
An Exploratory Study on Architectural
Knowledge in Issue Tracking Systems

Mohamed Soliman?1, Matthias Galster2 and Paris Avgeriou1

1 University of Groningen, Netherlands
{m.a.m.soliman,p.avgeriou}@rug.nl

2 University of Canterbury, New Zealand
{mgalster}@ieee.org

Abstract. Software developers use issue trackers (e.g. Jira) to manage
defects, bugs, tasks, change requests, etc. In this paper we explore (a)
how architectural knowledge concepts (e.g. architectural component be-
havior, contextual constraints) are textually represented in issues (e.g.
as adjectives), (b) which architectural knowledge concepts commonly
occur in issues, and (c) which architectural knowledge concepts appear
together. We analyzed issues in the Jira issue trackers of three large
Apache projects. To identify “architecturally relevant” issues, we linked
issues to architecturally relevant source code changes in the studied sys-
tems. We then developed a code book by manually labeling a subset
of issues. After reaching conceptual saturation, we coded remaining is-
sues. Our findings support empirically-grounded search tools to identify
architectural knowledge concepts in issues for future reuse.

Keywords: Software architecture, Architecture design decisions, archi-
tecture knowledge, Issue tracking systems, Software engineering

1 Introduction

Architectural design decisions (ADDs) about software components, their depen-
dencies and behavior are one of the most significant types of ADDs [1] made
by practitioners [14]. For example, an enterprise application could have multiple
ADDs regarding the components in each layer and dependencies between them.
In the Architectural Knowledge (AK) ontology of Kruchten et al. [11], ADDs
related to component design are identified as structural ADDs (SADDs).

Making SADDs, requires AK [11] about important quality attributes and
their trade-offs, and about instantiating architectural solutions (e.g. patterns
or tactics). Without the required AK, software engineers might make uncertain
and risky assumptions about the ADDs. However, this AK is mostly acquired
through experience with multiple different projects within the same domain [26].

? Corresponding author.
We would like to thank ITEA3 and RVO for their support under grant agreement
No. 17038 VISDOM (https://visdom-project.github.io/website).

ar
X

iv
:2

10
6.

11
14

0v
1

 [
cs

.S
E

]
 2

1
Ju

n
20

21

2 Mohamed Soliman, Matthias Galster and Paris Avgeriou

If one does not have such experience, one needs to be able to search and locate
the pertinent AK.

One potential source of AK is issue tracking systems (e.g. Jira): previous re-
search has shown that software engineers share some AK (e.g. previously made
ADDs) in issues [3,18]. Developers create issues to discuss and manage defects,
tasks, change requests, etc. However, similar to other sources of AK (e.g. de-
veloper communities [19,20] or simply Google searching [23]), it is challenging
to manually recognize and re-use AK within issue tracking systems. First, the
majority of issues do not discuss architectural problems [3]; instead, they focus
on detailed development problems (e.g. bug fixing or testing). Second, text in
issues is not explicitly structured and classified; rather, AK is represented as
unstructured text within an issue’s description, comments and attachments.

Recently, there has been research work on automatic mining of AK from
issues: there are studies that identify types of ADDs [3] and types of architectural
issues [18]. However, they do not explore AK concepts (i.e. conceptual elements
that describe and characterize AK), such as types of architectural solutions (e.g.
components behavior and tactics) [10,28], decision factors like constraints, and
decision rationale [25] like assumptions, benefits and drawbacks of solutions
[21]. Moreover, current studies [3] limit their analysis to issue descriptions which
are only a small part of the whole issue (often the shortest) without exploring
comments in issues or attachments. Finally, current studies do not explore how
AK concepts are textually represented (e.g. using adjectives or explicit keywords)
in issues. These three limitations make it nearly impossible to determine AK
concepts in architectural issues, and prevent approaches to find, capture and
re-use AK from issue tracking systems.

We contribute in addressing these shortcomings by exploring the different AK
concepts for making SADDs and their representation in architectural issues (see
research questions in Section 3). We look at the entire issue, instead of only its
description. Achieving this goal supports automating AK capturing approaches
with concrete representations for AK concepts. Moreover, it supports determin-
ing the most suitable scenarios for re-using AK from issue tracking systems (e.g.
when searching for alternative solutions or comparing solutions).

To achieve this goal, we conduct a case study on three large Apache projects.
We analyze architecturally relevant issues from the projects’ issue tracker. The
issues are first identified by static analysis of the source code of the projects, and
then the textual contents of issues are verified as architecturally relevant and
analyzed to explore their contained AK concepts (see Section 3). In summary,
our study leads to the following contributions:

– A corpus of 98 architectural issues, and 3,937 annotations for AK concepts.
This helps future research, e.g. using machine learning to capture AK.

– Common textual variants for each AK concept in architectural issues. This
is useful to identify and search for AK concepts in issue tracking systems.

– A list of the most discussed AK concepts in issue tracking systems. This
supports identifying scenarios in which AK from issues can be re-used.

Title Suppressed Due to Excessive Length 3

– Common co-occurrences of different AK concepts in architectural issues. This
supports capturing relationships between AK concepts from these issues.

The paper is structured as follows: In Section 2, we provide a background on
relevant AK concepts. In Section 3, we explain our research questions and steps.
We then present our results in Sections 4, 5 and 6, which are subsequently
discussed in Section 7. The threats to validity and related work are discussed in
Sections 8 and 9, while the paper is concluded in Section 10.

2 Background - Architectural Knowledge Concepts

In this section, we give an overview of AK concepts in the literature, which
are relevant to this study. We consider AK concepts from different studies, be-
cause there is no comprehensive ontology with all AK concepts. Each concept is
represented by an abbreviation, that is used in the rest of the paper.

Software engineers consider different decision factors [1,21]:

– Requirements and constraints (REQ) could be quality attribute requirements,
such as performance, maintainability, security [1], user functional require-
ments, such as use cases and user stories, or contextual constraints such as
external systems or constraints from managers [1].

– Architecture of existing system (EXA) may constrain new ADDs [8].

– Quality issues of existing system (EXQ) can involve run-time quality issues
(e.g. performance issues) or technical debt items (e.g. architectural smells).
While REQ may represent the target value for a quality requirement, EXQ
is the current value that needs improvement (e.g. security vulnerabilities).

Furthermore, ADDs require deciding on one or more architectural solutions
[28]. These could have several types, such as:

– Architectural component behavior (CB) describes the behavior of an archi-
tecture component, including the implemented logic and complexity [19].

– Architectural configuration (CONF) describes the dependencies of compo-
nents [13,19].

– Architectural tactics (TAC) address specific quality attributes, for example,
caching data (tactic) improves performance [1].

Finally, ADDs should be based on a certain rationale [25] (i.e. the reason for
selecting architectural solutions). This involves several AK concepts:

– Architectural solution benefits and drawbacks (ABD) describe strengths and
weaknesses for certain architectural solutions [21].

– Assumptions (ASSUM) capture facts which are assumed without proof when
deciding on an architectural solution [27].

– Trade-offs (TRO) describe balanced analysis of what is an appropriate option
after prioritizing and weighing different design options [25].

– Risks (RIS) capture considerations about uncertainties of design options [25].

4 Mohamed Soliman, Matthias Galster and Paris Avgeriou

3 Study Design

3.1 Research Questions

To achieve our goal, we ask the following research questions:

– (RQ1) How are AK concepts textually represented within architectural issues
that discuss SADDs? Since AK concepts (Section 2) are high-level concep-
tual entities, their textual representation could come in multiple different
forms. Determining how AK concepts are actually represented (e.g. using
certain keywords or adjectives) in architectural issues can support improv-
ing the accuracy of automatically identifying AK concepts.

– (RQ2) Which AK concepts are commonly used by practitioners within ar-
chitectural issues to discuss SADDs? While researchers have empirically ex-
plored several AK concepts (Section 2) and how they are used by practi-
tioners (e.g. on Stack Overflow [19]), it is unknown which AK concepts are
shared in issue tracking systems to make SADDs. Identifying AK concepts,
which are commonly discussed in issues, is useful in determining scenarios
to re-use the AK in architectural issues.

– (RQ3) Which AK concepts co-occur with each other when discussing SADDs
in architectural issues? The discussion of SADDs in an issue, often does not
pertain to a single AK concept, but may involve multiple related AK con-
cepts. Conceptual relationships between AK concepts in ADDs have been
discussed in literature (e.g. [28,10]). However, it is unknown how practition-
ers use different AK concepts together to discuss SADDs in architectural
issues. Determining common co-occurrences between AK concepts provides
contextual relationships between the different AK concepts. These are im-
portant to support capturing related AK concepts from architectural issues.

3.2 Research Process

Step 1: Select

projects

Step 2: Identify candidate

architectural issues

Step 4: Qualitative

analysis of issues

Source code

repositories

Candidate
architectural issues

Jira issue

tracker

Step 3: Identify

candidate architectural

issues with the most

knowledge

Jira issue

tracker

Rank

issues

projects

Step 5: Quantitative

analysis of issues

Coding book
RQ1 RQ2 & RQ3

Ranking of issues

Sampling

Fig. 1: Research steps

We followed five steps (see Fig. 1) as explained in the following sub-sections.

Step 1 - Select projects: We selected Apache Java projects, similarly to
previous research on AK in issues [3,18], and based on the following criteria:

Title Suppressed Due to Excessive Length 5

1. Larger than 200 KLOC : This is to ensure sufficiently large projects with a
sufficient number of architectural issues.

2. Use of Jira: Jira is a commonly used issue tracking system. It also provides
useful features for managing issues (e.g. an API to download issues).

3. Traceability between code commits and issues: To identify candidate archi-
tectural issues (Step 2) based on links between code commits and issues, we
require that issue IDs are used in commit messages of the code repository.

4. Sufficient knowledge within issues: Not all Apache projects discuss decisions
within issues. Some projects use other communication methods (e.g. mailing
lists). Thus, we have to ensure that Jira not only lists tasks, but also com-
munications. We calculated the average number of comments within issues
for each project, and the percentage of issues with no comments (i.e. no dis-
cussions in issues). We then ranked projects (available online3) to identify
projects with the most issues and the most comments within issues.

We selected the top three Apache projects from the resulted ranking in the
fourth criterion (with the most issues and comments in issues): Apache Hadoop,
Cassandra, and Tajo.

Step 2: Identify candidate architectural issues Some issues involve archi-
tectural changes [18]. However, most issues in tracking systems do not trigger
architectural changes [18], because they involve small changes within compo-
nents (e.g. small bug fixes). Thus, we need to identify the issues which trigger
architectural changes. This has been addressed previously in different ways:

1. Top-down: Bhat et al. [3] manually analyze issues to determine if they involve
discussions on architectural decisions. This requires significant effort, because
of the sheer volume of issues (e.g. Hadoop has more than 50,000 issues).
Thus, the selected architectural issues based on this approach might not be
representative for the most significant architectural issues.

2. Bottom-up: Shahbazian et al. [18] analyze source code, and construct de-
pendency graphs for consecutive versions of a project. Differences between
dependency graphs are compared to assess if changes within each version are
architectural. The source code versions are then traced back to issues to iden-
tify architectural issues. The approach can effectively identify candidates for
architectural issues. However, inaccuracy in the assessment of architectural
changes might miss architectural issues or identify false positives.

Similar to Shahbazian et al. [18], we follow a bottom-up approach to identify
candidate architectural issues with the most architectural changes. However, we
further filtered issues with the most AK and to reduce false positives. In detail,
we followed three steps to identify candidate architectural issues:

1. Construct dependency graphs from source code: We used Arcan’s system re-
constructor [6] to create dependency graphs (one graph for each version)
between classes and packages of the three projects.

3 github.com/m-a-m-s/ECSA-2021

6 Mohamed Soliman, Matthias Galster and Paris Avgeriou

2. Estimate architectural changes: We compared the dependency graph of each
version with the dependency graph of its preceding version and determined
added or removed Java packages, added or removed dependencies between
packages and changes in the allocations of classes to packages. We chose
Java packages as architectural components, because they have been explicitly
designed by the developers. Moreover, packages are at a higher abstraction
level than classes. Thus, changes at package level are likely more architectural
than changes at class level. To compare the architecture of two consecutive
versions we calculated the Architecture-to-Architecture (a2a) metric [2]:
(a) Calculate Minimum Transform Operation (MTO) for two consecutive

versions in a repository. The MTO between two versions is the sum of
added packages, removed packages, added dependencies, removed depen-
dencies and the number of re-allocated classes between packages.

(b) Calculate the a2a metric [2] for each version in a repository as the per-
centage of MTO for a certain version compared to the size of the archi-
tecture (i.e. total number of packages, dependencies and classes).

The a2a metric has been previously used by Shahbazian et al. [18], and can
provide a reliable estimation for the size of architectural changes.

3. Filter and rank architectural issues: We identified versions in source code
repositories with a2a >0 and identified related issues. Issues have been dis-
covered by following the traceability links (Jira issue ID’s, e.g. TAJO-88,
used in commit messages on GitHub) between versions in GitHub and is-
sues in Jira. We have identified 2,575 candidate architectural issues (from
over 28,000 issues in the three projects), which are responsible for possible
architectural changes. The candidate architectural issues are shared online.

Step 3: Identify candidate architectural issues with most AK From the
2575 candidate architectural issues, we need to select those that contain actual
AK and of sufficient quantity. Thus, we identified the issues with the most AK
based on three steps:

1. Identify parent issues and sub-task issues: For all candidate architectural
issues (Step 2), we identified their parent issue (if the issue is a sub-task),
and their sub-task issues (if the issue is a parent issue).

2. Estimate amount of AK per issue: For all candidate architectural issues (Step
2), their parents and sub-tasks, we counted the number of words, considering
issue description, comments and attachments (e.g. pdf documents).

3. Rank candidate architectural issues: We ranked issues per project according
to their architectural significance (based on the a2a metric from Step 2) and
the amount of knowledge per issue (based on the number of words per issue).
The ranked issues present the population from which a sample of issues are
selected for analysis in Step 4 and another sample in Step 5.

Step 4: Qualitative analysis of AK concepts in issues To answer RQ1, we
analyzed a sample of issues with the most AK from the ranked list of candidate
architectural issues (from Step 3) qualitatively. We followed deductive category
assignment content analysis as defined by Mayring [12]:

Title Suppressed Due to Excessive Length 7

1. Identify AK concepts from literature: To identify AK concepts, we needed
a category system based on existing literature. Thus, we reviewed literature
in the field of AK and identified AK concepts (Section 2). The AK concepts
and their definition were the starting point for the coding book.

2. Preliminary coding to create initial coding book : The first two authors anno-
tated independently a sample of architectural issues with the AK concepts
identified from literature. Before annotating an issue, we manually validated
that an issue is actually an architectural issue, and that it contains AK.
During annotation, we followed two annotation rules:
– We annotated AK concepts (Section 2) as clauses or sentences or para-

graphs, because AK concepts do not appear as single words.
– We ignored all textual segments with no relationship to AK concepts,

such as code examples and test executions.
For each issue, the first two authors compared annotations and discussed
differences in meetings. After each meeting, we refined the coding book with
concrete definitions and examples for each AK concept. Our aim was to
operationalize abstract AK concepts (from literature) into concrete defini-
tions (in the issues). After several iterations and annotating 20 randomly
selected issues from the sample with more than 300 annotations, we reached
theoretical saturation (i.e. no new AK concepts appeared in issues).

3. Identify textual variants of AK concepts in issues: Based on the preliminary
coding, we identified textual variants for each AK concept to answer RQ1.
For example, benefits and drawbacks of solutions are expressed explicitly us-
ing certain keywords (e.g. advantages) or adjectives. Moreover, we added the
textual variants for each AK concept to the coding book. This supports other
researchers to annotate the same AK concepts reliably. The most common
textual variants for each AK concept are presented in Section 4.

Step 5: Quantitative analysis of AK concepts in issues To answer RQ2
and RQ3, we performed the following steps:

1. Expand annotations to ensure statistical significance: We provided the cod-
ing book (from the previous two steps) to two independent researchers to
annotate AK concepts in selected architectural issues from the population
of candidate architectural issues. We randomly selected issues proportional
to their ranking in the list of candidate issues (from Step 3). This method of
sampling supports selecting issues with the most AK to ensure exploring AK
concepts. The first author explained the coding book to the two researchers
who followed the same annotation rules as in the preliminary coding. In sev-
eral iterations, a sample of issues were independently annotated by the first
author to ensure agreement. Disagreements were discussed to ensure under-
standing of the coding book. Before annotating an issue, the first author
checked its architectural relevance.
To answer RQ2 and RQ3, we need to ensure that the number of annotations
is sufficient for higher confidence level and lower error margin. However,
some issues involve lots of discussions and thus can involve hundreds of an-
notations, while others are nearly empty. Thus, we had to first estimate the

8 Mohamed Soliman, Matthias Galster and Paris Avgeriou

AK concepts and
variants

Description and examples

Quality attribute as one type of requirements (REQ)

Explicitly
Uses common quality attribute-related terms like
“extensibility” or “performance”. For example: “This improves
the code readability and maintainability” [TAJO-121]

Implicitly using
adjectives

Describes the quality of certain system or component using
adjectives. For example “For the sake of efficient join order
enumeration,...” [TAJO-229] could point to performance.

Existing system quality (EXQ)

Negation of
quality

Refers to a component of a system with negation keywords and
adjectives. For example, “It is rather complicated and does
not guarantee data recoverability” [HADOOP-702]

Explicit quality
issues

Describes well-known quality issues using their terms explicitly
For example, “The dependencies between them should be
enforced to avoid cyclic dependencies. At present they all
have dependencies on each other” [HADOOP-3750]

Table 1: Variants of most common decision factors AK concepts
possible number of annotations in our population of candidate architectural
issues. We did this by dividing the total number of words (≈ 20 millions
words) in all candidate architectural issues (from Step 3) by the average
size of each annotation (≈ 25 words, see Section 5). Thus, the estimated
number of annotations in the whole population is ≈ 800,000 annotations.
Accordingly, we created a statistically significant sample size [15] of 3,937
annotations with 95% confidence level and 1.6% error margin. The anno-
tations are created from 98 architectural issues with the most architectural
significance and most AK inside them.

2. Analyze annotations to answer research questions: For RQ2 we counted the
number of annotations for each AK concept. To determine their sizes, we
counted words after removing stop-words. For RQ3 we counted the number
of co-occurrences of annotations (for each AK concept) which occur together
in either an issue description or comment. We then tested the significance of
each co-occurrence of AK concepts using a χ̃2 test [16]. For example, for the
AK concepts Benefits and drawbacks (ABD) and Component behavior (CB),
we considered frequencies for the following four situations: 1) Text annotated
as ABD co-occur with annotations for CB. 2) Text annotated as ABD co-
occur with annotations other than CB. 3) Text annotated with AK concepts
other than ABD co-occur with annotations for CB. 4) Text annotated with
AK concept other than ABD co-occur with annotations other than CB.
We excluded co-occurrences with χ̃2 < 10 to ensure that all co-occurrences
were statistically significant at p-value <0.05. The significant co-occurrences
between AK concepts are presented in Section 6.

4 RQ1: Representation of AK Concepts in Issues

Based on the analysis of architectural issues (see Section 3), we identified the
representation of AK concepts in terms of common textual variants for each AK

Title Suppressed Due to Excessive Length 9

AK concepts and
variants

Description and examples

Benefits and drawbacks (ABD)

Explicitly
Using terms like “advantages”, ”limitations’, etc. For example
”Keeping things config-file based has two drawbacks:...”
[CASSANDRA-44].

Using adjectives

Adjectives could be generic like ”good”, ”ugly”, etc. For
example, “it would be a fragile solution to the identified
problem” [HADOOP-1053]. It could also be more related to
special quality attribute. For example ”The serialization
mechanism proposed so far is...so general” [HADOOP-1986].

Using quality
measurement

Expressing special quality measurements. For example, “We
can do group by aggregations on billions of rows with only a
few milliseconds” [TAJO-283].

Problems in a
solution

Problems which are a consequence from using a particular
solution. For example “multiget-within-a-single-row still has
all the problems of multiget-across-rows...it doesn’t parallelize
across machines” [CASSANDRA-2710].

Assumptions (ASSUM)

Explicitly
Explicit references to assumptions, e.g., the word “assumption”
or synonyms. For example, “Assume that Jobs and interfering
cache updates won’t occur concurrently” [HADOOP-288]

Using uncertainty
terms

Uncertain and vague terms, such as “I think”, “it might‘”. For
example, “I think, saving values would limit fexibility of the
cache interface...” [CASSANDRA-3143]

Table 2: Variants of most common rationale AK concepts

concept. The most frequent textual variants for the most common AK concepts
(see Section 5) are explained in Tables 1, 2, and 3. Further variants are provided
online. Some of the decision factors (Table 1) and rationale AK concepts (Table
2) occur explicitly or implicitly. The explicit variants can be easily identified,
because they depend on the occurrence of certain keywords (e.g. “performance”
for quality attributes or “advantage” for benefits and drawbacks). Implicit vari-
ants are more difficult to distinguish, since they rely on a combinations of words,
which must appear together in a certain context to deliver the meaning of the AK
concept. For example, both quality attributes and benefits and drawbacks could
be expressed using adjectives. However, benefits and drawbacks are expressed
in combination with a certain architectural solution, while quality attributes
are expressed in relation to certain requirements. This presents a challenge to
accurately identify AK concepts.

We also observed domain-specific terms in some of the variants to describe the
architecture solutions (Table 3). For example, optimization of queries is a core
functionality in Apache Tajo, and the term “optimizer” refers to an architectural
component. This might not be the case in other systems, where an optimizer
might be a tool to improve source code. Thus, AK in architectural issues depends
strongly on the domain and context. This poses a challenge in finding AK in issue
trackers, which describes the architecture components of a system.

10 Mohamed Soliman, Matthias Galster and Paris Avgeriou

AK concepts and
variants

Description and examples

Architectural component behavior (CB)

Approach

Describes the main approach (e.g. algorithm) on which
behavior of component is based. For example “So the
approach I propose is...to iterate through the key space on a
per-CF basis, compute a hash...” [CASSANDRA-193].

Sub-components

Describes sub-components (e.g. interfaces or data structures)
which implement the component’s behavior, e.g. “This
optimizer will provide the interfaces for join enumeration
algorithms and rewrite rules” [TAJO-24 attachment].

Architectural design configuration (CONF)

Static
dependencies

Dependencies between components independent of their
sequence. The dependencies can use connector verbs such as
“access” and “obtain” [19]. For example “a management tool
to contact every node via JMX ” [CASSANDRA-44].

Dynamic
dependencies

Sequence of interactions between components, for example
“YARN mode 1. TajoClient request query to TajoMaster. 2.
YarnRMClient request QueryMaster(YARN Application
Master)...” [TAJO-88 attachment]

Table 3: Variants of most common architectural solutions AK concepts

5 RQ2: Prominent AK Concepts in Issues

(a) % of annotations for each AK concept (b) Size of annotations for each AK concept

Fig. 2: The amount and size of annotations for each AK concept

Fig. 2 shows the percentages of annotations related to each AK concept, as
well as their size (number of words). There are no significant differences in the
percentages or sizes of annotations among issue descriptions and issue comments.
Issues tend to include AK regarding proposed architectural solutions (≈ 40%)
and their rationale (>40%) more frequently than decision factors (≈ 15%). AK
regarding architectural solutions focuses mainly on components behavior (CB)
and architectural configurations (CONF), which align with the scope of this
paper to explore SADDs. The benefits and drawbacks (ABD) of architectural

Title Suppressed Due to Excessive Length 11

solutions dominate the rationale of ADDs in architectural issues, followed by
Assumptions (ASSUM). However, trade-offs and risks are rarely shared in archi-
tectural issues. Also, descriptions of architectural solutions (i.e. CONF and CB)
tend to be larger than their rationale (i.e. ABD and ASSUM). This means that
developers describe their architectural solutions extensively, but provide brief
justifications for decisions.

Most decision factors are about the architecture (EXA) and quality issues
(EXQ) of an existing system (both ≈ 10%). Discussions on requirements and
constraints (REQ) are rare (≈ 5%). Also, REQ annotations are the shortest,
which indicates limited discussions about architectural significant requirements.

6 RQ3: Significant Co-occurrences between AK Concepts

CONF

CB

ABD

REQ

Tactic

ASSUM

EXQ

EXA

(a)

CONF

CB

ABD

Tactics

ASSUM

EXA

EXQ

Risks

(b)

Fig. 3: Significant co-occurrences (based χ̃2) between AK concepts in the descrip-
tion of issues (a) and issue comments (b). Node size indicates the significance
of co-occurrences between annotations of the same AK concept with each other,
while edge width is the significance of co-occurrence between annotations from
different AK concepts.

Fig. 3 shows the co-occurrence networks for the significant co-occurrences be-
tween AK concepts in issue descriptions and comments, respectively. Significance
has been computed using the χ̃2 test as explained in Section 3. From Fig. 3, we
can observe that annotations of benefits and drawbacks (ABD) have the most
significant co-occurrences with architectural configurations (CONF) and com-
ponent behavior (CB), both in the issue description and comments. This means
that practitioners usually share their AK on components design solutions, and
associate it with their benefits and drawbacks as a rationale.

When comparing Fig. 3a and 3b, we observe some differences: First, require-
ments (REQ) (functional and non-functional) only significantly co-occur with
other AK concepts in issue descriptions, but not in issue comments. This shows
that discussions on architecturally significant requirements happen in issue de-
scriptions rather than in issue comments. Second, assumptions (ASSUM) co-
occur significantly only with Existing system quality (EXQ) (e.g. technical debt
items) in issue descriptions, while they co-occur significantly with EXQ and Ben-
efits and drawbacks (ABD) in issue comments. This shows that assumptions is a
multifaceted AK concept, which appears in issue descriptions to express uncer-

12 Mohamed Soliman, Matthias Galster and Paris Avgeriou

tainties about system quality, while in issue comments they additionally express
uncertainty regarding the benefits and drawbacks of a proposed solution.

7 Discussion

7.1 RQ1: Representation of AK Concepts in Issues

Implications for practitioners The textual variants for AK concepts in Sec-
tion 4 can support practitioners to search for AK in issue trackers. For instance,
to search for benefits and drawbacks, practitioners can use regular expressions,
which require either adjectives and names of architectural solutions (e.g. tac-
tics like caching) or quality attribute terms (e.g. scalability) in the same search.
Moreover, the textual variants of AK concepts can provide ideas for documenting
each AK concept. For example, following Table 2, practitioners could document
benefits and drawbacks as follows: 1) create explicit lists of benefits and draw-
backs, 2) describe the benefits and drawbacks of solutions using adjectives, 3) use
quality measurement to justify the benefits and drawbacks, 4) mention explicitly
problems of solutions as drawbacks.

Implications for researchers The textual variations for AK concepts in Sec-
tion 4 can support researchers to develop approaches to automatically extract
AK concepts from issue trackers. Concretely, when using machine learning to
identify and classify AK concepts from architectural issues, a corpus of annota-
tions of AK concepts in issues is needed. A high quality corpus for improving the
quality of classification would consider the different textual variants for AK con-
cepts as presented in Section 4. Moreover, our corpus (3,937 annotations from 98
architectural issues) provides a starting point to train machine learning models
on identifying and classifying AK concepts from issue trackers.

The variants of AK concepts in architectural issues show the benefits and
challenges in capturing AK from issue trackers compared to developer commu-
nities (e.g. Stack Overflow). On the one hand, developers in issue trackers use
domain-specific terms (e.g. ”optimizer” or ”reduce”) to describe the architecture
of a system, while developers in communities use generic terms (e.g. ”server” or
”code”). This makes capturing generic AK from issue trackers more challenging.
On the other hand, developers share AK in issues with extensive details; in con-
trast, developers in developer communities omit many of the details of a system
when sharing their AK. This makes the AK in issue trackers more comprehensive
than the AK in developer communities.

7.2 RQ2: AK Concepts in Issues

Implications for practitioners Knowing which AK concepts are mostly shared
in architectural issues supports practitioners to effectively direct their search for
AK. For instance, practitioners could search for AK in issue tracking system,
if they are looking for alternatives of component design. This is because archi-
tectural solutions on component design present the majority of AK concepts in
architectural issues. In contrast, it may not be effective to search in issue track-
ing systems for architecturally significant requirements (e.g. quality attributes),
because these are rarely discussed in issue tracking systems.

Title Suppressed Due to Excessive Length 13

Implications for researchers The results from RQ2 support researchers de-
termining architectural scenarios, in which the re-use of AK from issue tracking
system could be most useful. Specifically, the AK in architectural issues could
be useful in these two scenarios:

– Architectural recovery : Current architectural recovery techniques capture
components and their dependencies from source code or byte code. How-
ever, such approaches cannot easily capture the behavior of components
solely based on the source code. Thus, AK in issue tracking systems could
complement architectural recovery techniques with additional natural lan-
guage descriptions for component behaviors and configurations.

– Selecting architectural solutions: Results of RQ2 in Section 5 shows that 40%
of AK concepts contain the rationale of ADDs (mostly benefits and draw-
backs of solutions). Re-using this AK could facilitate comparing architectural
solutions and selecting among alternatives based on their pros and cons.

7.3 RQ3: Significant Co-occurrences between AK Concepts

Implications for practitioners Because architectural issues involve lots of
discussions, the significant co-occurrences between AK concepts in issues (as
presented in Fig. 3) can guide practitioners when browsing for AK in architec-
tural issues. For instance, if a practitioner found an architectural solution (e.g.
an architectural configuration) in a comment, she may keep looking for the ratio-
nale of this solution: it is likely written in the same comment. The same applies
when finding quality attributes or functional requirements in issue descriptions;
these are likely to be accompanied with a certain architectural solution (i.e. an
architectural configuration or component behavior).

Implications for researchers The significant co-occurrences between AK con-
cepts can guide AK extraction approaches to effectively identify the relationships
between AK concepts. For example, we can design a heuristic-based AK ex-
traction approach, which links annotations on architectural configurations with
annotations on benefits and drawbacks from the same issue section (i.e. issue
description or comment); based on our results in Fig. 3, architectural configura-
tions and benefits and drawbacks significantly co-occur in the same issue section.
Associate architectural solutions with their rationale is very useful for the re-use
of AK.

Moreover, some significant co-occurrences between AK concepts are worth
further detailed analysis. For example, Assumptions seem to co-occur with differ-
ent AK concepts, especially decision factors like technical debt items, as well as
rationale of decisions like benefits and drawbacks. However, it is unknown why
and how such significant co-occurrences happen. Thus, further research could
determine how and why assumptions co-occur with each of the AK concepts.

8 Threats to Validity

8.1 External Validity

Similar to other studies ([3,18]), our study depends on selecting issues from
open source Apache projects and analyzing issues from Jira. This might be a

14 Mohamed Soliman, Matthias Galster and Paris Avgeriou

threat, when generalizing the results to industrial projects or other ecosystems.
Moreover, our analysis is based on a limited number of architectural issues and
annotations, which might be a threat to the generalizability of our results. How-
ever, we have carefully selected these issues since they contain the most AK in
the projects. Moreover, we created a significant sample of annotations, which are
sufficient to report our quantitative results in Sections 5 and 6 with the smallest
error margin as possible.

8.2 Construct Validity

The considered AK concepts in Section 2 might not be exhaustive. However,
during our qualitative analysis (see Section 3), we reached theoretical saturation,
and thus covered most AK concepts in architectural issues.

8.3 Reliability

The agreement on the AK concept for each annotation presents a threat to relia-
bility. However, we considered the agreement between researchers in each phase
of the study. Moreover, we created a coding book (provided online) with con-
crete textual variants to facilitate reaching agreement on the AK concepts. We
measured the agreement between researchers using Kappa as 0.73. This shows
good agreement beyond chance. In addition, we provide the list of identified
architectural issues and annotations to support further replication steps.

9 Related Work

AK concepts (as presented in Section 2) are established based on several studies,
such as [11,24,28]. Recent research efforts explore AK for specific domains (e.g.
microservices [5]), as well as human and social aspects when making ADDs [17].
However, these studies do not explore concrete representation of AK concepts
in any AK source like issue trackers to support finding or capturing AK.

Recently, researchers explored and captured AK concepts in multiple different
sources, such as developer communities (e.g. Stack Overflow [4,19,20,22]), Google
search results [23], technology documentation [9] and mailing lists [7]. However,
these studies do not explore or capture AK in issue tracking systems.

Bhat et al. [3] propose a machine learning approach to classify issues in
issue trackers, which contain certain types of ADDs. The approach depends on
classifying issue descriptions without considering issue comments or attachments.
Moreover, the approach does not explore different AK concepts (see Section 2)
in details. Our study on the other hand explores different AK concepts, their
textual representation and relationships, considering the different sections of
issues in more details.

Shahbazian et al. [18] proposed an approach to identify architectural issues
by analyzing source code and applying clustering algorithms. The approach can
additionally differentiate between simple, compound and crosscutting decisions,
and identify relationships between source code and issues. However, Shahbazian
et al. did not analyze the textual content of architectural issues to explore the

Title Suppressed Due to Excessive Length 15

different AK concepts. The approach from Shahbazian et al. has inspired our
study design to identify candidates architectural issues. However, our study
goes beyond identifying architectural issues, and analyzes the textual content
of architectural issues to explore the representation of AK concepts and their
relationships within issues.

10 Conclusions

Our goal in this study is to explore the AK concepts within architectural issues
to support re-using this AK. Our results cover existing AK concepts within
architectural issues, as well as their textual representation and relationships.
These support determining how the AK in issues could be re-used. Our future
work aims to expand our study to explore different types of decisions in issue
trackers, and to identify and extract the AK concepts automatically from issues.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional, 3rd edn. (2012)

2. Behnamghader, P., Le, D.M., Garcia, J., Link, D., Shahbazian, A., Medvidovic,
N.: A large-scale study of architectural evolution in open-source software systems.
Empirical Software Engineering 22(3), 1146–1193 (6 2017)

3. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic
extraction of design decisions from issue management systems: A machine learning
based approach. In: Lecture Notes in Computer Science. vol. 10475 LNCS, pp.
138–154. Springer Verlag (2017)

4. Bi, T., Liang, P., Tang, A., Xia, X.: Mining architecture tactics and quality at-
tributes knowledge in Stack Overflow. Journal of Systems and Software p. 111005
(5 2021), https://linkinghub.elsevier.com/retrieve/pii/S0164121221001023

5. El Malki, A., Zdun, U.: Guiding architectural decision making on service mesh
based microservice architectures. In: Lecture Notes in Computer Science. vol. 11681
LNCS, pp. 3–19. Springer Verlag (2019)

6. Fontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M., Nitto, E.D.:
Arcan: A tool for architectural smells detection. In: Proceedings - 2017 IEEE In-
ternational Conference on Software Architecture Workshops, ICSAW 2017: Side
Track Proceedings. pp. 282–285. IEEE Inc. (6 2017)

7. Fu, L., Liang, P., Li, X., Yang, C.: Will Data Influence the Experiment Results?:
A Replication Study of Automatic Identification of Decisions. In: SANER 2021.
pp. 614–617. IEEE (3 2021)

8. Gerdes, S., Lehnert, S., Riebisch, M.: Combining architectural design decisions and
legacy system evolution. In: Lecture Notes in Computer Science. vol. 8627 LNCS,
pp. 50–57. Springer Verlag (2014)

9. Gorton, I., Xu, R., Yang, Y., Liu, H., Zheng, G.: Experiments in Curation: To-
wards Machine-Assisted Construction of Software Architecture Knowledge Bases.
In: IEEE/IFIP ICSA 2017. pp. 79–88 (4 2017)

10. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design De-
cisions. In: WICSA. pp. 109–120 (2005)

11. Kruchten, P., Lago, P., Vliet, H.: Building Up and Reasoning About Architectural
Knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) Quality of Software
Architectures, Lecture Notes in Computer Science, vol. 4214, pp. 43–58. Springer
Berlin Heidelberg (2006)

https://linkinghub.elsevier.com/retrieve/pii/S0164121221001023

16 Mohamed Soliman, Matthias Galster and Paris Avgeriou

12. Mayring, P.: Qualitative content analysis. In: Forum Qualitative Sozial-
forschung/Forum: Qualitative Social Research. vol. 1 (2000)

13. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (1 2000)

14. Miesbauer, C., Weinreich, R.: Classification of Design Decisions: An Expert Survey
in Practice. In: Proceedings of ECSA 2013. pp. 130–145. ECSA’13, Springer (2013)

15. Neuendorf, K.A.: The Content Analysis Guidebook. SAGE Publications, 2nd edn.
16. Pearson, K.: On a criterion that a given system of deviations from the probable in

the case of correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling pp. 157–175 (1900)

17. Razavian, M., Paech, B., Tang, A.: Empirical research for software architecture
decision making: An analysis. Journal of Systems and Software 149, 360–381 (3
2019)

18. Shahbazian, A., Kyu Lee, Y., Le, D., Brun, Y., Medvidovic, N.: Recovering Archi-
tectural Design Decisions. In: Proceedings - 2018 IEEE 15th International Confer-
ence on Software Architecture, ICSA 2018. pp. 95–104. IEEE Inc. (7 2018)

19. Soliman, M., Galster, M., Riebisch, M.: Developing an Ontology for Architecture
Knowledge from Developer Communities. In: IEEE/IFIP ICSA 2017. pp. 89–92 (4
2017)

20. Soliman, M., Galster, M., Salama, A.R., Riebisch, M.: Architectural Knowledge
for Technology Decisions in Developer Communities: An Exploratory Study with
StackOverflow. In: IEEE/IFIP WICSA 2016. pp. 128–133 (4 2016)

21. Soliman, M., Riebisch, M., Zdun, U.: Enriching Architecture Knowledge with Tech-
nology Design Decisions. In: WICSA. pp. 135–144 (5 2015)

22. Soliman, M., Rekaby Salama, A., Galster, M., Zimmermann, O., Riebisch, M.: Im-
proving the Search for Architecture Knowledge in Online Developer Communities.
In: Proceedings - ICSA 2018. pp. 186–195. IEEE Inc. (7 2018)

23. Soliman, M., Wiese, M., Li, Y., Riebisch, M., Avgeriou, P.: Exploring Web Search
Engines to Find Architectural Knowledge. In: 2021 IEEE 18th International Con-
ference on Software Architecture (ICSA). pp. 162–172. IEEE (3 2021)

24. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (6 2007)

25. Tang, A., Van Vliet, H.: Software architecture design reasoning. In: Software Ar-
chitecture Knowledge Management: Theory and Practice, pp. 155–174. Springer
Berlin Heidelberg (2009)

26. van Vliet, H., Tang, A.: Decision making in software architecture. Journal of Sys-
tems and Software 117, 638–644 (7 2016)

27. Yang, C., Liang, P., Avgeriou, P., Eliasson, U., Heldal, R., Pelliccione, P., Bi, T.:
An industrial case study on an architectural assumption documentation framework.
Journal of Systems and Software 134, 190–210 (12 2017)

28. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

	An Exploratory Study on Architectural Knowledge in Issue Tracking Systems
	1 Introduction
	2 Background - Architectural Knowledge Concepts
	3 Study Design
	3.1 Research Questions
	3.2 Research Process
	Step 1 - Select projects:
	Step 2: Identify candidate architectural issues
	Step 3: Identify candidate architectural issues with most AK
	Step 4: Qualitative analysis of AK concepts in issues
	Step 5: Quantitative analysis of AK concepts in issues

	4 RQ1: Representation of AK Concepts in Issues
	5 RQ2: Prominent AK Concepts in Issues
	6 RQ3: Significant Co-occurrences between AK Concepts
	7 Discussion
	7.1 RQ1: Representation of AK Concepts in Issues
	Implications for practitioners
	Implications for researchers

	7.2 RQ2: AK Concepts in Issues
	Implications for practitioners
	Implications for researchers

	7.3 RQ3: Significant Co-occurrences between AK Concepts
	Implications for practitioners
	Implications for researchers

	8 Threats to Validity
	8.1 External Validity
	8.2 Construct Validity
	8.3 Reliability

	9 Related Work
	10 Conclusions

