can
be defined between an execution environment and an executable artefact. To avoid
code duplication, ExecEnvDepConstr class which extends DependencyConstraint class is
used. The dependency constraints are needed to specify what version of the execution

5Please refer to the Table 3.1 for the definition of fixed and var-patch (var-micro) constraints.
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environment is expected to be provided. For example, there is an Android apk executable
artefact of version "2.0.1" which suppose to run on Android OS of at-least version "8.0.0".
Or the users can specify what version of Docker engine a particular Docker image was
tested on and suppose to work with. Similarly, if it is known, some version of some
artefact car be incompatible with some specific version of an execution environment.
This can be specified using "not" constraint type and denoting a conflict. Even though
specifying execution environment constraints is very handy, the main focus lies on
managing dependency relations/constraints between components.

4.11.3 Object Diagram

Further, we discuss the object diagram shown on Figure 4.5 which is based on the class
diagram from the previous Section 4.11.2. We included an object diagram to help the
reader better understand the chosen design depicted on the class diagram.

The diagram shows two installations of the same system named GIMO at the same
location named HQ. The installation names are QNAP_room_1102 and onlineTraining.
Logically, they refer either to the physical location or to the purpose of the installation.
The installation at room 1102 has an execution host named CentOSServer, which hosts a
virtual machine named UbuntuVM which hosts a Docker engine. This Docker engine
executes two executable artefacts. One of the artefacts has a constraint that if the
artefact’s version is "1.3.2", the Docker engine’s major version has to be at least "18.*.*".
One of the executables is associated with component version "1.3.2" of component
GIMORABackend (B). There exists a constraint named FrontDepOnBack (F) which
expresses the following: if the frontend component is of version "1.3.2" (Fv) exactly,
then the backend component must be of at least version "1.3.2" (Bv), but the patch
version stays variable. Formally it can be expressed like this: (Fv = 1.3.2) =⇒ (Bv ≥
1.3.2 ∧ Bv ≤ 1.3.n | n = MAX_PATCH_V ERSION). FrontDepOnBack2 instance
expresses a very similar constraint, but with different values. When the dependency
resolution of a component is performed, all the associated instances of CompDepConstr
are considered.

The other installation named onlineTraining has similarly to the first one an execution
host named UbuntuServer which hosts the Docker engine. The Docker engine is associated
with again two executable artefacts. One of them is shared with another Docker engine
of another installation. Here backend component of version "1.3.2" is in mind. The
frontend component differs in version. Since the constraints allow mixing versions like
shown on the diagram, this would be a valid state. Additionally, frontend and backend
components are parts of one component group. This means during a deployment, they
will be considered as one entity.
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4.11.4 Activity Diagrams
Update Component

The diagram on Figure 4.6 shows activities involved in performing the use case Update
Software. It does not try to model all possible outcomes and deviations, but rather to
present a rigid plan on how to break down the actions needed to accomplish the task.

At first, the user selects a component to update. Based on the example from Section 4.5,
let us assume the user wants to update component A of group F named Field App (FA).
The latest version is selected. In accordance with the global knowledge, dependencies are
resolved. Next, all needed artefacts are collected (preparation of the "shipment" term
from Section 4.6) and, if needed, are prepared to be shipped. Afterwards, a plan on what
nodes must be updated/visited is shown. Then the agent disconnects from the internet
or any other network and connects to each node from the list. The node then provides
its local knowledge. As discussed in Section 4.5, at this point of time the agent possesses
true local knowledge and should again resolve dependencies. If there are no unsolvable
issues, the update is pushed and performed in the scope of the execution environment.
The processes are iterated until the end of the list is reached. Again, as discussed before,
the dependencies may reach an unresolvable state. In this case, the problem is reported
to the user, possibly advising on how to solve it.

Provision Execution Environment

The activity diagram 4.7 describes the use case Provisioning Execution Environment.
Essentially it covers adding a new node, for example, a server with an installed Docker
Engine. Let us describe it in more details.

At first, depending on the type of Execution Environment (EE), the user defines such
information as IP address, SSH credentials like public/private key pair, etc. Then a secure
connection to the EE is established. Afterwards, metadata is retrieved. For example, if it
is an EE of type Docker, the returned metadata should contain the version of the installed
Docker engine. It can also contain some information about the host like the distribution
name, kernel version, etc. Afterwards, this data is verified. If the EE is expected to be of
type Docker, logically, the Docker engine must be installed. Additionally, a constraint
on its version can be put. After a successful verification, the EE is added to the system
as an active one. It means later on it can be used for software provisioning or software
updating.
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Figure 4.4: UML Class diagram - domain
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Figure 4.6: UML Activity diagram - update procedure
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Figure 4.7: UML Activity diagram - provision execution environment
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CHAPTER 5
Dependency Resolution with

SMT

As previously illustrated in Sections 4.11.1 and 4.4, updating a component is one of the
core functionalities expected to be implemented. Let us assume that the application
(component group) PRA from the example system (see Section 4.5) must be updated to a
newer version. Even though the Figure 4.1 shows mainly dependencies between component
groups, within a group, there could be dependency relations between components as well.
In 4.6 we argue global knowledge is unreliable, because local knowledge can be altered
anytime without us knowing. To combat this problem, we introduce "c" which stands for
completeness. Based on this, we constructed function "f" that resolves the dependencies
and returns a set of suitable component versions. In this work, however, we focus first
on dependency resolution using global knowledge as input. A proper implementation
of f, which considers the previously discussed probability and completeness, requires
development of a dedicated and sophisticated algorithm, which is out of the scope of the
thesis.

This chapter discusses how to model the required dependency resolution procedure using
SMT by elaborating on the problem first and coming up with multiple solution strategies
next. Further, we describe core algorithms using pseudocode to decouple them from
a concrete implementation. Finally, we shed light on the actual implementation with
PySMT in details.

5.1 Problem Formulation with SMT
5.1.1 SMT Basics
Satisfiability Modulo Theories (SMT) allows to combine multiple theories and helps to
solve Boolean Satisfiability (SAT) like problems. This makes it possible to take advantage
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of different useful operations a classical SAT-solver does not provide. For example, one
can compare integers, solve equations or perform similar algebraic operations. This
versatile extension comes in handy when variables are to be constrained to certain values
or ranges of values. In Section 4.10 we discuss how version strings can be converted to
integers. This conversion can be utilized when comparing/constraining versions with
SMT. Let us remind you, a constraint can be expressed using implication. For example,
component A of version "1.0.3" requires component B of version "1.1.8". Since it is an
exact match, it can be encoded as: A = toInt(”1.0.3”) =⇒ B = toInt(”1.1.8”). The
toInt function intuitively returns the numerical representation of the passed version
string. Later we explain how a simple implication can be applied with a more advanced
dependency relation to constrain the values to a certain range.

5.1.2 Problem Statement
Let us further describe the problem statement concerning how to express the SMT
formula to implement the expected dependency resolution functionality.

Given (1) a set of installed components of certain versions, (2) a component of a newer
version we want to update to and (3) a set of constraints describing dependency relations
between the components, is such a constellation satisfiable? If it is, no further actions
are needed, as the component can be safely updated. If it is not satisfiable, additional
information is required to find new optimal dependencies. This includes sets of available
versions per component. So essentially, the information at hand can be divided into
Domain Constraints and Facts. Domain Constraints are all those rules which define
component dependency relations. For example, component A of patch-variable version
"18.2.*" requires component B of fixed version "1.2.5". Domain Constraints must always be
satisfied and can never be left out. Facts can be subdivided into: must-be, exactly-one,
and is-variable. The Table 5.1 describes them in more details.

Let us narrow down and summarize the problem statement:

Given must-be fact(s) (version(s) user wants to update to), exactly-one fact(s) (what
versions do exist), is-variable facts (what version are already installed), and domain
constraints (version dependency relations), get a set of components and versions that
satisfies all facts and constraints.

5.1.3 Solution Approaches
In Section 3.2.4 we mentioned dependency resolution problem is NP-Complete. One
of the major difficulties is that depending on the number of component versions, how
restrictive the constraints are, etc., the resolution can easily explode and take too much
time to get processed. As a countermeasure, we present an optimization strategy, since
it is necessary. This strategy (called MAX-VER) iteratively downsizes the problem by
determining only the maximum satisfiable versions. Moreover, we cover another less
optimized dependency resolution approach called ALL-VER. Further, the mentioned
approaches are described in more details.
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Fact Type Description
must-be
(upgrade-
versions)

One or more versions of different components must be installed. Usually,
a must-be fact reflects a version of a component the user wants to
update to. For example, the user would like to upgrade component A
to version X and component B to version Y, because of some newly
introduced feature in the first one and a recently fixed bug in the second
one.

exactly-one
(available-
versions)

When a must-be version of a component is defined, it may result in
a mandatory update/downgrade of another component due to some
domain constraint. However, it would be computationally-wise ineffi-
cient to look for all possible values without bounding them. Let us say,
component A with patch-var constraint "7.5.*" depends on component
B with minor-var constraint "10.*.*". Even if component A was bound
to one version, the number of all satisfiable versions of component B
would be as high as 224 −2. Thus, bounding this type of facts to a much
smaller set would be beneficial. For example, the set could contain all
available versions of component B: "9.8.9", "9.9.0", "10.0.1", "10.0.3",
"10.1.0". The number of versions is therefore drastically downsized.
Because exactly one and only version must be chosen, we call this fact
type exactly-one.

is-variable
(installed-
versions)

When an update is performed, components of specific versions are
already installed. It is possible dependency resolution results in a
mandatory update for another component. If a must-be fact does not
bind this component’s version, we denote it as is-variable. For example,
there are three components A (1.0.2), B (2.5.1) and C (0.1.3). For an
update to succeed, A must be updated to version 1.1.0 (must-be fact),
but B and C are unbound (is-variable facts). Dependency resolution
showed that B must be updated to 2.5.2 to be compatible with A
(1.1.0), but C can keep the version 0.1.3.

Table 5.1: Types of Facts (dependency resolution)

Finding Maximum Versions - MAX-VER

The MAX-VER aims to reduce the calculation time by finding only the maximum
component versions. In the proposed procedure, we apply a commonly-known divide and
conquer paradigm.

Imagine we try to solve a dependency resolution problem with Domain Constraints and
Facts in place, as per our definition. Let us suppose there are n components (is-variable
facts) with m versions per component (exactly-one facts). For each component all valid
versions v are determined using an SMT solver, so it holds that 1 ≤ v ≤ m. To increase
the solver’s efficiency, after a valid version is found, it is excluded from the SMT model.
When all valid versions of the component are determined, the maximum one is selected.
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This maximum version is added to the must-be facts, which narrows down the problem.
The process is repeated until the maximum version for each of the components are
resolved.

Alternative Approach - ALL-VER

Apart from introducing optimization on how to constrain the problem more and thus
reduce the computational time, we would also like to cover an alternative approach that
finds all viable versions (ALL-VER). Because SMT/SAT solvers have become much more
efficient within the last half of the decade [ES03, MMZ+01], we believe finding all feasible
solutions is still a valid option, although should be used wisely. We fully understand this
approach does not scale in all scenarios. However our tests as described in Section 7.3
based on the example system from Section 4.5 showed that dependency resolution for a
system with around 20 components and around 1000 versions (50 per component) takes
still a reasonable amount of time. Since it is advantageous to get all feasible solutions in
certain cases, we would like to leave this option as a secondary solution.

5.2 Dependency Resolution
5.2.1 First-order logic formula
We construct a first-order logic (FOL) formula to describe MAX-VER and ALL-VER
formally. At first, we describe the similarities and then cover the differences. For
readability purposes "constraintHolds" subroutine and its inner subroutine "constraint"
were created. The formula is described in reversed order, meaning the complete formula
is presented in the end. Please refer to Table 5.2 for further explanation of the used
notation. You can find a textual explanation of each of the formulas afterwards.
constraint(T, v)
(v.type == fixed ∧ T == v) ∨ (v.type == patch_var ∧ T >= v ∧ T <= max_patch) ∨
(v.type == minor_var ∧ T >= v ∧ T <= max_minor)
This subroutine bounds the allowed version range of a target component version (T)
depending on the constraint’s type. Fixed, patch_var, minor_var are enums; max_patch
and max_minor are constants. V in lower case (v) signalises only one version.
constraintHolds(T, C)
constraint(T, C.dependerV er) =⇒ constraint(T, C.dependeeV er)
If and only if the constraint of depender holds, the constraint of dependee must hold as
well.
Complete formula
There exist a precondition to the formula: the explicitly set target version(s) of compo-
nent(s) has/have to hold. For example, a component A must be of version X, because
the user defined it. Following is the complete formula for ALL-VER.
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Notation Explanation
T Target component version variable. The SMT solver determines it, and

it represents a suitable version per component.
TS Target component version set. The SMT solver determines it, and it

represents multiple suitable versions per component.
C Constraint, which describes dependency relation. For example: if

component A is of version X, then component B must be of version Y.
V Set of available versions per component. Example: there exist versions

X and Y of component A. Essentially, its main goal is to provide options
for the solver when it resolves a version for a component.

v Lower case v denotes just one available version per component.
==, >=,
<=

Comparing operators. Operator "==" returns true if both left-hand
and right-hand operands are equal. Operators ">=" and "<=" are
commonly well-known for combining "greater" and "less" checks with
equality comparison.

. The dot (.) notation serves as access operator to retrieve another
associated value. It is similar to commonly used operator in most of the
object-oriented programming languages. For example, "C.dependerVer"
means to retrieve the depender version of the constraint (C). "v.type"
means to retrieve the type of the version (v).

fixed,
patch_var,
minor_var

These can be described as enumeration types in analogy to most of
programming languages.

max_patch,
max_minor

These are constants representing a specific value each, depending on
the maximum supported version for patch or minor parts.

Table 5.2: FOL notation

∀T ∀C∀V : constraintHolds(T, C) ∧ ∃v ∈ V : v ∈ T

For all target component versions (T), which are also the output, for all constraints (C)
and for all set of versions per component (V), each constraint should hold for each target
component version, and all the rest of the components should be assigned to one of the
versions available per component.

MAX-VER difference to ALL-VER

The MAX-VER approach is generally very similar to ALL-VER. The major difference is
that after each iteration, the maximum version of the delivered resulting set is returned.
For example, the ALL-VER routine returns the following set of versions for component
A: "5.0.2", "4.9.5", "5.1.0", "4.6.4". MAX-VER would return only "5.1.0" as it is the
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maximum or the most recent one. So the complete formula for MAX-VER deviates only
slightly from the ALL-VER one.

∀t∀c∀V : constraintHolds(t, c) ∧
�
v∈V

v == t

Time limit

Even though the tests conducted in Chapter 7 with a realistically high number of elements
show acceptable results in terms of computational time, this approach cannot scale. Thus
a time limit or budget can be introduced. At first, the idea is to calculate an arbitrary
feasible result, a valid combination of component versions, and within the rest of the
given time get as many feasible results as possible. Once the time budget is depleted, stop
and return the results. This way, the resulting set always contains at least one feasible
combination and delivers all the rest of the valid combinations using the best-effort
approach.

5.2.2 Pseudo code description

This Section describes the algorithms used to implement solution approaches to the
SMT modelled problem as outlined in the previous Section. The intent is to present the
solutions in pseudocode to decouple them from the actual implementation, which shall
be discussed in the next section.

The Algorithm 5.1 shows how the core SMT problem is composed. It shows the problem
composition without diving into the details. The Algorithm 5.2 depicts the construction
of a constraint depending on the type. The last Algorithm 5.3 shows how the exactly-one
facts are assembled.

Algorithm 5.1: Construction of the problem
input : Component to update compToUpd, version to update to verToUpd,

dependency constraints as array depConstraints, rest of the
components as array restComps, all component versions as map
compV ers

output : Problem composed of facts and domain constraints.
1 domain ← toConstraint(depConstraints,

union(compToUpd, restComps))
2 facts ← equals(compToUpd, verToUpd)
3 facts ← and(facts, disjoin(restComps, compV ers))
4 problem ← and(facts, domain)
5 return problem
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Algorithm 5.2: Construction of the constraints
1 Function toConstraint(depConstraints, components) is

input : Dependency constraints as array depConstraints, components as
array components

output : Array of constraints.
2 constraintSet ← new List;
3 foreach constraint in depConstraints do
4 Repeat for dependee and depender of the constraint as constrVer for

related component
5 if constrVer.type is FIXED then
6 equals(component, constrVer)
7 else
8 if constrVer.type is PATCH_VAR then
9 and(GE(component, constrVer), LE(component,

toHighestPatch(constrVer)))
10 else
11 if constrVer.type is MINOR_VAR then
12 and(GE(component, constrVer), LE(component,

toHighestMinor(constrVer)))
13 end
14 end
15 end
16 constraintSet.add(implies(dependeeRule, dependerRule))
17 end
18 return constraintSet

19 end

5.3 PySMT Implementation
PySMT is an open-source Python high-level library that simplifies working with SMT. It
serves as an intermediary between the SMT-LIB and solvers API. 1 The main advantage
of this approach is the freedom of choosing the underlying concrete solver implementation.

PySMT uses a notion of symbols that are commonly known in SAT problems as literals.
A symbol is a variable of different types: integer, number with floating point, string, etc.
In our implementation, we use symbols to find viable versions of components.

As PySMT does not provide out-of-the-box support for strings comparison, which
is essential for comparing versions, we came up with a version-to-integer converting
procedure described in Section 4.10. Further, it is frequently used and is hidden behind
the "get_numerical()" method of a component version object.

1For more information, refer to https://pysmt.readthedocs.io and https://smtlib.cs.uiowa.edu
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Algorithm 5.3: Construction of the exactly-one facts
1 Function disjoin(components, compVersions) : int is

input : Components as array components, version of all components as
map compV ersions

output : List of rules for expressing the exactly-one facts
2 andSet ← new List;
3 foreach component in components do
4 orSet ← new List;
5 foreach version in component.versions do
6 orSet.add(or(equals(component, version)));
7 end
8 andSet.add(and(orSet));
9 end

10 return andSet

11 end

5.3.1 Domain Constraints
The Listing 5.1 shows how a domain constraint, e.i. dependency relation, is encoded with
PySMT. The function accepts a constraint and the symbols. Each symbol represents a
component. The symbols are used to find satisfiable versions of the respected component,
which is specific to PySMT. The constraint consists of two parts describing a range of
valid values for the depender (which requires) and the dependee (which is required). Each
of the parts can be constrained differently. The dependee constraint should be considered
only if the depender constraint is true.

Each of the constraint parts can be of the types: FIXED, PATCH_VAR or MINOR_VAR.
In case of the FIXED type, it is just implied to be equal to the numerical value. 2 With
PATCH_VAR or MINOR_VAR the clause must be expanded to this form: symbol ≥
starting_version ∧ symbol ≤ max_version. The max_version is either the maximum
patch or minor version. Since the versions are converted to their numerical representations,
it is possible to constrain the values to a range.

Listing 5.1: Encoding domain constraints with PySMT

def __to_implies(self, constraint:
�→ ComponentDependencyConstraint, symbols):
def convert(comp_ver: TypedComponentVersion):

symbol = symbols.get(comp_ver.component_id())
if comp_ver.type == ConstraintType.FIXED:

return Equals(symbol, Int(comp_ver.get_numerical()))

2Here and further on numerical value representation of the version is meant.
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elif comp_ver.type == ConstraintType.PATCH_VAR:
return And(GE(symbol, Int(comp_ver.get_numerical())),

LE(symbol, Int(ComponentVersion.
�→ get_highest_patch(comp_ver.get_numerical
�→ ()))))

elif comp_ver.type == ConstraintType.MINOR_VAR:
return And(GE(symbol, Int(comp_ver.get_numerical())),

LE(symbol, Int(ComponentVersion.
�→ get_highest_minor(comp_ver.get_numerical
�→ ()))))

return Implies(convert(constraint.depender_comp_ver),
�→ convert(constraint.dependee_comp_ver))

5.3.2 Facts
The Listing 5.2 shows how the must-be and exactly-one facts are applied. The must-be
facts are handled straightforwardly. The symbol must equal the value according to the
must-be fact. Theoretically, multiple must-be facts can be defined, but the implementation
is focused on just one so far.

The exactly-one facts are added by disjuncting all possible versions per component,
meaning a component can be either of the versions. Each of the disjunction is then
conjuncted, like any other fact.

Listing 5.2: Encoding facts with PySMT

def __disjoint(self, all_comps: [Component], symbols_dict):
return And(

[Or([Equals(symbols_dict.get(comp.id()), Int(v.
�→ get_numerical())) for v in comp.comp_versions()])
�→ for

comp in all_comps])

def __get_facts_for_fixed_versions(self, symbols_dict, comps: [
�→ Component]):
if comps:

return And([
And(Equals(symbols_dict.get(comp.id()), Int(comp.

�→ comp_versions()[0].get_numerical()))) for comp in
comps]

)
else:

return And()
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# Add hard facts -- the versions must be satisfied
facts = self.__get_facts_for_fixed_versions(symbols_dict, (

�→ comps_with_ver_to_lock + installed_comp_vers))

# Limit to what versions are there
facts = And(facts, self.__disjoint(rest_comps, symbols_dict))

5.3.3 ALL-VER
The Listing 5.3 shows the encoding of the ALL-VER resolution strategy described in
Section 5.1.3. Most of the used functions were already introduced previously. The new
function named "__all_smt" is defined at the beginning of the listing. This function
depicts the solving process in its essence. The formula (problem) is passed to the solver,
and then iteratively the partial solutions are retrieved, stored in the dependency tree
and lastly excluded for further search. This process is repeated until all partial solutions
are not found. A partial solution is a combination of the PySMT literals representing a
feasible combination of component versions.

The function "apply_all_sat" accepts "comps_with_ver_to_lock" argument which
contains: component version(s) the user wants to update to or component version(s) that
are/is currently installed (global knowledge). In either case, these component versions
must be locked. In certain cases, the installed component versions may require an update
as well, thus they may be omitted. By excluding this information, the computation time
is expected to increase, but it provides more flexibility. Since ALL-VER delivers all
feasible component versions anyway, a needed upgrade for an already installed component
can be easily derived afterwards.

As pointed out in Section 5.1.3, we are fully aware this approach is computationally
expensive. As argued in certain situations, it can be still attractive to have all feasible
solution. Moreover, the performance tests (see Section 7.3) showed good results for
problems of reasonable sizes.

Listing 5.3: ALL-SMT resolution strategy (PySMT)

def __all_smt(self, formula, symbols_dict, comp_root: Component,
�→ rest_comps: [Component]) -> DependencyTree:
tree = DependencyTree(comp_root)
tree.append_components(comp_root, rest_comps)

target_logic = get_logic(formula)
for k in symbols_dict.keys():

with Solver(logic=target_logic) as solver:
solver.add_assertion(formula)
while solver.solve():
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partial_model = [EqualsOrIff(symbols_dict.get(k),
�→ solver.get_value(symbols_dict.get(k)))]

for pm in partial_model:
ver_str = ComponentVersion.to_str(int(str(pm.

�→ args()[1])))
comp_id = int(str(pm.args()[0].symbol_name()))
tree.append_version(Resolver.

�→ find_comp_ver_in_comps([comp_root] +
�→ rest_comps, comp_id, ver_str))

solver.add_assertion(Not(And(partial_model)))
return tree

def apply_all_sat(self, comps_with_ver_to_lock: [Component],
�→ dep_constraints: [ComponentDependencyConstraint],
�→ rest_comps: [Component]) -> DependencyTree:

symbols_dict = self.__to_symbols_dict(comps_with_ver_to_lock
�→ + rest_comps)

# Add all constraints
domain = And([self.__to_implies(c, symbols_dict) for c in

�→ dep_constraints])

# Add hard facts -- the versions must be satisfied
facts = self.__get_facts_for_fixed_versions(symbols_dict,

�→ comps_with_ver_to_lock)

# Limit to what versions are there
facts = And(facts, self.__disjoint(rest_comps, symbols_dict)

�→ )

problem = And(domain, facts)
self.__assert_problem_is_sat(problem)

return self.__all_smt(problem, symbols_dict,
�→ comps_with_ver_to_lock[0], rest_comps)

5.3.4 MAX-VER
The Listing 5.4 shows the encoding of the MAX-VER dependency resolution approach.
It differs from ALL-VER mostly in the last part. Instead of finding all solutions for all
literals (all satisfiable versions per component), this approach iteratively finds only the
most recent versions. Let us further describe an iteration in more details. For one of the
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components, all feasible solutions (versions) are determined. Afterwards, the maximum
one is selected and is added to the hard (must-be) facts. As a result, during the next
iteration for the next component, the problem will be more constrained and take less
time to get solved. The process is repeated until all maximum version are found.

The performance tests in the Section 7.3) show prominent results when this strategy is
applied.

Listing 5.4: MAX-SMT resolution strategy (PySMT)

def __all_smt_one_symbol(self, formula, symbol) -> [str]:
result_comp_vers: [str] = []
with Solver(logic=get_logic(formula)) as solver:

solver.add_assertion(formula)
while solver.solve():

partial_model = [EqualsOrIff(symbol, solver.get_value(
�→ symbol))]

for pm in partial_model:
ver_str = ComponentVersion.to_str(int(str(pm.args()

�→ [1])))
result_comp_vers.append(ver_str)

solver.add_assertion(Not(And(partial_model)))
return result_comp_vers

def apply_max_sat(self, comps: [Component], dep_constraints: [
�→ ComponentDependencyConstraint],

comps_with_ver_to_lock: [Component] = None) -> [
�→ ComponentVersion]:

symbols_dict = self.__to_symbols_dict(comps)
# Add all constraints
domain = And([self.__to_implies(c, symbols_dict) for c in

�→ dep_constraints])

# Add hard facts -- the versions must be satisfied
facts = self.__get_facts_for_fixed_versions(symbols_dict,

�→ comps_with_ver_to_lock)

# Limit to what versions are there
facts = And(facts, self.__disjoint(comps, symbols_dict))
self.__assert_problem_is_sat(And(domain, facts))

result_vers: [ComponentVersion] = []
# Walk through each component, get all feasible versions,

�→ get max of these versions, constraint problem to it
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for comp in comps:
all_versions_strs = self.__all_smt_one_symbol(And(domain,

�→ facts), symbols_dict.get(comp.id()))
# find max
max_version_numerical = max(ComponentVersion.to_numerical

�→ (ver_str) for ver_str in all_versions_strs)
max_version_str = ComponentVersion.to_str(

�→ max_version_numerical)
comp_ver = Resolver.find_comp_ver_in_comp(comp,

�→ max_version_str)
# Add hard fact -- the max version has to be satisfied
facts = And(facts,

Equals(symbols_dict.get(comp.id()), Int(
�→ max_version_numerical)))

result_vers.append(comp_ver)
return result_vers
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CHAPTER 6
Software Architecture for

Air-Gapped Updates

Before we initiate our discussion about the solution architecture, let us cover one of the
major workflows related to software provisioning. It should remind the reader what
functionality is expected. To this point, the workflow is implementation-agnostic, but it
strongly relies on the previously defined class and activity diagrams 4.11.2, 4.11.4. The
workflow is broken down to the preparation and deployment phases. The preparation
phase consists of:

1. The user selects a Software System.

2. The user selects at least one Component and a Component Version of it to be
installed.

3. The user selects strategy on how to calculate dependencies. By default, the newest
version per Component is returned (MAX-VER).

4. The system resolves dependencies and returns a list of Component Versions to
install. Due to possible further dependencies, the system can add more Component
Versions of new Components which have to be installed too.

5. The user selects a location and gets all available Execution Environments.

6. The user assigns each Component Version through an Executable Artefact to an
Execution Environment which can run it.

7. Deployment Plan is scheduled. User gets information which Execution Environments
must be visited.
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The deployment phases consists of:

1. The user connects to an Execution Environment from the list.

2. The user changes settings of the new installation if needed and initiates deployment.
The user iterates this process until all components are updated.

6.1 Security aspects
Every software strives to achieve high-security standards, however, the unique constraints
applicable to this software solution make it to absolute necessity. Authentication and
secure communication are the most prevalent security-related points of interest which
require further elaboration.

• Authentication

The login to the software itself follows the current best practices commonly applied
for web-based technologies. User authentication is based on a secure password. The
communication with the frontend and the backend, embraces usage of TLS/HTTPS
protocols, which implies certificate-based authentication, making passing the user’s
password secure.

• Communication with Execution Environments

The software is expected to securely communicate with different kinds of Execution
Environments such as Docker Engine, UNIX/Windows/Android OS, etc. Exposing
these systems to outside connections may introduce a loophole for data breach
despite an air gap in place, so it must be approached with special attention.

Secure Shell Protocol (SSH) is one of the most popular choices when a secure
connection to a system is needed; however, its level of security strongly depends on
the type of authentication. Password-based authentication has proven to be the
most vulnerable one, as the system can be exposed to dictionary attacks; moreover,
humans tend to use easy-to-remember insecure passwords [Elf06, SSS09]. Thus, a
password-less authentication using public/private key pair is a better choice that
we embrace as well. A passphrase can be used to protect the private key from
unauthorized use. Docker daemon offers by default only connections through a local
unix socket, so no external access is allowed. By enabling TCP connections, the
daemon listens to a port that can be exposed to outside clients; however, setting
up such access securely requires maintaining additional certificates for the daemons
and their clients. To reduce complexity, existing password-less SSH connections
are utilized. Communication with Docker daemon is done via port-forwarding, so
there is no need to expose it externally and maintain additional certificates.
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6.2 Artefacts Storage
The system must cache executable artefacts locally and therefore suitable artefact storage
should be selected. Since Docker is our main target platform, the main focus is on it.
Two options for storing Docker images are presented; either of those can be chosen and
the choice does not affect our software solution.

6.2.1 Docker Basics
Docker images are typically pushed to and pulled from a so-called registry. A registry is a
storage and content delivery system, holding named Docker images, available in different
tagged versions [doca].

In such a registry, Docker images are stored following certain conventions. The image’s
name consists of "distribution/registry" parts and can be supplied with tags that typically
represent the versions. Usually, a publicly available registry named Docker Hub is used, 1

because of its zero-maintenance, high availability and other advantages. Docker Hub is
always used implicitly, for example, "docker pull something" command will be translated
to "docker pull docker.io/library/something", pointing to the Docker Hub registry. In
contrast, command "docker pull somedomain:port/x/y" will force Docker to connect the
registry located at somedomain:port to download the image x/y.

Along with the publicly available registry such as Docker Hub, there is a possibility
to deploy and operate a private registry. Docker creators claim that running a private
registry is a great addition for a CI/CD pipeline and it is the best way to distribute
images inside an isolated network [doca]. The latter applies to our scenario.

6.2.2 Docker Private Registry
Docker private registry can be very conveniently started using the publicly-available
"registry" image. It means Docker itself runs the private registry. The following command
shows how the registry can be started:

$ docker run
-d -p 5000:5000 --restart=always --name registry
registry:2

The command would download the image "registry" with tag "2" from Docker Hub if the
image is not available locally. Then it starts a container named "registry" in detached
mode, the container’s port 5000 is going to be mapped to port 5000 of the running host,
and the container will always be restarted if it fails for some reason.

If the registry is exposed to Docker daemons from outside, it should be secured using
TLS protocol, and thus a certificate is needed.

1More information: https://hub.docker.com/
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Image mirroring

Images available publicly can be easily mirrored to a private registry. Let us walk through
an example based on a well-known "alpine" image. Our example is inspired by one of the
official tutorials [doca].

Download "alpine:3.12" image from Docker Hub to the local Docker storage if it has not
been cached before.

$ docker pull alpine:3.12

The "alpine:3.12" image already available locally gets an additional tag "localhost:5000/alpine:3.12".
Notice the prepended hostname and port, which indicates the location of an alternative
to the Docker Hub registry.

$ docker tag alpine:3.12 localhost:5000/alpine:3.12

The image then gets pushed to the registry running on the same IP as the host, using
port 5000.

$ docker push localhost:5000/alpine:3.12

This command returns all locally available images. We present a compact output showing
only such information as repository, tag and image id. Now the same image was pulled or
tried to be pulled from two different repositories: alpine, which refers to the public one
on Docker Hub, and localhost:5000/alpine, which clearly signifies the registry’s origin at
localhost, port 5000. Nevertheless, both images are identified as the the same with id
d6e46aa2470d.

$ docker images
REPOSITORY TAG IMAGE ID
localhost:5000/alpine 3.12.1 d6e46aa2470d
alpine 3.12.1 d6e46aa2470d

6.2.3 Sonatype’s Nexus repository
The Nexus Repository OSS is arguably one of the most popular open-source solutions on
the market for managing artefacts offered by the privately owned company Sonatype. 2

This software serves as a single stop when storing all popular binary and build files,
covering such platforms as Maven/Java, npm, NuGet, Helm, Docker, P2, OBR, APT,
GO, R, Conan and many more. 3 Nexus Repository can run one or even multiple Docker
private registries, therefore it does not compete with it.

2For more information refer to https://www.sonatype.com/company
3For more information refer to https://www.sonatype.com/nexus/repository-oss
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6.3 Docker in Production
Docker containers are well suited to be run in production environments; however, doing so
without an appropriate tool may deliver unsatisfactory results. For example, a container
may fail and get stopped – most likely, the desired behaviour is to restart it after a
failure. Similarly, an application may need to be scaled up to handle more workload than
originally planned. To provide this kind of functionality, an orchestration tool should be
used. Currently, there are multiple solutions available, and arguably the most popular
ones are Kubernetes developed by Google and Docker’s own so-called Swarm mode. 4

6.3.1 Docker Swarm
In this section we discuss what Docker Swarm is and how we can take advantage of it
based on our needs.

Docker Swarm is a container orchestration solution shipped together with the Docker
Engine to facilitate Docker-based deployments in production. Docker creators call a
cluster of Docker Engines a swarm. A swarm can be managed by using the same Docker
CLI as for managing containers. Docker Swarm is a set of nodes, and each node can be a
manager, a worker or both. A node is an instance of the Docker engine participating in
the swarm [docb] which runs services and performs certain tasks.

Swarm Service

A swarm service is the definition of the tasks that should be executed on the nodes.
Typically, there is one service per image, for example, a RESTful microservice would
be deployed using one image as a service. On this level, the following can be defined:
the port that the swarm makes available to the outside world, an overlay network to
connect to other services, CPU and memory limits and reservations, a rolling update
policy and the number of replicas of the image to run in the swarm [docc]. For example,
the mentioned RESTful microservice can be scaled by assigning the image to a service
and defining the desired state, such as how many replicas are needed. The service will
take care of load-balancing between the replicas by automatically splitting tasks among
the running containers.

On top of this, Docker ensures that tasks are isolated, meaning one task runs only on one
container as defined by the scheduler. The authors describe a task as a "one-directional
mechanism", and it progresses through a series of states: assigned, prepared, running,
etc. If the task fails, the orchestrator removes the task and then creates a new one as a
replacement. In the end, the orchestrator should reach the desired state specified by the
service [docc].

A service may run in a so-called "pending" state, if there is no node that can run the
service’s tasks. This can happen if no node satisfies the constraints, such as CPU/memory
limitations, etc.

4For more information refer to https://kubernetes.io/ and https://docs.docker.com/engine/swarm/
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Apart from being replicated, a service can be global. A replicated service creates n
replicas of the running instances based on the provided image. Global service runs one
task on every node. So, if another node joins the swarm, the orchestrator will assign the
task defined by the global service to it.

Swarm Features

The following features offered by the swarm mode are noteworthy - as described in the
official Docker documentation: [docb]

• Cluster management integrated with Docker Engine
There is no need for any additional installation. Docker Swarm is immediately
available.

• Decentralized design
Docker Engine handles the differences in node types, workers and managers, on its
own. A single disk image can be used to build an entire cluster.

• Declarative service model
A declarative approach is employed to define services. It means a desired state of
the services is defined, such as what image should be used, how many replicas must
be started, etc.. It is the responsibility of the Docker Engine to reach and maintain
this state.

• Scaling It is possible to scale the services up or down automatically. Swarm manager
does it depending on how the desired state is defined/changed.

• Desired state reconciliation
The swarm manager keeps monitoring the cluster state to reconcile any deviations
between the actual and the desired state. For example, if one of the worker nodes
becomes unavailable, the replicas that ran on that node to reach the desired state
will be replaced by creating new replicas on one or multiple workers.

• Multi-host networking
Once an overlay network is defined for the services, the swarm manager automatically
assigns addresses to the containers.

• Service discovery
Swarm manager assigns a unique DNS name automatically to each service and load
balances running containers. The embedded DNS server can translate the service
names to the respected addresses.

• Load balancing
It is possible to expose the ports for services to an external load balancer.
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• Secure by default
By default, each node authenticates itself using TLS, and the communication
between nodes is encrypted.

• Rolling updates
Updates can be applied to nodes incrementally. The swarm manager lets the user
control the delay between service deployment. In case an update is not successful,
a rollback can be done.

Swarm Initialization

The following command creates and initializes a new swarm. The –advertise-addr flag
tells the manager node to publish its address as <MANAGER-IP>.

$ docker swarm init --advertise-addr <MANAGER-IP>

A swarm can also be created on just a single node. It means the node is going to be
both manager and worker. To do this, the same command must be executed; however
the –advertise-addr flag is omitted.

$ docker swarm init

6.3.2 Docker Configuration Considerations
In the case of a Docker-based deployment, the Execution Plan guides the users on what
Docker hosts it needs to visit. If the Docker artefacts belong to a Group, all images
are grouped as well, forming a swarm stack. The stack’s settings can be described
with one or multiple docker-compose files. 5 Alternatively, all settings can be applied
directly without any files using the Docker Daemon REST API. Thus, two configuration
approaches can be embraced: manage configuration information either on our own
(custom approach), or rely on the docker-compose files. To better understand which
option is more suitable, we list below the major requirements which must be met.

• A fresh installation of the components should be working out-of-the-box. This
means there must always be a configuration state that would satisfy the chosen
versions’ current combination. For instance, for service A starting from version v_n
an additional environmental variable must be defined. It means the configuration
state related to this version should be aware of this environmental variable.

• The user still should be able to override any settings as it may be required.

The Table 6.1 explains the advantages and disadvantages for both of them.
5For more information, refer to https://docs.docker.com/compose/
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Configuration
type

Advantages Disadvantages

Custom Full flexibility, can be easily de-
fined per Image version.

The new specification should al-
ways be explicitly added. Also, it
is challenging to override the set-
tings of a different service. For
example, a new version of service
A exposes a different port, so ser-
vice B needs to get this information
since B consumes A.

Docker-compose
files

No need to store similar represen-
tation internally. In case a new
option is needed, it is immediately
available.

It is difficult to validate a docker-
compose file created by the user to
override some settings.

Table 6.1: Docker Services configuration types. Advantages and disadvantages.

Based on the requirements and the relative merits of both approaches, it has been
decided to use docker-compose files. The main reason is that all settings implemented in
future releases will be automatically available. Also, it is possible to combine multiple
docker-compose files. This means each Docker Image will maintain its own configuration
files. In the end, all of them are going to be automatically merged. Thus it satisfies the
requirements discussed previously.

As a result, the administrator should always provide a base docker-compose file per
service (Docker Image) that defines basic configuration like the name of the service, what
network(s) it should be connected to, mapped volume(s) or port(s), and so on. A user
should never change these settings. For a later Docker Image version, in case the settings
change, the administrator defines a different docker-compose file that can override the
base settings. Meaning, for example, if an environmental variable must change its value
for a certain Docker Image version, it can be defined in another docker-compose file.
When loading all the files, it should be loaded after the rest of the files to override the
same settings.

Following our discussion, we present an example that shows the deployment of a group of
only two components – backend and frontend services. As stated earlier, base configuration
files must always be defined. The user may choose to override any settings but it must
be done in a separate additional file. The Listing C.1 shows the base configuration file of
the backend service. It uses an environmental variable to inject values for such attributes
as image and labels dynamically. It is needed because the version depends on what has
been resolved. As a result, it affects the referenced registry, repository, image and tag. A
drawback of such an approach is that the environmental variables must follow certain
naming convention that the user/administrator must adopt. For instance, the image
value’s environmental variable must be named as the service itself plus "_image" postfix.
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The "at.ac.tuwien.dsg.spunie.image.id" label defined in the example is used to assign
internal database id to the deployed image. It is required to understand which exact
image version is deployed on a node.

Other properties are set according to the docker-compose tool conventions. For example,
a custom network named "www" is defined, and the service is connected to it. The
internal port 8080 of the service is mapped to external port 8080 of the host. The deploy
section describes different deployment-related properties, such as how many replicas
should be created, what action should be applied on a failure, what is the restart policy,
etc.

The Listing C.2 shows the base frontend configuration file. It is very much similar to the
backend configuration file. Again, the environmental variables must be defined following
the same naming conventions.

The Listing C.3 shows how the user can override or add new properties. It may be needed
because a newer version requires a different configuration or there may be another reason
to do so. The example configuration file adds another port mapping – 80 internal port
to 80 external one. Unfortunately, it is not possible to remove the old port mapping,
however, it should not be necessary in the first place. The base configuration files should
only contain the essential configuration. All the files defined later are not going to be
applied each time but only those currently needed. It means that if the port mapping is
not defined in the base file, it will be completely overridden with another user-defined file.
The other deployment-related property overrides the previously defined value directly.
Once this configuration is applied, Docker Swarm will downscale the service from two
replicas to just one.

New deployment

Let us describe which steps the user needs to perform for a new installation.

1. User connects to a node according to the Scheduled Plan.

2. Docker-compose files with standard settings are automatically applied. The user
can optionally override any of the settings or defined new by creating additional
docker-compose files.

3. The user initiates deployment of the artefacts.

Update deployment

To update an existing deployment, essentially the same information is needed as in case
of a new deployment. The orchestrator, whatever implementation is supplied, will take
care of the update procedure.

1. The user connects to a node according to the Scheduled Plan.
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2. Docker-compose files are used, as in case of a new deployment, then appropriate
image reference(s) is/are going to be injected.

3. User initiates deployment of the artefacts.

6.4 Plugin support
As described previously, integrating an orchestration tool for Docker containers would be
valuable during the deployment and operations phases. However, there is a risk of vendor
lock-in, if such a tool is directly integrated into the application. Also, the situation on
the market can change and another tool may gain popularity or the currently popular
ones may lose popularity. Therefore, supporting the integration of orchestration tools
with the help of plugin architecture is the way to proceed. Additionally, it facilitates
clear separation of concerns by forcing the usage of clearly defined interfaces.

To support the desired plugin-based architecture in the software solution, a framework
is used. It has been decided in favour of PF4J first of all due to its simplicity. 6 Being
lightweight (around 100 KB) and easy to use, it still offers great flexibility and support of
multiple further frameworks like Spring, meaning both plugin container and plugin itself
can be Spring-based projects. The core concept of this framework is to provide an API
which is essentially an interface that inherits another interface org.pf4j.ExtentionPoint
provided by the framework. Then a plugin implements this API and annotates the
implementation with org.pf4j.Extension annotation. On top of this, to make use of
Spring Dependency Injection, the plugin class loader can be set to the application context
making the plugin implementations available via Dependency Injection. To package a
plugin assembly, metadata must be set such as which class should be loaded, plugin
version, provider, id, etc. After packaging the plugin, either a zip file or the whole folder
containing compiled classes must be placed into a directory according to the settings of
the plugin-container. Using org.pf4j.SpringPluginManager, the plugin-container loads all
available extensions for the API. At this point, it may be enforced to use only exactly
one implementation or still allow to make use of multiple ones. The Figure 6.1 shows
the described plugin architecture based on a very simplified example using a UML class
diagram. Please note the diagram does not fully depict the real implementation, but
omits some information to preserve simplicity.

6.5 Final architecture description
Our software solution embraces the microservice-based architecture, as the intention is to
create flexible and future-oriented software which should be easily modifiable and scalable.
Another reason to do so is to mix multiple programming languages in the backend, such
as Java and Python. As shown on the Figure 6.2, the software solution comprises these
main blocks: Gateway, Services, Logs Monitoring, Service Registry, and others.

6Visit the official homepage for more information: https://pf4j.org/
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Plugin Container

org.pf4j.PluginManager

API

<<Interface>>
org.pf4j.ExtensionPoint

Docker Swarm Implementation

DockerSwarmOrchestrator

org.pf4j.Plugin

<<Interface>>
DockerOrchestratorApi2 loads

Figure 6.1: UML Class diagram - plugin-based approach

The Gateway and Core services were initially generated using JHipster framework, 7 but
later significant changes were made. For example, since some domain entities are shared
between multiple modules, these were externalized to a separate module using the Maven
building and packaging tool.

The Gateway serves as the single entry point to the application. It provides a Web UI
built with Angular framework. 8 The Gateway uses the Service Registry to redirect user
requests to services, as needed. The Gateway itself holds neither any business logic nor
domain entities, except for user access management. Due to this reason and to be able to
route a user’s request, the Gateway does have a server-side backend implemented using
Spring Boot.

The Core service contains most of the business logic, such as CRUD operations for most
of the entities, logic related to composing a Deployment Plan, etc. It is implemented
using Spring Boot, and it does not offer directly any UI.

The Dependency Resolver service, as the name implies, is responsible for dependency
resolution. The solution’s core functionality lies within this module, which leverages the
PySMT library. We provided in Section 5.3 a thorough explanation of why precisely this
library has been chosen. To recapitulate, it is a versatile Python library that makes it
possible to interchangeably use various SMT solvers, since it operates on a higher level of

7More information on https://www.jhipster.tech/
8More information on https://angular.io/
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abstraction. Python is an appropriate choice for this kind of programming tasks, as it is
dynamically typed. The stand-alone module exposes a RESTful interface using OpenAPI
specification (more details to follow).

The rightmost part of Fig. 6.2 illustrates functional components outside the core architec-
ture, namely interaction with different execution environments the system may employ –
Docker is assumed to be the main service containerization technology, but mobile appli-
cation containers or images may be also included. In practice, Docker Swarm implements
an interface to ensure loose coupling and avoid vendor lock-in. The depicted artefact
repositories provide, for example, container images for offline usage. Finally, logging and
monitoring facilities address traceability and auditability. Concrete technological choices
for implementation of the functional components are depicted in Fig. 6.2 in gray; those
represent contemporary technologies that can be adopted.
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Figure 6.2: High-level solution’s architecture diagram

We appreciate that a microservice-based architecture may not be the best choice for
software meant to be run on a single workstation, as described in Section 4.2. Nevertheless,
it provides a great degree of flexibility to the users. For example, the SMT module
can be easily scaled up, and replicas can be deployed to external servers. Since the
dependency resolution process occurs when the system is connected to external networks
or the internet anyway, it can significantly reduce the processing time by utilizing the
additional computational resources.
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6.5.1 Communication between services
Currently, there are different options to establish communication between services. These
are, but not limited to, REST, RPC, inter-process communication or utilization of
queuing mechanisms. A RESTful API seems the most suitable choice due to such criteria
as high adoption, scalability and language/technology decoupling. Additionally, it has
been decided to use OpenAPI Specification, 9 as it allows to define RESTful APIs in a
standard language-agnostic way. It also facilitates the application of best practice as well
as clear documentation. Last but not least, client and server parts can be automatically
generated for dozens of programming languages and frameworks.

6.5.2 Proof of concept
The developed software solution is a proof of concept. It does not provide all pieces of
the functionality described in this work. Nevertheless, much of the basic functionality
is in place. Most importantly, the domain model discussed in Section 4.11 was fully
implemented as well as the core module for the dependency resolution. Additionally, we
partially implemented the graphical user interface, which is presented in the next section.

6.6 Graphical User Interface
The graphical user interface is implemented as a single-page web application using the
Angular framework. The biggest advantage of a web interface as opposed to a traditional
desktop one is that it can be used on essentially any operating system and reached via a
network. Further, we show screenshots and briefly describe them.

SPUNIE is the working title and stands for Software Provisioner and Updater in Network-
Isolated Environments. While the user is not yet logged in, he/she can only change
the language and manage his/her own account. After the login is performed, more
functionality becomes available, as depicted on Figure B.1. As a result, the toolbar
provides access to such additional drop-down menus as "entities" and "administration".

The "entities" menu, shown on Figure B.2, allows the user to manage domain entities. In
most cases, only basic CRUD operations are provided. Figure B.3 shows an example of a
standard create/edit view. The example illustrates the creation of a new Unix Execution
Environment. A standard page listing all objects of an entity is shown on Figure B.4.
Through the "entities" menu also more sophisticated views are available, which we will
cover later.

Figure B.5 shows the "administration" menu. It allows the user to access administration
related information, such as what services are available, managed users, view application
metrics, etc. Figures B.6 and B.7 two of the pages accessible via the "administration"
menu. The first one allows the user to check the application’s health status, and the
second one to monitor currently available services.

9More information here: https://swagger.io/specification/
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Next, a drop-down menu for language selection is in place. The application offers English
and German, but other languages can be easily added. Additional translation of all fields
must be then provided manually.

The last toolbar menu to describe is named "account". The user can use it to change
own account’s settings, change the password or sing out.

Further, let us walk the reader through the process of software provisioning consisting
of four steps. The first step is depicted in Figure B.8 where the user selects one of the
predefined Software Systems. In the next step, the user is required to pick components
that are to be installed. Figure B.9 shows step 2. On the Figure B.10 step 3 is presented.
In this step the user chooses component versions and checks if the combination is valid by
sending a request to the dependency resolution module behind the scene. If it is, the user
gets notified with a success message, as shown on Figure B.11. In case the combination
is invalid, the user sees an error message. Such a situation is shown on the Figure B.12.
Finally, the user chooses the location where the software should be installed and assigns
components to Execution Environments, as shown on Figure B.13.
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CHAPTER 7
Evaluation

We open this chapter by presenting a typical scenario and apply our solution to it. Then
the original requirements are revisited. Next, we discuss some performance metrics of the
dependency resolution module. The chapter is concluded with a lessons learned section.

7.1 Applicability
In this section a typical scenario is presented. It describes a situation where our solution
can be applied and serves to verify the solution’s applicability, as well as answers the
RQ1 from Section1.3. The procedure is comprised of three key steps:

1. Development
Based on interviews and observations, a typical scenario is identified and developed.

2. Application
The solution is applied to the scenario.

3. Evaluation
Results are evaluated based on the applicability of the solution. The advantages
and shortcomings are discussed.

7.1.1 Scenario Development
During the development of the typical scenario, besides conducting interviews with
selected key stakeholders, the diverging operating modes of the organization’s On-Site
Inspection division are to be taken into account. One of these modes is usual day-to-
day work at the organization’s headquarters when air-gapped software products are
used/tested only occasionally. A second mode relates to training activities, including

73



7. Evaluation

the extensive preparation, when the software products are heavily used; however, minor
disruption of service is acceptable. These training events may take place either at the
headquarters or in a remote, distant location. For example, from 3 November to 9
December 2014, an Integrated Field Exercise took place in Jordan to simulate an almost
entire on-site inspection. Last but not least, is real On-Site Inspection when the software
is expected to be as robust as possible. Thus, the typical scenario should ideally cover all
operating modes.

For further development of the scenario, four key users/stakeholders have been interviewed
by asking these questions:

• What is the most common task you must perform?

• What is the most challenging task you struggle with?

Most of the interviewees stated without any hesitation that updating one or multiple
systems is the most frequent task to be performed, because the majority of the software
products are in constant development. According to them, this task is very challenging
due to the air-gapped nature of the systems. Provisioning of new systems is of high
interest as well, however it does not happen very often. Most of the users/stakeholders
expressed their desire to improve both processes and make them well organized. Based
on the previously defined use cases in Section 4.11.1, updating software is one of them,
thus it is a good candidate for the scenario to be derived from.

7.1.2 Scenario description
By engaging in further conversation with the stakeholders, the scenario could be shaped
and outlined. It fully embraces the example system used throughout the paper from
Section 4.5. The scenario is purely hypothetical; however, it has been elicited using a
real-world setting and is highly representative.

Imagine that an OSI has been requested, at which point preparations are made during
the Launch Phase to deploy approved equipment, including all computing equipment,
from headquarters to the inspection area. During this period all software systems are
carefully prepared, configured and provisioned. All systems are then dispatched to the
inspection area. The software setup is comprised of particular versions, as shown on the
Figure 7.1.

In accordance with paragraph 59 of the Protocol to the CTBT [ctb96], during the second
week of the inspection, the inspection team requests the inspected State Party (ISP)
to provide a piece of equipment to conduct radionuclide measurements in the mobile
laboratory following the discovery of a fault in one of the deployed detectors. The ISP
detector and accompanying software meet the specifications set out in the list of approved
equipment but the software is not identical and is not directly compatible with the
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Figure 7.1: Scenario: software setup highlighting components to update

Laboratory Application. The inspection team DFO assesses the differences between the
software and delegates the work to integrate the newly provided detector.

After the needed software update is delivered, it turns out it affects multiple applications
along with the directly related one. The Figure 7.1 highlights in red the application which
uses the equipment directly, and it highlights in orange four other components which must
now incorporate changes as well. The diagram also shows how communication between
the components is implemented. Another Figure 7.2 shows an airborne photograph of a
simulated OSI. The picture denotes the places where the applications/components to be
updated are used. None of the software products is connected to the internet nor to each
other. Most importantly, there is a strict air gap policy between the working area (WA)
and receiving area (RA) applications indicated by the red dotted line.

The scenario is now described with series of actions without yet taking advantage of our
solution.

1. Multiple components receive an update
Due to the previously described change request related to the Laboratory Applica-
tion – its component named W should be updated to version 3.9.1. Because of this,
new versions of other applications have been released too: Field Application (A
component), LabField Application (A component), Planning (WA) App PWA (W
component), Lab App (W component). Thus an update of the

75



7. Evaluation

Figure 7.2: Scenario: airborne photograph of a simulated OSI from a training event
showing deployed applications

Lab Application would require updating four other applications. Figure 7.1 illus-
trates the applications comprised of components, with versions (before and after)
in bold.

2. Prepare all needed artefacts
Within this step, all artefacts of needed versions must be prepared for offline
deployment. The PRA, PWA and L applications are containerized, which means
exporting the right Docker images to files. For the Android application LF and F
it would mean the preparation of apk files.

3. Deploy the artefacts at each node
Each of the nodes, either server or table PC, must be physically visited. The files
are then transferred using a secure connection and deployed. The Docker images
are imported and the applications are restarted. Potentially the configuration must
be adapted. The apk files are installed on the tablet PCs.

Fulfilment of such a scenario normally requires performing multiple manual steps which
is error-prone. Individual artefacts of the right versions must be collected beforehand.
Different target execution environments require different artefacts: a container image for
Docker-enabled environment and an apk file for the Android operating system.
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There is no overview of what components of what versions are running and how potentially
a dependency may be left unsatisfied. These are only a few limitations to the manual
non-systematic approach.

7.1.3 Applying proposed solution to the scenario

Add newly delivered abstract
versions Add dependency constraints

Make artefacts available
to the system

Assign artefacts to abstract
versions

Figure 7.3: Scenario: add new versions, dependency constraints and artefacts (simplified)

This section covers the process of applying the software solution (further referred to as
just "system") to the above-described scenario. Essentially it consists of the following
steps:

1. Add new abstract versions, dependency constraints and artefacts (precondition).

2. Schedule Deployment Plan to perform needed updates.

3. Perform updates by visiting each node and close the transaction.

Further, we discuss each of the steps in greater details. The Figures 7.3, 7.4 and 7.5 show
simplified versions of the procedures. Each Figure describes one following subsection in
the same order of appearance.

Add new versions, dependency constraints and artefacts

The precondition for using the system is that the new version(s) and dependency con-
straint(s) must be defined beforehand by the experts who delivered the needed update(s).
Usually, these experts are software engineers. At first, the newly delivered abstract
versions are added, 1 as shown on the Figure 7.1:

1We say "abstract" versions to emphasize they are not associated with concrete executable artefacts
yet.
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1. Lab App W "3.9.1"

2. LabField App A "3.1.0"

3. Field App A "7.9.0"

4. Planning (RA) App W "20.1.0"

5. Planning (WA) App PWA "20.1.0"

Afterwards, the following dependency constraints are added:

1. Lab App W "3.9.*" 2 requires LabField App A "3.1.0"

2. Lab App W "3.9.*" requires Field App A "7.9.*"

3. Lab App W "3.9.*" requires Planning (RA) App W "20.1.*"

4. Lab App W "3.9.*" requires Planning (WA) App PWA "20.1.*"

The software engineers decided to restrict the dependee version to a fixed one only of
LabField App A; in the rest of the cases, only the major and minor version parts are
fixed, the patch one is open.

Another precondition that should be set potentially by the software engineers as well
as to provide the new artefacts and link them with the new versions. According to the
scenario, Docker and Android platforms are the target execution environments. This is
why the following artefacts are added:

1. Docker image "docker-registry.local/lab/w:3.9.1" to Lab App W "3.9.1"

2. Android apk file named "lab_field_3.1.0.apk" to LabField App A "3.1.0"

3. Android apk file named "field_7.9.0.apk" Field App A "7.9.0"

4. Docker image "docker-registry.local/pra/w:20.1.0" to Planning (RA) App W "20.1.0"

5. Docker image "docker-registry.local/pwa/w:20.1.0" to Planning (WA) App PWA
"20.1.0"

The system makes the above-listed artefacts offline-available by automatically downloading
all Docker images from docker.ctbto.org, an external Docker registry, to a local one,
and by copying the apk files from an SFTP server fs01.ctbto.org to Nexus Repository
OSS. 3 To do so, exceptional permission is granted by the ISP. As a result, a VPN

2Meaning the Lab App software component W of version 3.9.* with variable last part named patch
3The locally used storage solutions are described in more details in 6.2
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connection to the Vienna headquarters is established with a highly restrictive firewall in
place. The completeness of shipped products outlined in 4.7 covers in this case, only the
bare minimum (cmin) plus other artefacts that were made previously offline-available as
well (cold). All together the completeness equals cmin + cold.

The target execution environments are automatically matched based on the artefacts:
Docker Engine for Docker images and Android OS for apk files.

Schedule Deployment Plan

Request Lab App W to
update from 3.8.2 to 3.9.1

System detects mandatory
updates for other 4

Components

System assigns associated
artefacts to destination

environments

Deployment Plan is
scheduled

Figure 7.4: Schedule Deployment Plan (simplified)

After the prerequisite information has been added, the DFO initiates the update by
scheduling a Deployment Plan:

1. DFO selects the target Software System, which is "OSI Suite" in this case.

2. DFO selects the Component which was meant to be updated in the first place –>
Lab App W.

3. DFO sees current version "3.8.2" which is supposedly installed. He/she selects a
new version "3.9.1" to update to.

4. System resolves dependencies and returns a list of mandatory updates for other
components: LabField App A "3.1.0", Field App A "7.9.0", Planning (RA) App W
"20.1.0", Planning (WA) App PWA "20.1.0".

5. DFO confirms the initiation and system schedules a Deployment Plan. In this case
the available artefacts match the target platforms, so the system automatically
assigns them for installation without involving the user.

Visiting each node

The DFO studies the Deployment Plan to understand which nodes must be visited. He
or she follows it by performing the following steps:
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Visit first node from plan and
connect to it

Set configuration, initiate
deployment

System performs
dependency resolution

against local knowledge
Node is updated

Steps are repeated for rest of
nodes

Unsatisfiable state at last
node due to unexpected

version of component

Violated constraint is fixed by
updating the component to

right version

Transaction is closed, global
knowledge updated with
transaction's outcome. 

Figure 7.5: Scenario: visiting each node (simplified)

1. At first the DFO visits the node which hosts Lab App W and connects to the server
by a network cable.

2. The DFO sets two environmental variables in the configuration yml file to define
the credentials of a recently added database user. Then the DFO initiates the
deployment. The software solution locates the server by the predefined IP address
(172.27.59.93) and can authenticate itself via SSH automatically using a private
key.

3. Before initiating the deployment process, the system verifies if the local knowledge
matches the global one and performs dependency resolution to make sure the new
installation will not break the compatibility of the components and their versions.
No inconsistencies were spotted.

4. The DFO repeats the same steps for all the rest of the components from the
Deployment Plan: LabField App A, Field App A, Planning (RA) App W and
Planning (WA) App PWA.

5. During the update of Planning (RA) App W, local knowledge does not match
the global one, leading to an unsatisfiable state. Due to unknown reasons, the
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Geospatial server was downgraded from 2.14.2 to 2.12.1, which had not been
communicated to the system. This violates the following constraint: Planning
(RA) App W "20.*.*" requires Planning (RA) App G of at least "2.13.0". Therefore
the Deployment Plan is extended to one more installation of Planning (RA) App
G "2.14.2". Luckily enough, the system cached the needed artefact for offline use
before, so there is no need to make it offline-available.

6. After the successful installation of all the components, the transaction is closed,
and the internal representation of the global knowledge is updated with the recent
changes.

7.2 Revisiting original requirements
During the requirements engineering phase, we elicited and identified multiple require-
ments following the Volere template [RR00]. In this section we revisit these requirements.
Firstly, we identify what requirements (in the form of user stories) could be fulfilled and
by what means. Secondly, we discuss what could not be achieved and the reason why.

7.2.1 Fulfilled user stories
The most important user stories related to updating software are defined in 4.4.1, 4.4.3
and 4.4.2. All of them share one common goal – to update the software to a different
version, but they differ in the location where it takes place. The scenario from 7.1 first of
all clearly shows the fulfillment of the user story 4.4.3. Since all three of them are very
similar, we can say the other two are fulfilled as well.

Along the way, the scenario demonstrates the fulfilment of a few more user stories. For ex-
ample, in the scenario, dependency resolution is used, thus the DEFINE-DEPENDENCIES
story 4.4.4 can be marked as fulfilled. The same applies to OVERVIEW 4.4.6, because
the user can get an overview of installation across locations based on global knowledge,
as discussed in 4.6.

7.2.2 Unfulfilled user stories
The user story NO-DATA-COLLECTION defined in 4.4.5 has not been fulfilled. It is
about demonstrating to the ISP that the software solution does not acquire data while it
performs its work. In other words, the ISP might claim the software solution collects
data that should no be collected and the question is how to prove it does not. Even
though the user story is of high importance, we argue it is out of the scope of the thesis
and should be included into future work.

The user story VERIFY defined in 4.4.7, which covers verification that all needed software
components are in place, has not been directly fulfilled, however indirectly, it has. Let us
remind the reader that during provisioning or updating each of the steps, the dependency
resolution module is verified. So the unreliable global knowledge is constantly being
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matched against the local one. On the one hand, this does provide the required verification
and partially eliminates the need in additional verification in the first place. On the other
hand, there is still the possibility that one of the components has been changed, and the
system is in an inconsistent state, so a separate verification would be required.

7.3 Performance
The core component of the software solution, responsible for dependency resolution, is
the most crucial bottleneck in terms of performance. As it tackles an NP-Complete
problem using SMT solvers, we present various performance tests of this component.
Further performance evaluation helps us to answer RQ5 from Section 1.3.

In further tests, we, first of all, inspect the dependability between the size of the problem
and the execution time, while considering the memory footprint. The tests were performed
on a laptop with the following specifications: Intel R� CoreTM i7-6820HQ CPU @ 2.70GHz
(4 cores, 8 threads), 32 GB of DDR3 RAM, 1 TB of SSD storage. The tests were executed
in a container using Docker version 20.10.3, build 48d30b5. We also utilized the following
software: Ubuntu Desktop 20.04, Python 3.8.5, PySMT 0.9.0 and MathSAT5 solver 5.6.1.

We conducted a short experiment by limiting the number of the CPU cores available
for the Docker container to one versus not limiting them at all. As a result, there was
a negligible difference in performance results, which means the SMT solving does not
benefit from parallelism, just as was expected.

Last but not least, when we refer to dependency resolution, we do not count in external
dependencies, such as those managed by different packaging managers and build tools
like Maven, npm, etc.

7.3.1 Testing framework
To generate and collect the results in an organized way, a simple testing framework has
been developed. Besides the need to automate the process of collecting performance
results, we must consider the deviations between the test runs. This requires, even more,
to develop an automated testing solution, as we need to perform n iterations to calculate
the mean values and the confidence interval with a confidence level of 95%. We argue 30
iterations would be sufficient.

The Listing C.4 shows the main function which controls the execution of tests. It
fully embraces the concept of polymorphism – a well-known pillar of object-oriented
programming. The Listings C.5 and C.6 portray how abstract classes for data generation
and test execution are constructed along with selected implementations. Let us now
walk through the main function we just mentioned. After defining the test runners,
which essentially represent different dependency resolution strategies (ALL-VER or MAX-
VER), the number of cycles or test iterations is defined. The default value is 30 which
should be sufficient to get meaningful results. Afterwards, a test data generator with
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five components and a variable number of versions per components (see array named
"iter_array") are defined. Finally, the first batch of tests are conducted using both MAX-
VER and ALL-VER runners. We will discuss the internal work of the "conduct_test"
function shortly after. The next tests run uses another data generator, which provides
15 components instead of 5. The versions growth stays the same as defined in the array
named "iter_array". The last two test runs follow the same principle. They utilize the
same data generators which increase the number of components; however, one generates
50 versions per component and another one 125 versions. The number of components is
in the range from 2 to 20.

The Listing C.8 depicts the internal work of the previously mentioned "conduct_test"
method. At first, an instance of dependency resolver is passed to both test runners A
and B, mimicking a dependency injection. The iterations depend on the values defined
in "iter_array, " which can increase the number of versions or increase the number of
components per iteration. The inner loop then iterates over the number of cycles (30 by
default). Inside both loops before running the test with either of the runners, the current
timestamp and application’s memory allocation size are captured. After the test has
been completed, the elapsed time and the memory consumption are stored. 4 The same
applies to test runner B. After each iteration of the inner loop, the results are stored
in arrays. Finally, after the inner loop finishes its work, the results are processed by
calculating the mean values and confidence intervals. The Listing C.9 shows how it is
achieved.

Last but not least, the data generation procedure is displayed on Listing C.7. It is
partially static. For example, the dependency constraints which describe the relations
between components, never change. However, the amount of versions per component is
dynamically generated. We omit other data generation approaches on purpose, as the
differences are mostly insignificant.

7.3.2 Execution time vs size of the problem

The size of the problem can be quantified using multiple dimensions, such as several
components and number of versions per component. These are also affected by the con-
straints which limit the selection pool for an SMT solver. When measuring performance,
we take into account only the two firstly mentioned dimensions. The decision mainly is
driven by lowering the complexity of synthesizing the tests.

To summarize, in our tests, the problem size grows by:

(a) fixed number of components and increasing number of versions per component

(b) fixed number of versions per component and increasing number of components

4We capture memory peaks before and after a test run, so by subtracting those, we can derive the
memory consumption.
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a. Increasing number of versions per component

The Figure 7.6 shows execution time comparison between different strategies, ALL-VER
and MAX-VER described in Section 5.1.

The x-axis shows the size of the problem, more specifically, the number of versions per
component processed by the algorithm. For example, if there were only two components,
A and B, and x equals 60, it means components A and B have 60 versions each, which
results in the total size of the problem 60 * 2 = 120. The size of the problem also strictly
depends on the number of components, so we differentiate between a system with 5
components and a system with 15 components. For a system with 5 components, it would
sum up to 60 * 5 = 300 total number of versions, and for a system with 15 components
60 * 15 = 900.

The y axis shows the execution time in seconds and denotes the algorithm’s time to
calculate the dependencies.

Last but not least, the vertical line named "real lim" shows the realistic limit of the size of
the problem. It means in practice, the number of versions per component is improbable
to surpass this limit. The problem could also be downsized to keep the number of versions
within the stated limit by selecting only the top n versions beginning from the newest
one.

b. Increasing number of components

Similarly to option (a), option (b) inspects the dependability between execution time
and size of the problem, while applying different strategies, ALL-VER and MAX-VER.
The only difference lies in the way the size of the problem grows. The Figure 7.7 depicts
the results.

The x-axis shows the number of components with a fixed number of versions per com-
ponent. Two options for fixed versions per component are presented: 50 and 125. The
number of 50 versions should reflect what to expect in practice. Even though it is
unrealistic to deal with 125 versions per components in a real setting, we think it is
interesting to know how the solution scales.

Intermediary results interpretation

Based on the provided results as per option (a), using MAX-VER strategy is clearly
advantageous when the problem grows significantly. However, with only 5 components,
the algorithm can handle a substantial input size in a reasonable amount of time regardless
of the applied strategy.

Option (b) proves again that the application of MAX-VER in favour of ALL-VER is only
beneficial when the size of the problem is significant. When the number of components
reaches 10 and more, the execution time difference approximately doubles. Again, it
mostly applies when the problem is of significant size which is an unlikely case.
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Figure 7.6: Dependency resolution performance (growing number of versions)

7.3.3 Memory consumption vs size of the problem

The two options (a) and (b) from the previous test case apply to this one as well. The
only difference is that the y axis shows the memory consumption instead of execution
time.

a. Increasing number of versions per component

The Figure 7.8 shows memory footprint comparison between different strategies, ALL-
VER and MAX-VER described in Section 5.1.

The growth of the problem on the x-axis follows the same approach as described previously.
The y axis shows the memory footprint/consumption in megabytes of the running
algorithm. Again, the vertical line name "real lim" shows the realistic limit of the size of
the problem.
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Figure 7.7: Dependency resolution performance (growing number of components)

b. Increasing number of components

The Figure 7.9 illustrates the memory footprint comparison between different strategies.
The only difference to the previous figure lies in the x-axis. The rest applies to the
description of option (a).

Intermediary interpretation

Based on the provided numbers, we can conclude that memory consumption is not
directly dependant on the size of the problem. Moreover, even when the realistic limit is
surpassed, the memory footprint stays within 12 MB which most likely can be neglected.
Thus the algorithm does not greatly depend on memory.
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Figure 7.8: Dependency resolution memory footprint (growing number of versions)

7.4 Lessons Learned
In this section we discuss what lessons were learned based on the gained evaluation
results.

7.4.1 Scenario applicability
Previously a typical scenario in Section 7.1 was presented, and its applicability of the
system was discussed. Numerous advantages compared to the manual approach could
be identified:

1. State overview
The system provides an overview of a target software system (set of applications)
based on global knowledge. Even though, as discussed earlier, the global knowledge
is not completely reliable, which was also reflected while applying the Deployment
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Figure 7.9: Dependency resolution memory footprint (growing number of components)

Plan, it still enhances the user experience by providing a great degree of overview.
Let us remind the reader, when using the manual approach, there is no information
on the installations at all.

2. Follow-a-plan approach
The Deployment Plan portrays each of the actions or steps to complete the whole
updating transaction which is structured and easy-to-follow. When an anomaly
is detected, the Plan could be adjusted, so it is in a sense not static but a living
document.

3. Satisfiability consistency
One of the major advantages of using the proposed system is that each step of the
whole procedure can be verified for satisfiability. It is not only useful to identify a
satisfiable combination of dependencies when a Deployment Plan is created, but
also while each of the nodes is visited. When we previously applied the solution to
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the scenario, it could determine a deviation in the global knowledge and suggest a
change to bring the deployment back to a satisfiable state.

4. Automatic management of executable artefacts
The artefacts are pushed to the target environment almost seamlessly and do not
have to be manually copied, installed or moved around. It lets the users focus more
on the ultimate goal rather than small details.

5. Eliminating miscellaneous steps
Depending on the type of connection, the system eliminates the need to keep track
of the connection information to the nodes, such as IP addresses, fully qualified
domain names, etc. The same applies to the authentication information. When
we applied the system to the scenario, a private key was used to authenticate the
system via SSH. Altogether, it simplifies the whole procedure for the users, as they
do not have to focus on the intermediary steps which do not contribute to achieving
their goal.

6. Better management of startup configuration
The system allows to transfer/load the base startup configuration needed for a
single component or a group of components to operate properly. Due to the support
of plugins as described in Section 6.4, different container orchestration tools can be
integrated. It comes along with potentially introducing another way of handling
the configuration information. The internal representation of configuration can
be altered depending on the users’ needs. In contrast, the previous practice of
dealing with startup configuration would involve manual steps and no comprehensive
approach to tailoring the configuration to user-specific needs.

7. Transactional approach
The whole updating procedure is considered a transaction, meaning when successful,
it is closed, and it can be rolled back on failure. Since all the steps are constantly
tracked, the user can be guided in the backwards direction to undo the made
changes. It allows bringing the software system, all its components, to the previous
state known to be working.

The system clearly introduces numerous advantages compared to the manual approach,
however it reveals a few disadvantages as well:

1. Limited freedom
The system enables container-based deployment using Docker as well as offers a
plugin architecture for container orchestration. On top of this, it allows defining user-
specific configuration when a deployment is performed. Nevertheless, it does not
provide a solution for special use cases instantly. For example, deploying to Windows
or Apple’s OS would require developing completely new software extensions. There
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is also no out-of-the-box support for a more advanced configuration, which would
use pre- and post-execution scripts or similar. The manual approach offers clearly
a great degree of freedom which is constrained by technical limitations only.

2. False positives
Humans set the dependency constraints defined between components and their
versions without verifying whether the specified constraint really exists. So by mis-
take, a version can be mixed up with another, potentially leading to a false-positive
result. In Section 3.2.3 we mentioned the automatic discovery of dependencies
could mitigate this problem, however, it is out of the scope of this work.
Besides that, we want to point out the manual approach also does not protect from
delivering false positives, since it is prone to human errors as well.

3. Potential breach of sensitive data
The system possesses comprehensive knowledge about execution environments,
authentication points and software configuration, all of which can be theoretically
exploited by a third person with malicious attempts. We argue this is only a semi-
disadvantage, because no harm can be caused if the system’s security is handled
properly.

7.4.2 Performance
This Section summarizes the performance of the proposed solution’s core module respon-
sible for dependency resolution. The results were obtained by iterating the tests 30 times,
then calculating mean values and confidence intervals with a confidence level of 95%.

Based on the four provided Figures (7.6, 7.8, 7.9, 7.7) we showed how the execution time
grows depending on how does the size of the problem – by increasing the number of
components with fixed versions per components (50 and 125), and vice versa, by increasing
the number of versions with a fixed number of components (5 and 15). The selected
input data reflect both the realistic size of the problem and intentionally overgrown one
to demonstrate the over-provisioning capacities and scalability.

The tests show both strategies, MAX-VER and ALL-VER, can handle a realistic number
of versions per component within an acceptable time budget. For a system with 15
components and 50 versions each, the execution time of calculating the dependencies
results in around 2.5–4.0 seconds, depending on the applied strategy. The constellation
of 15 components and 50 versions per component is the most realistic one when dealing
with global knowledge. When local knowledge is considered, the studied example of 5
components and 50 version per component is representative, and the execution time is at
around 0.4 seconds for both strategies.

The results show that the memory consumption does not grow linearly with the size of
the problem. Overall, the memory allocation peaks at around 12 MB for a system with
15 components and reaches 3 MB for a system with 5 components. There is only a slight

90



7.4. Lessons Learned

difference in the results between different strategies. Generally, the memory footprint is
arguably insignificant.

The tests were conducted on a mobile computer (laptop) of a workstation-class, meaning,
it utilizes a higher performance CPU compared to other mobile computers. This testing
platform is highly representative, as the system is expected to be hosted on a similar
mobile workstation. In Section 4.8 we discussed the options and the reasons behind the
decision making; however, because the SMT module is fully externalized and the system
embraces the microservice architecture, it could be running on an external host via a
network. In contrast, the core application is hosted on a low-performance device.
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CHAPTER 8
Conclusion

A central activity within the lifecycle of service-based systems is management of their soft-
ware updates. Although it is a problem that has been widely tackled by the community in
the past, settings where security constraints impose compulsory network isolation call for
specialized treatment. To this end, we adopted an architectural viewpoint and presented
a technical framework for updating service-based systems in air-gapped environments. Af-
ter describing the particularities of the domain, we provided suitable modelling notations
for service versions, whereupon satisfiability is used for dependency resolution; an overall
architecture was presented in an end-to-end solution. We evaluated the applicability of
the framework over a realistic case study of an international organization, and assessed
the performance of the dependency resolution procedures for practical problem sizes.

8.1 Discussion
Based on our evaluation results, we believe to have demonstrated that our framework
facilitates the update process for air-gapped systems. A typical scenario was elicited and
modelled in Section 7.1, demonstrating applicability; we successfully modelled a realistic
scenario elicited from stakeholders without running into any conceptual issues with regard
to our notions of service versions, dependency management and architecture materializing
air-gapped updates. On a functional level, a satisfiable combination of versions is
computed and a deployment plan is formed, to be installed via the physical visit where the
service artifacts are pushed to the target host. Furthermore, the architecture illustrated in
Figure 6.2 provides for an end-to-end solution, including configuration management, user
authentication and container management. Since we followed versioning best practices
(tailored for contemporary service-based systems) and employed satisfiability which is
widely applied for version management, we believe internal threats to validity of our
results to be minimal. However, we note that the case study, although realistic and
catering to the needs of an international organization, implied certain type and number
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of service components, as well as certain design choices in the overall service-based
architecture. This is additionally relevant to the quantitative analysis of the dependency
resolution; vastly different systems or with different update procedures would imply
changes to the workflow and dependency resolution strategies. This would point that
results of the case study may not apply to highly diverse cases, which is a threat to
external validity. We believe identifying variation points in the architecture presented as
a promising avenue of future work.

8.2 Summary
This work is based on the use case of an on-site inspection performed as part of the verifi-
cation regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The Preparatory
Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)
was founded in 1996 and has a Relationship Agreement with the United Nations. The
organization is comprised of three technical divisions: International Monitoring System,
International Data Centre and On-Site Inspection. The organization’s main objective
is to prevent the world from testing nuclear weapons by monitoring air, water, seismic
activities, etc. and inspecting on-site if in doubt a test has been indeed performed. Such
an inspection implies stringent security mechanisms, including air-gapped networks. This
imposes a unique problem, since distributed components of service-oriented software
systems are scattered across multiple air-gapped servers/networks. In particular, we refer
to the added complexity updating such distributed systems.

In Chapter 2 we review the related work to be aware of the current state of the art.
Further in Chapter 3 we cover fundamentals to provide background information about
the studied problem. It includes but is not limited to service-oriented architecture,
distributed systems, dependencies, software versioning and containerization.

In the next Chapter 4, we discuss the requirements and design of the software solution,
which aims to solve this work’s problem. We elicit requirements by involving CTBTO
experts and transform them into user stories as described in Section 4.4. Next, we
introduce an example software system comprised of multiple services in Section 4.5.
This system is an approximation of what applications the on-site inspection division of
CTBTO uses. It helps us to back up the problem visually, as well as being convenient
to refer to it at later points of time. An important contribution is introducing such
terms as global and local knowledge (see 4.6) to point out the difference between reliable
local information and unreliable global assumptions about what components and what
versions of those components are installed. Additionally, this section addresses the RQ4.
Based on predictability (see 4.7) we argue how the reliability of global knowledge can be
improved. Next, we cover semantic versioning, a commonly-used versioning approach.
We show how converting a version string to an integer can help us utilize SMT for
dependency resolution. Section 4.11 answers RQ2 by performing modelling using various
UML diagram types such as Use Case, Class, Object and Activity.
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Chapter 5 unveils the main contribution of this work – an SMT-based solution for
dependency resolution, which help us to approach the RQ3. After covering the SMT
basics, we discuss the underlying problem, including constructing facts and domain
constraints. We outline several solution approaches. Most importantly, we discuss the
implemented MAX-VER and ALL-VER strategies. Section 5.2 refers to algorithmic
ideation, where the proposed solution is presented first as first-order logic formula and
then as a pseudocode to decouple the algorithm from its concrete implementation. Finally,
the implementation in PySMT is outlined (see Section 5.3).

In Chapter 6 we outline the architecture of the proposed software solution. Since the
scenario implies embracing high-security measures, the main considerations about those
are discussed. Then we briefly discuss options for storing artefacts. Docker is the
main platform targeted by our software solution. Therefore Section 6.3 describes in
details how Docker can be best used in production. This includes Docker Swarm, an
orchestration tool that is supplied with the Docker Engine by default. We discuss
how configuration management of Docker Swarm services can be handled and the
advantages and disadvantages of various approaches. The proposed solution strives to
be highly flexible and modular. Thus, Section 6.4 explains how the embraced plugin-
based architecture avoids vendor lock-in by allowing integrating alternative container
orchestrators. We implemented one plugin that enables Docker Swarm. But, for example,
Google’s Kubernetes, currently a prevalent solution, can be integrated by implementing
a new plugin.

The next Chapter 7 communicates the applied evaluation methods and their results. In
Section 7.1 we present a realistic scenario elicited based on interviews with CTBTO
experts. This scenario serves as a verification measure to prove the solution’s applicability,
while it also helps us to answer the RQ1. It covers a very concrete example and presents a
detailed explanation of how the proposed solution would be applied. Further, the original
requirements are revisited, and the fulfilled and unfulfilled user stories are identified
in Section 7.2. The next Section 7.3 deals with quantitative metrics to measure the
performance of the SMT dependency resolution module – this work’s main contribution.
We display multiple line charts showing such parameters as execution time, size of the
problem, and memory consumption. Moreover, the differences between solving strategies
are pointed out and alternating behaviour depending on the input data. The performance
evaluation helps us to answer the RQ5. Last but not least, in Section 7.4 we communicate
the results of the conducted evaluation, and discuss the benefits and shortcomings of the
solution.

We begin the last Chapter 8 by summarising each of the chapters and pointing out the
highlights. Afterwards, we present future possible work to further enhance the solution.
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8.3 Future Work
The high modularity and extensibility of the system foresee future modifications. The
class diagram from Figure 4.11.2 shows how multiple Execution Environments can be
supported with the help of an abstraction. So far, we have implemented support for
Docker Execution Environments; however, no support for Android has been introduced
as yet. For the future development of the system, environments such as Android and
Windows could be of high interest.

The plugin support described in Section 6.4 avoids vendor lock-in to one specific container
orchestration tool. Currently, only one plugin has been implemented enabling Docker
Swarm, Docker’s native orchestration solution. In the future, supporting Google’s
Kubernetes could be favourable.

The system is expected to be used in a setup where data security is of the highest priority.
The CTBTO domain experts express concern that the ISP might reject establishing
network connections to the air-gapped systems, making the solution impractical. He or
she could argue that the system acquires classified data. This problem is reflected in one
of the previously collected user stories (see 4.4.5). Future work can cover this user story
by providing proof that the system does not collect data it should not be collecting.

In Section 4.2 we discussed master/agent architecture. In our work, we implemented a
prototype of an agent, however, we did not engineer the master. Essentially, the master
would require a very trivial implementation, as it just collects, aggregates and presents
the data supplied by the agent(s). One simple approach would be to upload new data
each time an agent can reach the master, meaning it is not in offline mode fulfilling a
Deployment Plan.

As identified in Section 7.4.1, one of the system’s drawbacks is that the dependency
relations are defined manually by humans. This can lead to a false-positive result and
subsequently to an error. To mitigate this issue, automatic discovery of dependencies
can be applied, as discussed in 3.2.3. Even if an exact automatic discovery is most likely
out of the question, at least the user can be guided with useful suggestions. For example,
automatic analysis of a REST API and its consumer(s) can show one of the consumers
tries to call a non-existing endpoint. This could be translated to a false dependency
version and shown to the user as a suggestion.

In Section 4.7 we stated, because of the global knowledge’s unreliability, increasing the
number of shipped service/component versions increases the probability the update
succeeds. The proposed function f, which depends on completeness, can improve the
success rate of our software solution. Its implementation could be a great extension to
the solution.

The case study showed a situation could emerge where the relevant parties do not trust
each other. For example, the ISP may claim during an OSI, a collected picture has
been altered while it was passed through the chain of applications. Also, currently, it is
impossible to prove that a particular artefact was built using a particular source code.

96



8.3. Future Work

However, by using a dedicated approach similar to hashing the authenticity of artefacts
can be proven. The system could sign each of the artefacts it is dealing with, increasing
transparency and trust between the relevant parties.

In the introduced case study, the solution addresses specific applications developed by
the CTBTO to facilitate the progress of an inspection while respecting the required air
gaps. As stated, the solution thus far does not address proprietary software, for example,
ArcGIS geographic information system, SODIGAM gamma-ray analysis software and so
on. Herein lines a potential major future work to expand the solution. An inspection team
may use in excess of 30 different software packages to process data acquired by inspectors
during field and laboratory activities. These software packages are typically inspection
technique specific, in certain cases, node or dongle locked and not necessarily OS forward
compatible. Ensuring the compatibility of these software packages with application PWA
and others (see Figure 4.1) is fundamental to inspection team operations.

Last but not least, we presented two dependency resolution strategies, MAX-VER and
ALL-VER. The tests in the Section 7.3 showed good results in terms of performance.
Nevertheless, we can imagine other strategies tailored to some specific needs could be
more efficient. Therefore, in the future, more dependency resolution strategies could be
developed and adopted.
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APPENDIX A
Abbreviations

This Section lists all used abbreviations throughout the document.

UN: United Nations

CTBTO: Comprehensive Nuclear-Test-Ban Treaty Organization

(P)TS: (Preliminary) Technical Secretariat

CTBT: Comprehensive Nuclear-Test-Ban Treaty

ISP: inspected state party

OSI: on-site inspection

WA: working area

RA: receiving area

GUI: graphical user interface

UI: user interface

VPN: virtual private network

OS: operating system

SOA: service-oriented architecture

JVM: Java virtual machine

SMT: Satisfiability Modulo Theories

OOP: object-oriented programming

CBD: Component-Based Development

WSDL: Web Services Description Language

99



A. Abbreviations

SOAP: Simple Object Access Protocol

REST: Representational state transfer

VM: virtual machine

DSL: domain specific language

FOSS: Free and Open Source Software

VPN: virtual private network
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APPENDIX B
Screenshots

Figure B.1: GUI: landing page view when logged in
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B. Screenshots

Figure B.2: GUI: entities dropdown menu
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Figure B.3: GUI: create dialog of Unix Exec Env entity

Figure B.4: GUI: list of Software Component entities

Figure B.5: GUI: admin dropdown menu
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B. Screenshots

Figure B.6: GUI: health checks view

Figure B.7: GUI: list of gateway routes

Figure B.8: GUI: provisioning new system - step 1
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Figure B.9: GUI: provisioning new system - step 2

Figure B.10: GUI: provisioning new system - step 3

105



B. Screenshots

Figure B.11: GUI: provisioning new system - step 3 - satisfiable combination

Figure B.12: GUI: provisioning new system - step 3 - unsatisfiable combination
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Figure B.13: GUI: provisioning new system - step 4
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APPENDIX C
Listings

C.1 Docker swarm configuration

Listing C.1: Base backend configuration file
version: "3.2"

services:
movieplex7:
image: "${movieplex7_image}"
ports:
- "8080:8080"

networks:
- www

deploy:
labels:
at.ac.tuwien.dsg.spunie.image.id: "${movieplex7_image_id

�→ }"
replicas: 2
update_config:
parallelism: 2
failure_action: rollback

restart_policy:
condition: on-failure
delay: 5s
max_attempts: 3
window: 120s

networks:
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www:

Listing C.2: Base frontend configuration file
version: "3.2"

services:
react-client:
image: "${react_client_image}"
ports:
- "80:80"

networks:
- www

deploy:
labels:
at.ac.tuwien.dsg.spunie.image.id: "${

�→ react_client_image_id}"
replicas: 2
update_config:
parallelism: 2
failure_action: rollback

restart_policy:
condition: on-failure
delay: 5s
max_attempts: 3
window: 120s

networks:
www:

Listing C.3: User-defined frontend configuration file
version: "3.2"

services:
react-client:
ports:
- "80:80"

deploy:
replicas: 1

C.2 Performance testing
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Listing C.4: Running multiple cycles of tests

# global objects or data
max_sat_runner = MaxSatTestRunner()
all_sat_runner = AllSatTestRunner()
cycles = 30 # defines show many iterations are going to be made

# Tests with fixed 5 components and variable versions (see
�→ iter_array)

data_generator = FiveCompsDataGenerator()
file_path = f’{self.test_results_root_dir}/

�→ test_result_5_components.dat’
iter_array = [2, 5, 10, 20, 40, 60, 80, 100, 125, 160]

# run
self.conduct_test(iter_array, file_path, self.

�→ headers_table_tests_increase_nr_versions,
cycles, data_generator, max_sat_runner,

�→ all_sat_runner)

# Tests with fixed 15 components and variable versions (see
�→ iter_array)

data_generator = FifteenCompsDataGenerator()
file_path = f’{self.test_results_root_dir}/

�→ test_result_15_components.dat’

# run
self.conduct_test(iter_array, file_path, self.

�→ headers_table_tests_increase_nr_versions,
cycles, data_generator, max_sat_runner,

�→ all_sat_runner)

# ---------------------------------
# increasing number of components with 50 versions
data_generator = IncreaseComponentsDataGenerator(vers_per_comp

�→ =50)
file_path = f’{self.test_results_root_dir}/

�→ test_result_incr_comps_50_vers.dat’
iter_array = range(2, 16)

# run
self.conduct_test(iter_array, file_path, self.

�→ headers_table_tests_increase_nr_components,
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cycles, data_generator, max_sat_runner,
�→ all_sat_runner)

# increasing number of components with 125 versions
data_generator = IncreaseComponentsDataGenerator(vers_per_comp

�→ =125)
file_path = f’{self.test_results_root_dir}/

�→ test_result_incr_comps_125_vers.dat’

# run
self.conduct_test(iter_array, file_path, self.

�→ headers_table_tests_increase_nr_components,
cycles, data_generator, max_sat_runner,

�→ all_sat_runner)

Listing C.5: Test data generators

class ITestDataGenerator:
def get_test_data(self, iter_var: int) -> ([Component], [

�→ ComponentDependencyConstraint], Component):
pass

class FifteenCompsDataGenerator(ITestDataGenerator):
def get_test_data(self, multiplier: int) -> ([Component], [

�→ ComponentDependencyConstraint], Component):
return generate_comp_versions_15_comps(multiplier)

class IncreaseComponentsDataGenerator(ITestDataGenerator):
def __init__(self, vers_per_comp: int):

self.__vers_per_comp = vers_per_comp
def get_test_data(self, nr_components: int) -> ([Component],

�→ [ComponentDependencyConstraint], Component):
return generate_comp_versions_var_comp_nr(self.

�→ __vers_per_comp, nr_components)

Listing C.6: Strategy test runner

class ITestRunner:
def __init__(self):

self.resolver = None
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def run(self, comps: [Component], dep_constraints: [
�→ ComponentDependencyConstraint], fixed_ver_comp:
�→ Component):
pass

class MaxSatTestRunner(ITestRunner):
def run(self, comps: [Component], constraints: [

�→ ComponentDependencyConstraint], fixed_ver_comp:
�→ Component):
self.resolver.apply_max_sat(comps=comps + [fixed_ver_comp

�→ ], dep_constraints=constraints)

class AllSatTestRunner(ITestRunner):
def run(self, comps: [Component], constraints: [

�→ ComponentDependencyConstraint], fixed_ver_comp:
�→ Component):
self.resolver.apply_all_sat(rest_comps=comps,

�→ dep_constraints=constraints,
comps_with_ver_to_lock=[

�→ fixed_ver_comp])

Listing C.7: Generate data with 5 components
def generate_comp_versions_5_comps(multiplier: int):

id_gen = [0]

def nextId(ids):
ids[0] = ids[0] + 1
return ids[0]

# 5 Active components
pra_w_id = nextId(id_gen)
pra_d_id = nextId(id_gen)
pra_g_id = nextId(id_gen)
pra_r_id = nextId(id_gen)

field_app_id = nextId(id_gen)
field_data_id = nextId(id_gen)

# Dependency constraints
constr_fixed = ConstraintType.FIXED
constr_patch_var = ConstraintType.PATCH_VAR
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constr_minor_var = ConstraintType.MINOR_VAR

constraints = list()

# pra
# never applies
add_new_constr(constraints, "18.6.0", pra_w_id, constr_fixed,

�→ "9.6.0", pra_d_id, constr_fixed)
# applies
add_new_constr(constraints, "18.7.*", pra_w_id,

�→ constr_patch_var, "2.14.*", pra_g_id, constr_patch_var)
# applies
add_new_constr(constraints, "18.*.*", pra_w_id,

�→ constr_minor_var, "1.*.*", pra_r_id, constr_minor_var)
# applies
add_new_constr(constraints, "18.7.*", pra_w_id,

�→ constr_patch_var, "9.*.*", pra_d_id, constr_minor_var)

# field app
add_new_constr(constraints, "4.0.0", field_app_id,

�→ constr_fixed, "2.8.*", field_data_id, constr_patch_var)
add_new_constr(constraints, "3.*.*", field_app_id,

�→ constr_minor_var, "1.*.*", field_data_id,
�→ constr_minor_var)

# field app -> pra
add_new_constr(constraints, "4.*.*", field_app_id,

�→ constr_minor_var, "18.7.*", pra_w_id, constr_patch_var)
add_new_constr(constraints, "4.1.*", field_app_id,

�→ constr_patch_var, "18.8.0", pra_w_id, constr_fixed)
add_new_constr(constraints, "3.*.*", field_app_id,

�→ constr_minor_var, "17.*.*", pra_w_id, constr_minor_var)

# pra -> field app
add_new_constr(constraints, "18.7.*", pra_w_id,

�→ constr_patch_var, "4.0.*", field_app_id,
�→ constr_patch_var)

add_new_constr(constraints, "18.8.0", pra_w_id, constr_fixed,
�→ "4.1.*", field_app_id, constr_patch_var)

add_new_constr(constraints, "17.*.*", pra_w_id,
�→ constr_minor_var, "3.*.*", field_app_id,
�→ constr_minor_var)
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# PRA

pra_w_versions = list()
add_versions(pra_w_versions, pra_w_id, ["18.6.0"]) # +

�→ gen_vers_between("1.8.0", "20.0.0", multiplier))

pra_d_versions = list()
add_versions(pra_d_versions, pra_d_id,

gen_vers_between("9.0.0", "9.9.0", multiplier) +
gen_vers_between("9.0.0", "9.9.0", 3))

pra_g_versions = list()
add_versions(pra_g_versions, pra_g_id,

["2.14.5", "2.13.59", "2.14.2", "2.14.1", "2.14.0"
�→ ] + gen_vers_between("0.1.0", "2.13.0",
�→ multiplier))

pra_r_versions = list()
add_versions(pra_r_versions, pra_r_id,

["1.9.0", "1.8.0", "2.0.1"] + gen_vers_between("
�→ 1.0.0", "10.7.0", multiplier))

# field app
field_app_versions = list()
add_versions(field_app_versions, field_app_id,

["4.0.0"] + gen_vers_between("1.8.0", "3.9.20",
�→ multiplier))

field_data_versions = list()
# add_versions(field_data_versions, field_data_id,
# gen_vers_between("2.8.0", "2.8.30", 1) + gen_vers_between

�→ ("1.5.0", "1.8.0", 3))
add_versions(field_data_versions, field_data_id,

gen_vers_between("1.0.0", "2.8.90", multiplier) +
�→ gen_vers_between("1.5.0", "1.8.0", 3))

# ----------------------Components---------------------
# PRA
pra_web_core = Component(pra_w_id, "pra_web_core",

�→ pra_w_versions)
pra_database = Component(pra_d_id, "pra_database",

�→ pra_d_versions)
pra_geoserver = Component(pra_g_id, "pra_geoserver",
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�→ pra_g_versions)
pra_routing = Component(pra_r_id, "pra_routing",

�→ pra_r_versions)

# Field App
field_app = Component(field_app_id, "field_app",

�→ field_app_versions)
field_app_database = Component(field_data_id, "

�→ field_app_database", field_data_versions)

all_comps = [pra_database, pra_geoserver, pra_routing] + \
[field_app, field_app_database]

return all_comps, constraints, pra_web_core

Listing C.8: Conduction of a test
def conduct_test(self, iter_array: [int], file_path: str,

�→ file_headers: [str], cycles: int,
generator: ITestDataGenerator, testRunnerA:

�→ ITestRunner, testRunnerB: ITestRunner):
resolver = Resolver()
testRunnerA.resolver = resolver
testRunnerB.resolver = resolver

file = open(file_path, ’w’)
file.write(’\t’.join(file_headers) + ’\n’)
for iter_val in iter_array:

arr_max_sat_time = []
arr_max_sat_mem_peak_mb = []
arr_all_sat_time = []
arr_all_sat_mem_peak_mb = []
for cycle in range(cycles):

all_comps, constraints, fixed_ver_comp = generator.
�→ get_test_data(iter_val)

tracemalloc.start()
time_start = time.time()

testRunnerA.run(all_comps, constraints, fixed_ver_comp
�→ )

time_stop = time.time()
max_sat_time = time_stop - time_start
current_max_sat, peak_max_sat = tracemalloc.
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�→ get_traced_memory()
max_sat_mem_peak_mb = peak_max_sat / 10 ** 6
arr_max_sat_time.append(max_sat_time)
arr_max_sat_mem_peak_mb.append(max_sat_mem_peak_mb)

######################

time_start = time.time()
tracemalloc.stop()
tracemalloc.start()

testRunnerB.run(all_comps, constraints, fixed_ver_comp
�→ )

time_stop = time.time()
all_sat_time = time_stop - time_start
current_all_sat, peak_all_sat = tracemalloc.

�→ get_traced_memory()
all_sat_mem_peak_mb = peak_all_sat / 10 ** 6
tracemalloc.stop()
arr_all_sat_time.append(all_sat_time)
arr_all_sat_mem_peak_mb.append(all_sat_mem_peak_mb)

m_max_sat_time, ci_max_sat_time = self.
�→ calc_confidence_interval(arr_max_sat_time)

m_max_sat_mem_peak_mb, ci_max_sat_mem_peak_mb = self.
�→ calc_confidence_interval(arr_max_sat_mem_peak_mb)

m_all_sat_time, ci_all_sat_time = self.
�→ calc_confidence_interval(arr_all_sat_time)

m_all_sat_mem_peak_mb, ci_all_sat_mem_peak_mb = self.
�→ calc_confidence_interval(arr_all_sat_mem_peak_mb)

file.write(’\t’.join([str(iter_val),
str(m_max_sat_time), str(ci_max_sat_time)

�→ ,
str(m_max_sat_mem_peak_mb), str(

�→ ci_max_sat_mem_peak_mb),
str(m_all_sat_time), str(ci_all_sat_time)

�→ ,
str(m_all_sat_mem_peak_mb), str(

�→ ci_all_sat_mem_peak_mb)
]) + ’\n’)

file.close()

117



C. Listings

Listing C.9: Calculating confidence interval
def calc_confidence_interval(self, arr, confidence=0.95):

m_i = mean(arr)
std_err = sem(arr)
ci_i = std_err * t.ppf((1 + confidence) / 2, len(arr) - 1)
return m_i, ci_i
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