Skip to main content

A Robust Algorithm for Multi-tenant Server Consolidation

  • Conference paper
  • First Online:
  • 1586 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

Abstract

We study server consolidation problems in the cloud under conditions of simultaneous failure of multiple servers, where consolidation means that cloud providers put tenants on shared servers to improve resource utilization and thus reduce operation and maintenance costs. With replicas of each tenant on multiple servers, our objective is to minimize the total number of open servers and ensure that a particular failure will not result in overload of any remaining server. In this paper, we propose the Adaptive Tenant Placement Considering Fault Tolerance algorithm. Unlike existing consolidation algorithms, our algorithm can tolerate multiple server failures while ensuring that no server becomes overloaded. Furthermore, it does not classify replicas into different types. Through experimental evaluations, we show that the proposed algorithm performs better than existing solutions and achieves near-optimal replication allocation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cheraghlou, M.N., Khadem-Zadeh, A., Haghparast, M.: A survey of fault tolerance architecture in cloud computing. J. Netw. Comput. Appl. 61, 81–92 (2016)

    Article  Google Scholar 

  2. Das, P., Khilar, P.M.: Vft: a virtualization and fault tolerance approach for cloud computing. In: 2013 IEEE Conference on Information & Communication Technologies, pp. 473–478. IEEE (2013)

    Google Scholar 

  3. Daudjee, K., Kamali, S., López-Ortiz, A.: On the online fault-tolerant server consolidation problem. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 12–21 (2014)

    Google Scholar 

  4. Ganga, K., Karthik, S.: A fault tolerent approach in scientific workflow systems based on cloud computing. In: 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, pp. 387–390. IEEE (2013)

    Google Scholar 

  5. Kumari, P., Kaur, P.: A survey of fault tolerance in cloud computing. J. King Saud Univ. Comput. Inf. Sci. (2018)

    Google Scholar 

  6. Li, H., Li, W., Wang, H., Wang, J.: An optimization of virtual machine selection and placement by using memory content similarity for server consolidation in cloud. Futur. Gener. Comput. Syst. 84, 98–107 (2018)

    Article  Google Scholar 

  7. Li, W., Sun, X., Liao, K., Xia, Y., Chen, F., He, Q.: Maximizing reliability of data-intensive workflow systems with active fault tolerance schemes in cloud. In: 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), pp. 462–469. IEEE (2020)

    Google Scholar 

  8. Mate, J., Daudjee, K., Kamali, S.: Robust multi-tenant server consolidation in the cloud for data analytics workloads. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2111–2118. IEEE (2017)

    Google Scholar 

  9. Mazumdar, S., Pranzo, M.: Power efficient server consolidation for cloud data center. Futur. Gener. Comput. Syst. 70, 4–16 (2017)

    Article  Google Scholar 

  10. Ray, B., Saha, A., Khatua, S., Roy, S.: Proactive fault-tolerance technique to enhance reliability of cloud service in cloud federation environment. IEEE Trans. Cloud Comput. (2020)

    Google Scholar 

  11. Xie, X., et al.: AZ-code: an efficient availability zone level erasure code to provide high fault tolerance in cloud storage systems. In: 2019 35th Symposium on Mass Storage Systems and Technologies (MSST), pp. 230–243. IEEE (2019)

    Google Scholar 

  12. Xu, X., Mo, R., Dai, F., Lin, W., Wan, S., Dou, W.: Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloud. IEEE Trans. Industr. Inf. 16(9), 6172–6181 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the financial support provided by the China Scholarship Council (NO. 201806250168) during Boyu Li’s visit to Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B., Tang, X., Wu, B. (2021). A Robust Algorithm for Multi-tenant Server Consolidation. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics