Skip to main content

Symbol Elimination and Applications to Parametric Entailment Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12941))

Abstract

We analyze possibilities of second-order quantifier elimination for formulae containing parameters – constants or functions. For this, we use a constraint resolution calculus obtained from specializing the hierarchical superposition calculus. If saturation terminates, we analyze possibilities of obtaining weakest constraints on parameters which guarantee satisfiability. If the saturation does not terminate, we identify situations in which finite representations of infinite saturated sets exist. We identify situations in which entailment between formulae expressed using second-order quantification can be effectively checked. We illustrate the ideas on a series of examples from wireless network research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If \({\mathcal {T}}_0\) does not allow QE but has a model completion \({\mathcal {T}}_0^*\) which does, and if we use QE in \({\mathcal {T}}_0^*\) in Alg. 1, \({\mathcal {T}}_0 \wedge \forall {\overline{x}} \Gamma _T({\overline{x}}) \cup G \models \bot \), but \(\forall {\overline{x}} \Gamma _T({\overline{x}})\) might not the weakest universal formula \(\Gamma \) with the property that \({\mathcal {T}}_0 \cup \Gamma \cup {\mathcal K}\models \bot \).

  2. 2.

    We can bring the clauses to this form using variable abstraction.

  3. 3.

    These conditions are satisfied by an LPO with an operator precedence in which the predicate symbol P (which can be regarded as function symbol with output sort \(\mathsf{bool}\)) is larger than the other operators and domain elements are minimal w.r.t. \(\succ \) which is supposed to be well-founded on the domain elements.

  4. 4.

    We can consider only models \(\mathcal {A}\) whose support of sort \(\mathsf{p}\) is infinite. The theory that formalizes this is the model completion of the theory \(\mathcal{E}\) of pure equality which allows quantifier elimination. We can then use the method for quantifier elimination in combinations of theories with QE described in [37].

  5. 5.

    If the set N of constrained P-clauses (hence the set of constrained Horn clauses \(CH_N\)) contains at least one parameter then \(\mu Z\) often returns “unknown”. In addition, if \(\mu Z\) can prove satisfiability of \(CH_N \cup \{ \lnot \mu _j({\overline{x}}) \}\) for a non-parametric problem, the model it returns is not guaranteed to be minimal in general, and cannot be used for representing the saturated set of clauses. By Theorem 7 (2), satisfiability of \(CH_N \cup \{ \lnot \mu _j({\overline{x}}) \}\) is sufficient for proving the satisfiability of N in this case.

  6. 6.

    We can iterate the application of \( HRes ^P_{\succ }\) for variables \(P^i_1, \dots , P^i_n\) (in this order). This corresponds to a variant of ordered resolution which we denote by \( HRes ^{P^i_1,\dots ,P^i_n}_{\succ }\); if saturation terminates the conjunction of clauses not containing \(P^i_1,\dots , P^i_n\) is equivalent to \(\exists P^i_1,\dots ,P^i_n~ N_{F_i}\), where \(N_{F_i}\) is the clause form of \(F_i\).

  7. 7.

    To check that the inclusion holds in one given model \(\mathcal {A}\) we can choose \({\mathcal {T}}= \mathsf{Th}(\mathcal {A})\).

References

  1. Abdulaziz, M., Mehlhorn, K., Nipkow, T.: Trustworthy graph algorithms (invited talk). In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) Proceedings 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), volume 138 of LIPIcs, pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  2. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik. Mathematische Annalen 110, 390–413 (1935)

    Article  MathSciNet  Google Scholar 

  3. Ackermann, W.: Zum Eliminationsproblem der mathematischen Logik. Mathematische Annalen 111, 61–63 (1935)

    Article  MathSciNet  Google Scholar 

  4. Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in a theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 23–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_3

    Chapter  MATH  Google Scholar 

  5. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)

    Article  MathSciNet  Google Scholar 

  6. Barrett, C.W., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  7. Barrière, L., Fraigniaud, P., Narayanan, L., Opatrny, J.: Robust position-based routing in wireless ad hoc networks with irregular transmission ranges. Wirel. Commun. Mobile Comput. 3(2), 141–153 (2003)

    Article  Google Scholar 

  8. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_3

    Chapter  Google Scholar 

  9. Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp. 15–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7_2

    Chapter  Google Scholar 

  10. Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem. Mathematische Annalen 86(3–4), 163–229 (1922)

    Article  MathSciNet  Google Scholar 

  11. Bjørner, N., de Moura, L., Nachmanson, L., Wintersteiger, C.M.: Programming Z3. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430, pp. 148–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3_4

    Chapter  Google Scholar 

  12. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

    Chapter  Google Scholar 

  13. Bjørner, N., Nachmanson, L.: Navigating the universe of Z3 theory solvers. In: Carvalho, G., Stolz, V. (eds.) SBMF 2020. LNCS, vol. 12475, pp. 8–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63882-5_2

    Chapter  Google Scholar 

  14. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis, Université de Liège (1998)

    Google Scholar 

  15. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, pp. 313–400. World Scientific (1997)

    Google Scholar 

  16. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. SIGSAM Bull. 31(2), 2–9 (1997)

    Article  Google Scholar 

  17. Fietzke, A., Kruglov, E., Weidenbach, C.: Automatic generation of invariants for circular derivations in SUP(LA). In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 197–211. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_17

    Chapter  MATH  Google Scholar 

  18. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: applications to broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36206-1_14

    Chapter  Google Scholar 

  19. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning (KR92), pp. 425–435. Morgan Kaufmann. Also published as a Technical Report MPI-I-92-231, Max-Planck-Institut für Informatik, Saarbrücken, and in the South African Computer Journal (1992)

    Google Scholar 

  20. Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications, volume 12 of Studies in logic: Mathematical logic and foundations. College Publications (2008)

    Google Scholar 

  21. Goranko, V., Hustadt, U., Schmidt, R.A., Vakarelov, D.: SCAN is complete for all Sahlqvist formulae. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 149–162. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24771-5_13

    Chapter  Google Scholar 

  22. Hoder, K., Bjørner, N., de Moura, L.: \(\mu \)Z– an efficient engine for fixed points with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_36

    Chapter  Google Scholar 

  23. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 188–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_16

    Chapter  Google Scholar 

  24. Horbach, M., Sofronie-Stokkermans, V.: Obtaining finite local theory axiomatizations via saturation. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 198–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_14

    Chapter  Google Scholar 

  25. Horbach, M., Sofronie-Stokkermans, V.: Locality transfer: from constrained axiomatizations to reachability predicates. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 192–207. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_14

    Chapter  Google Scholar 

  26. Horbach, M., Weidenbach, C.: Deciding the inductive validity of \(\forall \exists ^*\) queries. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 332–347. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04027-6_25

    Chapter  Google Scholar 

  27. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_19

    Chapter  Google Scholar 

  28. Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 131–139. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_9

    Chapter  Google Scholar 

  29. Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 30–45. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_4

    Chapter  MATH  Google Scholar 

  30. Kersani, A., Peltier, N.: Combining superposition and induction: A practical realization. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 7–22. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_2

    Chapter  MATH  Google Scholar 

  31. Kovács, L.: Invariant generation for P-solvable loops with assignments. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 349–359. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79709-8_35

    Chapter  Google Scholar 

  32. Kovács, L.: Reasoning algebraically about P-solvable loops. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_18

    Chapter  Google Scholar 

  33. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_17

    Chapter  Google Scholar 

  34. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wirel. Networks 14(5), 715–729 (2008)

    Article  Google Scholar 

  35. Marohn, P.: Verifikation und Constraint-Generierung in parametrisierten Systemen. BSC Thesis, University Koblenz-Landau (2021)

    Google Scholar 

  36. Peuter, D., Marohn, P., Sofronie-Stokkermans, V.: Symbol elimination for parametric second-order entailment problems (with applications to problems in wireless network theory) (2021). https://arxiv.org/abs/2107.02333

  37. Peuter, D., Sofronie-Stokkermans, V.: On invariant synthesis for parametric systems. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 385–405. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_23

    Chapter  Google Scholar 

  38. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231_16

    Chapter  Google Scholar 

  39. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 273–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_19

    Chapter  Google Scholar 

  40. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions. Log. Methods Comput. Sci. 14(3) (2018)

    Google Scholar 

  41. Voigt, M.: Towards elimination of second-order quantifiers in the separated fragment. In: Koopmann, P., Rudolph, S., Schmidt, R.A., Wernhard, C. (eds.) Proceedings of the Workshop on Second-Order Quantifier Elimination and Related Topics (SOQE 2017), Dresden, Germany, 6–8 December, 2017, volume 2013 of CEUR Workshop Proceedings, pp. 67–81. CEUR-WS.org (2017)

    Google Scholar 

  42. Voigt, M.: Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates. Ph.D. thesis, Saarland University, Saarbrücken, Germany (2019)

    Google Scholar 

Download references

Acknowledgments

We thank Hannes Frey and Lucas Böltz for the numerous discussions we had on the problems in wireless networks discussed in Sect. 1.1, Renate Schmidt for maintaining a website where one can run SCAN online and for sending us the executables and instructions for running them, and to the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorica Sofronie-Stokkermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peuter, D., Sofronie-Stokkermans, V. (2021). Symbol Elimination and Applications to Parametric Entailment Problems. In: Konev, B., Reger, G. (eds) Frontiers of Combining Systems. FroCoS 2021. Lecture Notes in Computer Science(), vol 12941. Springer, Cham. https://doi.org/10.1007/978-3-030-86205-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86205-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86204-6

  • Online ISBN: 978-3-030-86205-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics