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Abstract. Quantifier reasoning in SMT solvers relies on instantiation:
ground instances are generated heuristically from the quantified formulas
until a contradiction is reached at the ground level. Current instantia-
tion heuristics, however, often fail in presence of nested quantifiers. To
address this issue we introduce a unification-based method that augments
the problem with shallow quantified formulas obtained from assertions
with nested quantifiers. These new formulas help unlocking the regu-
lar instantiation techniques, but parsimony is necessary since they might
also be misguiding. To mitigate this, we identify some effective restricting
conditions. The method is implemented in the veriT solver, and tested
on benchmarks from the SMT-LIB. It allows the solver to prove more
formulas, faster.
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1 Introduction

Satisfiability modulo theories (SMT) solvers are successfully used as back-ends
for formal method applications, within interactive proof assistants or verification
platforms. SMT solvers based on the CDCL(T ) calculus [6] excel at handling
quantifier-free problems with theories—SMT problems with thousands of asser-
tions are frequent. While originally SMT solvers were mostly applied on such
problems, an increasing number of applications require some support for quan-
tifier reasoning. Their main approach to handle quantifiers is quantifier instan-
tiation. This approach separates the quantified assertions from the ground part
of the problem. Whenever the solver finds a model for the ground part, it gen-
erates new ground instances of the quantified formulas. This is repeated until
the ground solver determines that the ground problem is unsatisfiable. When
done fairly, this approach is refutationally complete for many theories and due
to the strength of ground solving it is also very powerful in practice. SMT solvers
use multiple instantiation strategies to find these instances. The main challenge
is to find the right instances without misguiding or overwhelming the solver.
Often one can observe some kind of butterfly effect : if the instantiation methods
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are unlucky, the solver might be misguided to explore a large set of irrelevant
instances and reach the solving timeout. In this regard, every strategy has its
own strengths and weaknesses (Sect. 2).

If the problem contains a quantified lemma that also occurs, for example, as
an antecedent for another formula, the common instantiation methods often fail
to quickly produce the right instances. This structure is quite typical of problems
generated by interactive theorem provers—a domain to which the SMT solver
veriT has been successfully applied [10,20]. The following toy example illustrates
this issue. We will use it to illustrate various ideas.

Example 1.

∀x. P (x) → P (f(x, c)) (1)
∀y. ((∀z. P (z) → P (f(z, y))) → ¬P (y)) (2)

P (c) (3)

This problem is trivially unsatisfiable: when y is set to c, Assertion 1 occurs
as the antecedent of the implication in Assertion 2, so ¬P (c) is a direct conse-
quence of the first two assertions, in contradiction with the third. As described
in Sect. 2.3, all major instantiation techniques fail to directly produce the correct
instances for this problem. Because SMT solvers typically only perform very lim-
ited preprocessing on quantified formulas and especially do not calculate a full
clause normal form, the instantiation methods fail to recognize and exploit the
fact that Assertion 1 and the antecedent in Assertion 2 are so similar. Since the
instantiation methods do not produce the correct instances early, the SMT solver
will need multiple instantiation rounds to solve the problem. This can lead to the
butterfly effect mentioned above. Real world examples are usually more complex.
For example, there are often many ground terms which mislead the instantia-
tion heuristics. Furthermore, the assertions in this example are Horn clauses and
could be handled by specialized reasoning. Practical problems, however, are not
restricted to Horn clauses.

In CDCL(T ) quantified formulas are considered black boxes, and are
abstracted as propositional variables in the propositional abstraction of the input
formula. These propositional literals are generally of no value to the ground
solver. We here make use of them to simplify larger formulas. To solve the exam-
ple above we identify the occurrence of the unit Assertion 1 within Assertion 2.
By using unification we can eliminate this quantified subformula. The result after
simplification is the ground formula ¬P (c). After this formula is conjoined to the
problem, it is trivially contradictory. In the general case, we use asserted quan-
tified formulas to soundly simplify nested formulas and augment the problem
with the result. We propose multiple variants of the core procedure (Sect. 3).

So far, techniques inspired by resolution-based theorem provers are under-
represented in SMT solvers. Systems such as DPLL(Γ) [15], DPLL(Γ + T ) [7],
and AVATAR [22] combine the inference system of theorem provers with the
CDCL(T ) transition system on a fundamental level, but the combination is
coarse—in those systems the two worlds work side-by-side in tandem. Instead,
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Fig. 1. The instantiation loop of an SMT solver refuting a problem.

our unification-based method is a lightweight and easily implemented prepro-
cessing technique that solves some concrete shortcoming of current instantiation
techniques.

We implemented our method in the SMT solver veriT [8]. To ensure the
process is fast, we use a standard term index and unification algorithm which
we extended to handle the presence of strongly quantified variables (Sect. 4).

The evaluation shows that our technique enables veriT to solve benchmarks
not solved by any strategy before. When applicable, the method often allows
veriT to solve problems within a short timeout. The different variants of the
simplification process are useful within a strategy schedule (Sect. 5).

2 CDCL(T ) and Quantifier Instantiation

Figure 1 shows the operation of a typical SMT solver when refuting a problem.
It first preprocesses the input problem (Sect. 2.2). Then two procedures together
refute the problem: the ground solver either refutes the problem on the ground
level, or finds a ground model. If a model is found the instantiation procedure
creates new ground lemmas (Sect. 2.3).

2.1 Preliminaries

We use the many-sorted first-order logic with equality as defined in the SMT-LIB
standard [5] and assume the reader is familiar with the notions of signature, term,
free and bound variable, quantified and ground formula, literal, and substitution.
We use x, y, z to denote variables; s, t to denote terms; ϕ,ψ to denote formulas
(i.e., terms of sort Bool); P to denote a predicate (i.e., a function with codomain
sort Bool); and c to denote constants. To denote the substitution which replaces
a variable x with a term t we write [t/x]. As usual, σ stands for a substitution.
We write t̄ for the sequence of terms t1, . . . , tn for an unspecified n ∈ N

+ that is
either irrelevant or clear from the context. Hence, ∀x̄.ϕ corresponds to a term
∀x1, . . . , xn. ϕ. We write free(t) to denote the free variables of a term t. The set
T (S) is the set of all subterms of the terms in S. We omit sorts when they are
clear from the context and assume that sort constraints are always respected,
e.g., substitutions only use terms of the same sort as the substituted variable.

Like in the SMT-LIB standard, the signature Σ always contains a sort Bool,
two constants � and ⊥, the usual Boolean connectives, and a family of predicate
symbols (≈ : τ × τ → Bool) interpreted as equality for each sort τ .

A trimmed formula is the generalization of the notion of atom to arbi-
trary formulas: trim(ϕ) is the formula ϕ after removing all leading negations.
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For example, trim(¬¬(ϕ1 ∨ ¬ϕ2)) is ϕ1 ∨ ¬ϕ2. The polarity pol(ϕ) ∈ {+,−} of
a formula ϕ is − (negative) if trim(ϕ) removes an odd number of negations and
+ (positive) otherwise.

We write t[ ] for a term with a hole and t[u] for the term where the hole has
been replaced by u. Any term has at most one hole. We borrow the notions of
weak and strong quantifiers [2]: since we are working in a refutation context, a
positive occurrence of a quantifier ∃x̄. ϕ or a negative occurrence of a quantifier
∀x̄. ϕ is strong and a negative occurrence of a quantifier ∃x̄. ϕ or a positive
occurrence of a quantifier ∀x̄. ϕ is weak. We will call the subformula ψ of Qx̄.ψ,
where Q ∈ {∀,∃}, the matrix, even though ψ might not be in clausal normal
form. Without loss of generality, we assume that all quantified variables have
been renamed to be distinct.

To handle strong quantifiers we use the Skolemization operator sk. For a
formula Qx̄.ψ it is defined as sk(Qx̄.ψ, ȳ) := ψ[s1(ȳ)/x1] . . . [sn(ȳ)/xn] and each
si is a fresh function symbol of correct arity. The strong quantifier Q might not
be below a weak quantifier. In this case, we write sk(Qx̄.ψ, ∅) and the fresh
symbols are constants.

2.2 Preprocessing

Given an input formula P (i.e., a term of sort Bool) a CDCL(T ) solver performs
multiple preprocessing steps before the solving phase is started. This produces
an equisatisfiable problem P ′ which is a conjunction of clauses.

To make efficient use of the ground solver, ground formulas are classified.
Quantified formulas, however, are treated differently. Their are usually not put
in prenex form or clausified. Furthermore, strong quantifiers are usually not
fully Skolemized. This has the benefit that the original structure of quantified
formulas is preserved, which is crucial for some instantiation techniques.

Preprocessing applies some light form of rewriting on quantified formulas. In
veriT, most rewriting steps apply to constants below arithmetic operators and
Boolean connectives. For example, the term f(5+c1+3, c2 ∗(3−3)) is simplified
to f(8 + c1, 0) and (⊥ → ϕ1) → ϕ2 is replaced by ϕ2. Rewriting also ensures
that certain global invariants of veriT are met: for instance, all occurrences of
bound variables are renamed to distinct variables, and quantifiers over Boolean
variables are removed by Shannon expansion.

Skolemization is another preprocessing step applied to quantified formu-
las. How Skolemization is applied is implementation dependent. The common
CDCL(T ) calculus [6] is only concerned with ground reasoning. While the SMT
solver Z3 [16] has a builtin tactic called nnf that fully applies Skolemization,
CVC4 [4] and veriT only Skolemize outermost strong quantifiers in their default
configuration. The rewriter of veriT Skolemizes outermost strong quantifiers by
replacing the subformula trim(�) of a formula � by sk(trim(�), ∅) if trim(�)
has the form Qx̄. ϕ, the quantifier Q is strong, and � does not occur below any
quantifier.

Due to the limited preprocessing of quantified formulas, some disjuncts of P ′

start with a weak quantifier and contain complicated formulas. To clarify the
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distinction, we call the disjuncts which start with a quantifier, and are hence
black boxes to the ground solver, boxes. Without loss of generality, we assume
all boxes are universally quantified. Disjuncts which are not boxes are ground
literals. A unit-box is a clause with only one disjunct that is a box.

Example 2. The preprocessor will not perform any operations on Example 1.
We can illustrate the perspective of the ground solver by replacing quantified
formulas by frames. The resulting clause are: 1 , 2 , and P (c). The first two
clause are unit-boxes and both boxes will be abstracted to different propositional
variables for the SAT solver.

2.3 Instantiation Techniques

The instantiation loop (Fig. 1) starts with the ground solver. It either deter-
mines that the ground literals of the preprocessed problem P ′ are unsatisfiable
or produces a ground model M. If the ground problem is unsatisfiable, then P
is unsatisfiable. M is a set of formulas G ∪ Q where G are ground literals, and
Q are boxes. M propositionally satisfies P ′, and G is consistent with respect
to the used theories. The instantiation procedure will then generate lemmas
(∀x̄. ϕ) → ϕσ where (∀x̄. ϕ) ∈ Q and σ is a substitution of x̄ with ground terms.
The generated lemmas are added conjunctively to P ′ and the ground solver is
called again.

We now give an overview of common instantiation techniques and illustrate
why they cannot tackle Example 1 quickly. These techniques are presented in
the order they are used by veriT: it first tries conflict-driven instantiation. If this
fails, it will try trigger-based instantiation. Should this produce no instances, it
will fall back to enumerative instantiation. Model-based quantifier instantiation
is not implemented by veriT: it is crucial for satisfiability, but veriT focuses on
proving unsatisfiability.

Conflict-Driven Instantiation. This method tries to find an instance that con-
tradicts the ground model M in the theory of equality and uninterpreted func-
tions (EUF) [3,18]. Hence, it searches for a box ∀x̄. ϕ ∈ Q and a substitution
σ such that G ∧ ϕσ �EUF ⊥. It returns the instance ϕσ or fails. It can also
search for substitutions which solve multiple constraints simultaneously. Hence,
this method can find a contradicting instance of a clause ψ1 ∨· · ·∨ψn by solving
G ∧ ψ1σ �EUF ⊥, . . . ,G ∧ ψnσ �EUF ⊥, but all ψis must be quantifier-free.

Conflict-driven instantiation is very helpful, since it only generates instances
that are immediately useful. It forces the ground solver to find new models and
eliminates spurious models from the search space.

Since Assertion 2 of Example 1 contains a quantifier, it cannot be instanti-
ated by conflict driven instantiation. Conflict driven instantiation also fails for
Assertion 1, because initially there is no ground formula that would be in con-
flict with an instance of P (f(x, c)). Even if the second assertion was Skolemized,
conflict-driven instantiation would fail: since there is no ground instance of the
Skolem term, no conflicting instance can be found.
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Trigger-Based Instantiation. This instantiation scheme works by matching trig-
gers with the current ground model. Triggers associate with every box ∀x̄. ϕ ∈ Q
one or more lists of quantifier-free terms t1, . . . , tn such that free(t1) ∪ · · · ∪
free(tn) = {x̄}. The triggers are either provided by the user or are heuristi-
cally generated. Trigger inference uses the structure of the quantified formulas
which is preserved by preprocessing. To construct instances of ϕ, trigger-based
instantiation searches for substitutions σ and terms g1, . . . , gn ∈ T (G) such that
G �EUF tiσ ≈ gi. If the search is successful, it returns the instance ϕσ.

The process of matching terms within the theory of equality and uninter-
preted functions is called E-matching [9,11,14]. Due to the heuristic nature of
trigger-based instantiation, the generated instances might not be useful to solve
the problem. Instead they can slow down or mislead the solver.

In the case of Example 1, a trigger P (x) on Assertion 1 would produce
the useless instance P (c) → P (f(c, c)) and a trigger P (f(x, c)) initially cannot
match anything. The trigger P (y) on Assertion 2 would produce the instance
(∀z. P (z) → P (f(z, c))) → ¬P (c). This instance is a step towards solving the
problem: the strong variable z is no longer below a quantifier and will be Skolem-
ized to create the formula P (s1) → P (f(s1, c)) → ¬P (c) where s1 is a fresh
constant. During the next instantiation round the trigger P (x) on Assertion 1
generates the instance P (s1) → P (f(s1, c)) which leads to the contradiction.

This technique is very sensitive to the availability of the right ground terms
in the ground model. In the above example, if the formula contained ∀x. P (x)
instead of P (c), trigger-based instantiation would have been helpless.

Enumerative Instantiation. While conflict driven instantiation is guided by the
ground model it tries to contradict, and trigger-based instantiation is guided by
the triggers, enumerative instantiation [17] is unguided. For a box with the form
∀x̄. ϕ ∈ Q it creates all substitutions [t̄/x̄] where the terms t̄ are ground terms
from T (M). To limit the number of generated instances the procedure only
uses the ground terms minimal with respect to some term order and does not
return instances already implied by the ground model (i.e., it only returns ϕσ
if G �EUF ϕσ). Enumerative instantiation ensures the theoretical completeness
of the SMT solver for the theory of uninterpreted functions. It can also find the
small ground terms that are sometimes necessary to enable the two previous
techniques to work, and is thus a useful fallback strategy.

For Example 1, enumerative instantiation also needs at least two rounds.
First, the variable y of Assertion 2 is instantiated with c. Then, after Skolemiza-
tion, Assertion 1 can be instantiated with the new Skolem constant. Eventually,
the cooperation of enumerative instantiation and the above techniques would
succeed. However, in presence of many ground terms of the same sort as c, enu-
merative instantiation might have needed a lot of time to find the right instance.

Model-Based Quantifier Instantiation. Finally, model-based quantifier instantia-
tion [12] extends heuristically the ground model M to a first-order interpretation
I and tests if this interpretation is a model: if there exists a box of the form
∀x̄. ϕ ∈ Q and a substitution σ of x̄ with terms from T (G) such that I � ¬ϕσ,
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then M is not a true model of P ′ and the ground instance ϕσ is produced. If
this is not the case, then I is a model of P ′ and the input problem is satisfiable.
This methods works for every fragment that has the finite model property.

For Example 1, model-based quantifier instantiation fails to generate the right
instances in one round for the same reason that trigger-based and enumerative
instantiation fail: it might instantiate Assertion 2 with c for y, but other rounds
of instantiations will still be required to reach a contradiction.

3 Quantifier Simplification by Unification

The essence of our technique is to simplify boxes by replacing a quantified sub-
formula of the box with the Boolean constant � or ⊥. This can be done if the
matrix of this quantified subformula can be unified with the matrix of a unit-box.

Example 3. On our running Example 1, the first assertion serves as unit-box,
whose matrix is unifiable with the matrix of the box in the second assertion. As
a result, the quantified subformula can be reduced to the Boolean constant �,
for some instance of the second formula.

∀x. P (x) → P (f(x, c)) ∀y. ((∀z. P (z) → P (f(z, y))) → ¬P (y))
� → ¬P (c)

The rewriter simplifies the formula � → ¬P (c) to ¬P (c). Notice that, in this
example, the variable z must be Skolemized because its quantifier is strong.

The SUB rule (Sect. 3.1) formalizes this derivation. An SMT solver can
use this rule to augment the problem with simplified formulas. It is care-
fully restricted to generate formulas which help the instantiation procedures
(Sect. 3.2). In Sect. 3.3 we propose several variants of the rule with different
tradeoffs.

3.1 The Core Rule

The simplification by unification of subformulas (SUB) rule simplifies a box by
replacing a quantified subformula with a Boolean constant. To be able to do so,
the rule unifies the matrix of the subformula with a unit-box using a substitution.
The Boolean constant depends on the polarities of the matrices: if they have the
same polarity the subformula is replaced by �, if they have different polarity it
is replaced by ⊥. The conclusion of the rule is the pre-simplified formula and
will be fully simplified by the rewriter.

Definition 1 (SUB Rule).

∀x1, . . . , xn. ψ1 ∀xn+1, . . . , xm. ϕ[Qȳ. ψ2]
SUB∀xk1 , . . . , xkj

. ϕ[b]σ

where Q ∈ {∃,∀}, the subformula Qȳ. ψ2 appears only below the outermost uni-
versal quantifier of ϕ, and σ is a substitution. The rule is subject to the condi-
tions:
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1. trim(ψ1)σ = trim(ψ2)σ, if Qȳ. ψ2 is weak;
2. trim(ψ1)σ = trim(sk(Qȳ. ψ2, xn+1 . . . xm))σ, if Qȳ. ψ2 is strong;
3. The bound variables of the conclusion {xk1 , . . . , xkj

} are exactly free(ϕ[b]σ);
4. b = � if pol(ψ1) = pol(ψ2) or b = ⊥ if pol(ψ1) �= pol(ψ2).

Example 4. In the running example the subformula ∀z. P (z) → P (f(z, y))
occurs negatively. Since Q = ∀, the formula must be Skolemized (Condition
2):

sk(∀z. P (z) → P (f(z, y)), y) = P (s1(y)) → P (f(s1(y), y))

Hence, the unifier used in Example 3 is σ = [s1(c)/x][c/y].

Example 5. Ignoring Skolemization (Condition 2) leads to unsoundness:

∀x. P (x, x) ∀y.¬(∀z. P (y,G(z)))
¬�

The result of Skolemization sk(∀z. P (y,G(z)), y)) = P (y,G(s1(y))) is not unifi-
able with P (x, x). The rule is not applicable.

Example 6. The conclusion can contain variables from both premises. Here the
unifier is σ = [G(x)/y1][c/z].

∀x. P (G(x), c) ∀y1, y2. (∀z. P (y1, z)) ∧ P (y1, y2)
SUB∀x, y2.� ∧ P (G(x), y2)

Example 7. The above examples were cases where pol(ψ1) = pol(ψ2). This
example illustrates the other case:

∀x.¬P (x, x) ∀y.G(c) ∧ (∀z. P (y, z))
SUB

G(c) ∧ ⊥

In this case, the rewriter will simplify the pre-simplified formula G(c) ∧ ⊥ to ⊥
and the SMT solver can directly deduce unsatisfiability.

The SUB rule allows us to simply combine and restrict Skolemization, uni-
fication, and the replacement of subformulas with the appropriate constant. In
the next section we will see the role it has within an SMT solver. The rule
soundly combines these sound steps. First, it Skolemizes the variables ȳ. Second,
it applies the unifier σ. Now the subformula of ψ1 corresponding to Qȳ. ψ2 in the
SUB rule is equivalent to trim(ψ1)σ and is replaced with a Boolean constant.
The constant is chosen appropriately according to the polarity of the formu-
las. This replacement is sound since ψ1σ always holds. Overall, the SUB rule,
together with applying the rewriter, somewhat resembles unit resolution where
∀x1, . . . , xn. ψ1 is the unit clause. In the case of SMT solvers, however, ϕ might
not be a clause. Furthermore, ψ1 and ψ2 will have the complex structure that
is preserved from the input, since most currently used instantiation techniques
have no advantage from applying full clausification.
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3.2 The Simplification Within the SMT Solver

Since the SUB rule eliminates a quantified subformula, the conclusion is easier
to handle for the SMT solvers. In general, however, the conclusion does not
subsume the box serving as the second premise. Hence, this box cannot simply
be replaced by the conclusion. Instead, the problem must be augmented with
the derived box. As the evaluations show, augmenting the problem still helps
the SMT instantiation procedures to find the appropriate ground instances.

I ← ∅
Q is an empty queue.
for each clause C in P ′ do

4 if C is unit-box with the box � then I ← I ∪ {�}
5 if C contains a box then push(Q, C)
while Q is not empty do

�1 ∨ · · · ∨ �n ← pop(Q)
8 if there is ψ ∈ I and a box �i such that

ψ �i
SUB

�′ then
9 �′ ← rewrite(�′)

10 C′ ← �1 ∨ · · · ∨ �i−1 ∨ �′ ∨ �i+1 ∨ · · · ∨ �n
11 append C′ to P ′

if C′ contains a box and is not an unit-box then
13 push(Q, C′)

Fig. 2. The augmentation procedure.

The pseudocode in Fig. 2 shows the loop which augments the problem. It is
executed after preprocessing finishes and before the ground solver starts. The
procedure first iterates over the clauses in the preprocessed problem P ′ to build a
set I of unit-boxes (Line 4) which can be used to simplify quantified subformulas.
At the same time, this loop collects in a queue Q all clauses containing boxes
(Line 5). Then the procedure takes a clause from the queue and tries to simplify
one of its boxes. To do so, it uses the SUB rule. If this succeeds, the conclusion
is the pre-simplified formula. The procedure then uses the rewriter to finish
the simplification and the problem is augmented with the simplified formula by
adding it conjunctively to the problem (Lines 8 to 11). If the simplified clause
still contains a box, it is pushed back onto the queue (Line 13).

The procedure terminates since the queue Q will eventually be empty. Every
iteration removes a clause from the queue and adds at most one new clause.
When the test in line 8 fails, i.e., the SUB rule can not be applied, no new clause
is added. Otherwise, it adds a clause with fewer nested formulas that can serve
as Qȳ.ψ2 in the SUB rule. Hence, the SUB rule will eventually no longer apply
to any box left in the clauses in Q.

The approach of augmenting the problem with derived, but new, formu-
las bears the risk that the instantiation procedures create more useless ground
instances from the new formulas. To minimize this risk, the SUB rule is restricted
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to only apply when the result is likely to be helpful. First, the detection of sub-
formulas which can be eliminated only uses unification instead of a more general
approach. Since preprocessing preserves the structure of quantified formulas,
unifiability can indicate the intention of the user. For example, the unit-box
might be a lemma that is used within the box that is simplified. Second, the first
premise must be a box. In principle it could also be a ground literal, but ground
literals are already directly usable by the ground solver. Third, the simplified
subformula must start with a quantifier because the instantiation procedures
struggle to instantiate the quantified subformula. One of the variants described
in the next section drops this restriction, but it is not as useful as the restricted
rule.

3.3 Variants

As the experimental evaluation (Sect. 5) shows, the above version of quantifier
simplification by unification solves more instances at little cost. Nevertheless, we
also developed several variants with different tradeoffs. We will call quantifier
simplification by unification as presented so far the normal variant and will often
drop the phrase by unification to avoid repetition.

Eager Simplification. Since quantified subformulas block the instantiation pro-
cedures from creating the right instances quickly, the SUB rule is restricted to
only simplify quantified subformulas. This restriction, however, can be removed
to generate more simplified formulas. The eager SUB rule is the rule

∀x1, . . . , xn. ψ1 ∀xn+1, . . . , xm. ϕ[ψ2] eager-SUB∀xk1 , . . . , xkj
. ϕ[b]σ

and all side conditions of SUB are changed to read ψ2 in-place of Qx̄. ψ2.
The eager SUB rule can be applied on any subformula not below an extra

quantifier. On the one hand, this corresponds to deriving general consequences
of unit-boxes in full first-order logic, but on the other hand, it will generate many
more new formulas which potentially slow down or misguide the solver.

Solitary Variable Heuristic. To limit the potential downsides of eager simplifi-
cation, we can limit the cases when the rule is applied: we apply the rule when
it potentially removes a variable from the outermost quantifier of the second
premise. The resulting formula will produce fewer misleading instances.

A variable is removed from the pre-simplified formula if it is solitary : it
appears in the subformula ψ2, but not in any other subformula of ϕ. Hence, for
example, in the case ϕ = t1 ∨ · · · ∨ ti ∨ · · · ∨ tn we apply the rule with ψ2 = ti if
there is a variable x ∈ free(ti) such that x �∈ free(t1 ∨ · · · ∨ ti−1 ∨ ti+1 ∨ · · · ∨ tn).
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Deletion of Simplified Clauses. Another way to restrict the number of newly
created instances is to delete the clause that contains the box used as the second
premise of the SUB rule after it has been simplified. While this is no longer com-
plete, it can guide the solver towards solving the refutation problem. Especially,
within a strategy schedule this can be a valuable strategy.

This variant can be combined with the three other variants. Overall, this
results in six variants of quantifier simplification. The amount of clauses deleted
depends on the activity of the simplification variant used. Especially in the case
of eager simplification with deletion many input assertions will be deleted.

4 Implementation

Our implementation of quantifier simplification by unification in veriT uses
a non-perfect discrimination tree as term index and a subsequent unifiability
check (Sect. 4.1). Both steps are amended to take strong variables into account
without explicit Skolemization and avoid the creation of unnecessary Skolem
symbols.

The implementation also does not apply the simplification of clauses every-
where, but focuses on unit-boxes only: the queue Q will only be populated by
unit-boxes. This simplifies the implementation, since we do not have to track
which boxes of a clause have already been simplified. It indeed appears that in
SMT-LIB benchmarks clauses with boxes are uncommon and quantified formulas
are usually unit-boxes (e.g., quantifiers range over entire disjunctions). A pro-
totype without this simplification did not perform better on these benchmarks
than the simplified version.

4.1 Indexing and Unification Without Skolemization

A key element to execute quantifier simplification, as shown in the algorithm
in Fig. 2, is the lookup of the unit-box ∀x̄. ψ1 from the index I. The trimmed
matrix of this box must be unifiable with the trimmed matrix of the quantified
subformula Qȳ. ψ2. To implement the search for unifiable formulas efficiently
we use a term index. We use non-perfect discrimination trees [21]. Non-perfect
means that the lookup is an over-approximation: some returned terms are not
unifiable with the query term and must be removed by a full unification step.

For each unit-box ∀x̄. ψ1 (of I in the algorithm in Fig. 2) the index stores
trim(ψ1) together with pol(ψ1). For each possible subformula Qȳ. ψ2 the imple-
mentation uses trim(ψ2) as a query term and retrieves unification candidates
and their polarity. Afterwards, it performs a full unification to construct the
substitution σ when possible. If, however, the quantifier of Qȳ. ψ2 is strong, the
subformula should be Skolemized.

To handle variables that would be replaced by Skolem terms, the lookup
process is enhanced: while normal variables are replaced by a variable placeholder
that can match any term, variables to be Skolemized act like constants and
can not match any other term. This embeds Skolemization into indexing, since
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Skolem terms start with fresh function symbols that can never match indexed
terms.

After the index returns a filtered set of possible premises trim(ψ1) with their
polarities pol(ψ1) from I, the implementation must use full unification [19] to
eliminate false positives and to build the unifier σ. It has to solve the unification
problem between trim(ψ1) and trim(ψ2), where trim(ψ2) can contain variables
that must be Skolemized.

To handle Skolemized variables during unification, our implementation devi-
ates from the standard version in two ways. First, similarly to the term index,
it handles Skolemized variables as constants. Second, it considers a Skolemized
variable as an occurrence of all the variables its Skolem term would depend on.

The resulting unifier σ cannot substitute a Skolem term into the quantified
variables xn+1, . . . , xm of the box that is simplified. Hence, the conclusion ϕ[b]σ is
free of any Skolem terms, and no Skolem term has ever to be constructed. Overall,
restricting quantifier simplification by unification to not simplify formulas below
multiple nested quantifiers allows for this elegant implementation.

5 Evaluation

This section presents an empirical evaluation of quantifier simplification by unifi-
cation and its variants as implemented in veriT.1 The default variant of quantifier
simplification solves more benchmarks than the default configuration of veriT,
while losing few benchmarks. This justifies the activation of our quantifier sim-
plification method in the default configuration. Almost all other variants also
solve more benchmarks than the default configuration. veriT exposes a wide
range of options to fine-tune the instantiation module. A specific configuration
is a strategy. Quantifier simplification solves benchmarks not solved by any veriT
strategy without this technique (Sect. 5.1).

In order to fully benefit from the strategies available, veriT can use strategy
schedules. We generated strategy schedules with and without quantifier simpli-
fication and evaluated their performance. The strategies with quantifier sim-
plification are an integral component of the generated schedules and increase
the number of solved benchmarks. They are especially useful for short timeouts
(Sect. 5.2).

We performed the experiments on the benchmarks from the SMT-LIB bench-
mark release 2021 [5]. Since quantifier simplification is only relevant for first-
order formulas, we used the SMT-LIB logics supported by veriT which use
quantifiers, uninterpreted functions, or arrays. Those are the SMT-LIB log-
ics UF, UFLRA, UFLIA, UFIDL, ALIA, AUFLIA, and AUFLIRA. Since veriT is
purely refutational, we removed benchmarks known to be satisfiable from the
analysis.2 Overall, the SMT-LIB contains 41 129 benchmarks using these logics.

1 The raw data is available on Zenodo [1].
2 Benchmarks known to be satisfiable can identify soundness problems. Hence, we

included them in the experiments, but removed them from the data.
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Table 1. Comparison with the default strategy and the theoretical best solver on 39 923
benchmarks.

vs. Default (solves 31 690) N E S Nd Ed Sd Total

Solved 31 927 31 772 31 928 31 733 21 405 21 823 32 151

+237 +82 +238 +43 −10 285 −9 867 +461

Gained 282 315 285 291 115 255 475

Lost 45 233 47 248 10 400 10 122 14

vs. Theoretical Best (solves 32 633)

Gained 83 80 85 86 32 76 125

Of those, 1206 benchmarks are known to be satisfiable. This leaves 39 923 rele-
vant benchmarks. We used the 2021.06-rmx release of veriT.

To interpret the numbers, the reader should keep in mind that veriT has no
array solver. It treats the functions of the SMT-LIB theory of arrays as uninter-
preted functions. Since veriT is restricted to refute benchmarks, this approach is
sound. Nevertheless, veriT can fail to solve easy benchmarks that require array
reasoning.

All experiments have been performed on computers with one Intel Xeon Gold
5220 processors with 18 cores and 96 GiB RAM. We ran one instance of veriT
per available core and used a memory limit of 6 GiB per instance.

5.1 Baseline Comparison

Table 1 shows the number of benchmark solved within a timeout of 180 s in com-
parison to the default strategy. The standard version of quantifier simplification
by unification is denoted N, eager simplification is denoted E, and the solitary
variable heuristic is denoted S. A suffix d denotes the deletion of simplified
clauses. Benchmarks are “Gained” if they are not solved by the default strategy
and “Lost” if they are solved by the default strategy, but not by the variant.
The column “Total” reports the union of the benchmarks solved by all variants.

The normal variant shows a good improvement by solving 237 benchmarks
more. Most other variants solve more benchmarks not solved by the default
strategy, but also lose many more. While the normal variant does not have the
highest gain, the small loss justifies enabling it in the default strategy of veriT.
The huge number of lost benchmarks for the variants that use clause deletion
with either eager simplification or the solitary variable heuristic is not surprising:
since most input assertions can be simplified in some way, clause deletion removes
much of the original problem. The result is often an unsolvable problem.

Compared to the union of benchmarks solved by any existing veriT strategy
(Theoretical Best), quantifier simplification by unification shows good improve-
ment. We used a list of 43 strategies which are also used by veriT in the SMT
competition.3 The default configuration of veriT is on this list. Overall, the

3 Competition website: https://smt-comp.github.io/.

https://smt-comp.github.io/
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Fig. 3. CDF of different schedules on UF only and all logics.

variants together are able to solve 125 benchmarks that veriT could not solve
before. While eager simplification solves only 80 more, 18 of those are not solved
by any other quantifier simplification variant. Here, the two variants with clause
deletion that have a huge loss are somewhat redeemed: together they solve eight
benchmarks not solved by the theoretical best solver and the other quantifier
simplification variants.

To perform the quantifier simplification, veriT does not need much time: for
the normal variant, we measured a median runtime of 0.5 ms and mean of 3 ms.

5.2 Strategy Scheduling

Since quantifier instantiation relies on heuristics, veriT exposes parameters that
can be set by the user in a strategy. Most benchmarks are solved by an appro-
priate strategy within a short timeout. Hence, it is sensible to execute many
strategies for short time intervals one after another in a schedule.

To evaluate the quantifier simplification technique within a strategy sched-
ule, we generated schedules with and without strategies extended with quantifier
simplification. An optimal schedule is the set of strategy–timeout pairs which
solves the most benchmarks. The list of possible strategies and timeouts is hand-
crafted. We use integer programming to solve this optimization problem. veriT
itself uses the logic of the problem to select a schedule.
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To build strategies with quantifier simplification we picked six strategies from
the strategy list of 43 strategies: the default strategy, the strategy that solved the
most benchmarks overall, and four complementary strategies. The four comple-
mentary strategies were selected by finding a pair of strategies that together with
the best strategy maximize the number of solved benchmarks. We searched such
a pair on all logics and on first-order logic with equality (UF) alone. We then
extended these six strategies with the six variants of quantifier simplification.
This resulted in 36 new strategies.

We generated schedules optimized for timeouts of 180 s and 24 s. The short
24 s timeout allows us to evaluate the value of quantifier simplification for appli-
cations such as interactive theorem provers, which require a short timeout. It
corresponds to the timeout used by the SMT competition to evaluate solvers for
this purpose. The longer 180 s timeout was arbitrarily chosen.

Figure 3 shows the number of benchmarks solved within a time limit on UF
alone and on all logics. On all logics, the schedule with quantifier simplification
solved 193 benchmarks more after 24 s than the original 24 s schedule. For the
180 s timeout, the 180 s schedule with quantifier simplification solves 191 more
than the one without. The 24 s schedule with quantifier simplification solves 18
benchmarks more than the 180 s schedule after 180 s. Hence, quantifier simplifi-
cation is very useful for short timeouts. Since the form of quantified lemmas that
quantifier simplification by unification eliminates appear in problems generated
by interactive theorem provers, it is especially useful for this application.

To provide context the plots contain the results of two other systems: the
state-of-the-art SMT solver CVC4 and the superposition prover Vampire [13].
We used the official builds of version 1.8 of CVC4 and version 4.5.1 of Vam-
pire. Vampire includes the SMT solver Z3, which aids theory reasoning. Since
CVC4 has no scheduler optimized for 24 s or 180 s, we ran the default strategy.4

For Vampire we used the SMT-COMP scheduler with a timeout of 180 s.5 We
discarded all “satisfiable” results. Overall, CVC4 solves 70 benchmarks more
than veriT with quantifier simplification after 24 s and 26 after 180 s. veriT with
quantifier simplification after 180 s solves 595 benchmarks not solved by CVC4,
of which 107 are also not solved by veriT without quantifier simplification. Sur-
prisingly, Vampire solves fewer benchmarks than any other system on UF. This is
due to the nature of typical SMT benchmarks: they usually require little quanti-
fier reasoning and are hence easier to solve for instantiation-based systems.6 This
confirms that restricted methods, such as quantifier simplification by unification,
are useful for SMT problems.

Figure 4 visualizes the schedules for the logic UF. Grey cells are strategies
that use quantifier simplification. Cells with the same number use the same base
strategy. Some base strategies appear both in the schedules with and without

4 Using: -L smt2.6 --no-incremental --no-type-checking --no-interactive
--full-saturate-quant.

5 Using: -t 180s -m 6000 --mode portfolio --schedule smtcomp --input syntax smtlib2
-om smtcomp -p off.

6 This has been confirmed to us by the Vampire team in conversations.
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Fig. 4. Visualization of optimized UF schedules. The bottom rows are the schedules
with quantifier simplification. The numbers denote the base strategies.

quantifier simplification. The strategies with quantifier simplification tend to be
used for shorter time slices than the variants without.

6 Conclusion

We presented a new unification-based simplification technique for instantiation-
based SMT solvers. Its design is motivated by limitations of modern instantiation
methods, and it is efficient. Problems where formulas can be simplified are often
solved much faster, despite the method creating new quantified formulas. We
plan to enable quantifier simplification by unification by default in the next veriT
release. The release will also produce machine-checkable proofs for simplifications
performed by quantifier simplification by unification.

We believe that the technique implemented here within veriT can be ported
easily into any instantiation-based SMT solver, and we are confident that it
would also enable mainstream solvers to tackle problems outside of reach with
other current strategies. We will investigate its potential in other solvers.

Our method is a step towards using techniques inspired by resolution-based
theorem provers within SMT solvers. It is currently only used as a preprocessing
technique, but we plan to investigate novel quantifier instantiation techniques
which can directly handle nested strong quantifiers.
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