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Abstract. The paper introduces a knowledge representation language that com-
bines the event calculus with description logic in a logic programming framework.
The purpose is to provide the user with an expressive language for modelling and
analysing systems that evolve over time. The approach is exemplified with the
logic programming language as implemented in the Fusemate system. The paper
extends Fusemate’s rule language with a weakly DL-safe interface to the descrip-
tion logicALCIF and adapts the event calculus to this extended language. This
way, time-stamped ABoxes can be manipulated as fluents in the event calculus.
All that is done in the frame of Fusemate’s concept of stratification by time. The
paper provides conditions for soundness and completeness where appropriate.
Using an elaborated example it demonstrates the interplay of the event calculus,
description logic and logic programming rules for computing possible models as
plausible explanations of the current state of the modelled system.
This is a corrected version of the published paper. It adds a missing case in

the definition of the semantics of body literals (Section 2.1), and it fixes a flaw

in the definition of possible models (See Note 3).

1 Introduction

This paper presents an expressive logical language for modelling systems that evolve
over time. The language is intended for model computation: given a history of events
until “now”, what are the system states at these times, in particularly “now”, expressed as
logical models. This is a useful reasoning service in application areas with only partially
observed events or incomplete domain knowledge. By making informed guesses and
including its consequences, the models are meant to provide plausible explanations for
helping understand the current issues, if any, as a basis for further decision making.

For example, transport companies usually do not keep detailed records of what goods
went on what vehicle for a transport on a particular day. Speculating the whereabouts of
a missing item can be informed by taking known locations of other goods of the same
batch on that day into account; problems observed with goods on delivery site, e.g., low
quality of fresh goods, may or may not be related to the transport conditions, and playing
through different scenarios may lead to plausible explanations while eliminating others
(truck cooling problems? tampering?).

There are numerous approaches for modelling and analysing systems that evolve
over time. They are often subsumed under the terms of stream processing, com-
plex event recognition, and situational awareness, temporal verification among oth-
ers, see [1,14,2,3,4] for some logic-based methods. Symbolic event recognition, for
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instance, accepts as input a stream of time-stamped low-level events and identifies high-
level events — collections of events that satisfy some pattern [1]. See [36] for a recent
sophisticated event calculus. Other approaches utilize description logics in a temporal-
ized setting of ontology-based data access (OBDA) [30]. For instance, [29] describes
a method for streaming data into a sequence of ABoxes, which can be queried in an
SQL-like language with respect to a given ontology.

The knowledge representation language put forward in this paper combines Kowal-
ski’s event calculus (EC) with description logics (DL) in a logic programming frame-
work. The rationale is, DLs have a long history of developments for representing struc-
tured domain knowledge and for offering reliable (decidable) reasoning services. The
EC provides a structured way of representing actions and their effects, represented as
fluents that may change their truth value over time. For the intended model computation
applications mentioned above, the EC makes it easy to take snapshots of the fluents at
any time. The full system state at a chosen time then is derived from the fluent snapshot
and DL reasoning. The logic programming rules orchestrate their integration and serve
other purposes, such as diagnosis.

This paper uses the Fusemate logic programming language and system [11,12].
Fusemate computes possible models of stratified disjunctive logic programs [33,34],
see Section 2 for details. Fusemate was introduced in [11] with the same motivation
as here. In [12] it was extended with novel language operators improved with a weaker
form of stratification. Their usefulness in combination was demonstrated by application
to description logic reasoning. In [12] it was shown how to transform an ALCIF 1
knowledge base into a set of Fusemate rules and facts that is satisfiable if and only if the
knowledge base is ALCIF -satisfiable. All of that is used in this paper.

Paper contributions. This paper builds on the Fusemate developments summarized
above and extends them in the following ways:

1. Integration of the description logic reasoner of [12] as a subroutine callable from
Fusemate rules. Section 3 details the semantics of the combination and conditions
for its soundness and completeness. This is an original contribution in its own right
which exploits advantages of a stratified setting.

2. A version of the event calculus [20] that fits Fusemate’s model computation and
notion of stratification. Details are in Section 4.

3. Integrating DL and EC by means of rules, and utilizing rules for KR aspects not
covered by either. Details in particular in Section 5

4. Providing an elaborated example the integrated EC/DL/rules language. It is included
in the Fusemate distribution which is available at https://bitbucket.csiro.au/users/bau050/repos/fusemate/.

To the best of my knowledge, a combination of DL with EC has not been considered
before. Given the long history of applying DL reasoning (also) for time evolving systems,
I find this surprising. From that perspective, a main contribution of this paper is to fill
the gap and to argue that the proposed combination makes sense.

1 ALCIF is the well-known description logicALC extended with inverse roles and functional
roles. See [5] for background on description logics.

https://bitbucket.csiro.au/users/bau050/repos/fusemate/
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There is work is on integrating DLs into the situation calculus (SitCalc) and similar
methods [15,9,8,10]. SitCalc [23] is a first-order logic formalism for specifying state
transitions in terms of pre- and post-conditions of actions. Its is mostly used for planning
and related applications that require reachability reasoning for state transitions. Indeed,
the papers [9] and [15] investigate reasoning tasks (executability and projection, ABox
updates) that are relevant in that context. Both approaches are restricted to acyclic
TBoxes. In [10], actions are specified as sets of conditional effects, where conditions
are based on epistemic queries over the knowledge base (TBox and ABox), and effects
are expressed in terms of new ABoxes. The paper investigates verification of temporal
properties. As a difference to the EC, none of these approaches supports a quantitative

notion of time.

2 Stratified Logic Programs and Model Computation

This paper uses the extended “Fusemate” rule language introduced in [12] without the
earlier belief revision operator introduced in [11]. This section complements the earlier
paper [12] with a rigorous definition of the semantics of the extended language. It also
provides soundness and completeness arguments, under certain conditions, wrt. abstract
fixpoint iteration and wrt. Fusemate’s procedure more concretely.

Terms and atoms of a given first-order signature with “free” ordinary function and
predicate symbols are defined as usual. Let T be a countably infinite discrete set of time

points equipped with a well-founded total strict ordering < (strictly earlier), e.g., the
natural numbers. Assume that the time points, comparison operators =, ≤ (earlier), and
a next time function +1 are also part of the signature and interpreted in the obvious
way. A time term is a (possibly non-ground) term over the sub-signature T ∪ {+1}. The
signature may contain other “built-in” interpreted predicate and function symbols for
predefined types such as strings, arithmetic data types, sets, etc. We only informally
assume that all terms are built in a well-sorted way, and that interpreted operators over
ground terms can be evaluated effectively to a value represented by a term.

Let var(4) denote the set of variables occurring in a term or atom 4. We say that 4
is ground if var(4) = ∅. We write 4f for applying a substitution f to 4. The domain of
f is denoted by dom(f). A substitution W is a grounding substitution for a finite set of

variables - iff dom(W) = - . In the following, the letters G, H, I stand for variables, time

for a time term variable, B, C for terms, and tt for a time term, possibly indexed. Lists of
terms or other expressions are written as vectors, e.g., ®C is a list of terms C1, . . . , C= for
some = >= 0. A (Fusemate) rule is an implication written in Prolog-like syntax as

� :– 11, . . . , 1: , not ®11, . . . , not ®1= . (1)

In (1), the rule head � is either (a) ordinary, a disjunction ℎ1 ∨ · · · ∨ ℎ< of ordinary
atoms, for some < ≥ 1, or (b) the expression fail.2 In case (a) the rule is ordinary and
in case (b) it is a fail rule. The list to the right of :– is the rule body. Bodies are defined
by recursion as follows, along with associated sets fvar (free variables).

2 This definition of head is actually simplified as Fusemate offers an additional head operator for
belief revision, see[11]. This is ignored here.



4 P. Baumgartner

Name Form fvar Comment

Ordinary atom ?(tt, ®C) var(tt, ®C) tt time term, ? free predicate

Comprehension
with time term G

?(G ◦ tt, ®C) sth � {G} ∪ var(tt, ®C) ◦ ∈ {<,≤, >,≥}, � is a body

Built-in call ?(®C) var(®C) ? is built-in predicate

Time comparison B ◦ C var(B, C) B, C time terms, ◦ ∈ {<,≤, >, ≥}

Let special form let(G, C) {G} ∪ var(C)
Choose special form choose(G, ts) {G} ∪ var(ts) ts is a set of terms

Collect special form collect(G, C sth �) {G}

Positive body ®1 11, . . . , 1: ∪8=1..: fvar(18) : ≥ 0, 18 is one of above

Negative body literal not ®1 ∅ ®1 is non-empty positive body

Body � ®1, not ®11, . . . , not ®1= fvar(®1) = ≥ 0, and ®1, ®1 9 positive bodies

A positive body literal is of one of the forms up to collect. Examples are below.

Note 1 (Implicit quantification). In a body �, the variables fvar(�) are implicitly exis-
tentially quantified in front of that �.3 Rules may contain extra variables in negative body
literals. An example is the rule p(time, G) :– q(time, G, H), not(I < time, r(G, H, I)) which
corresponds to the (universal quantification of the) formula q(time, G, H) ∧ ¬∃I.(I <

time ∧ r(G, H, I)) → p(time, G). The extra variable I will be picked up for existential
quantification after ground instantiating the rule body’s fvars {time, G, H}. If W is such a
grounding substitution then indeed fvar((I < time, r(G, H, I))W) = {I} as desired. The
formal definition of the possible model semantics below will make this precise. ⊓⊔

A normal rule is an ordinary rule with one head literal (< = 1 in (1)). A Horn rule is a
normal rule or a fail rule. A fact is an ordinary rule with empty body (:, = = 0 in (1))
and is simply written as �. A rule � :– � is range-restricted iff var(�) ⊆ fvar(�). A
(Fusemate) program is a finite set of range-restricted and stratified rules.

Stratification. The standard notion of stratification (“by predicates”) means that the
call graph of a program has no cycles going through negative body literals [31]. Every
strongly connected component of the call graph is called a stratum and contains the
predicates that are defined (in rule heads) mutually recursive with each other. All head
predicates of the same rule are put into the same stratum. Fusemate employs a weaker
stratification by time and by predicates (SBTP) [12]. With SBTP, every ordinary non-
fact rule (1) must have an ordinary body literal 18 , for some 1 ≤ 8 ≤ :, with a
pivot variable time, such that every other time term in the head (body) is syntactically
constrained to ≥ (≤, respectively) than time, and the literals within negative body
literals are syntactically constrained to be (a) < than time or (b) ≤ than time and must
be in a stratum strictly lower than the head stratum. For example, the rule p(time, G) :–
q(time, G), not(r(C, H), C ≤ time) is SBTP if r is in a strictly lower stratum than p, and
p(time, G) :– q(time, G), not(r(C, H), C < time) is SBTP even if r is in the same stratum
as p. This has the effect that model computation can be done in time/stratum layers in
increasing (lexicographic) order using only already derived atoms.

3 The variables var(C) in the collect special form have to be excluded from that because they
are quantified within their “sth �” body scope. To avoid name conflicts, we assume that
var(C) ∩ fvar(�′) = ∅ for all bodies �′ such that � = �′ or � occurs in �′.
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Comprehension and collect must be stratified for the same reason. For the purpose
of SBTP, a comprehension ?(G ◦ tt, ®C) sth � is taken as if ?(G, ®C) and � were negative
body literals, and collect(G, C sth �) is taken as if � were a negative body literal.

2.1 Possible Models

We need some preliminaries pertaining to the semantics of rules before formally defining
“possible models”. A (rule) closure is a pair (� :– �, V) such that V is a grounding
substitution for fvar(�) called body matcher in this context. For a program %, its full

closure cl(%) is the set of all closures of all rules in %.
Full closures supplant the usual full ground instantiation of programs. They make it

easy to define rule semantics in presence of the special forms, comprehension operators,
and implicit existential quantification without full grounding. This works as follows.

An interpretation � is a (possibly infinite) set of ordinary atoms. Let � be an inter-
pretation and V a grounding substitution for some set of variables. Let � be a body as
in (1). If fvar(�V) = ∅ define �, V |= � iff �, V |= 11, . . . , 1: and �, V |= not ®1 9 for all
9 = 1..=, where the following table provides the definitions for body literals:

Name Form Def

Ordinary atom �, V |= ?(tt, ®C) iff ?(tt, ®C)V ∈ �

Comprehension
with time term G

�, V |= ?(G < tt, ®C) sth � iff GV is the maximal (latest) time point s.th.
GV < ttV, �, V |= ?(G, ®C) and �, V |= ∃�.
Accordingly for ≥, <, ≤

Built-in call �, V |= ?(®C) iff ?(®C)V evaluates to true
Time comparison �, V |= B ◦ C iff BV ◦ CV
Let special form �, V |= let(G, C) iff GV = CV

Choose special form �, V |= choose(G, ts) iff GV ∈ tsV

Collect special form �, V |= collect(G, C sth �) iff GV = {CW | �, VW |= � for some
grounding substitution W for fvar(�V)}

Positive body ®1 �, V |= 11, . . . , 1: iff �, V |= 18 for all 8 = 1..:

Negative body literal �, V |= not ®1 iff �, V 6 |= ∃®1

In the table above, define �, V |= ∃� iff there is a grounding substitution W for
fvar(�V) such that �, VW |= � (VW is V extended with bindings for the implicitly existen-
tially quantified variables in�V). For closures define � |= (� :– �, V) iff �, V 6 |= � or else
� is an ordinary head ℎ1 ∨ · · · ℎ< and ℎ8V ∈ � for some 1 ≤ 8 ≤ <. In this case we say
that � satisfies (� :– �, V). An interpretation � is a model of a set � of closures, written
as � |= � iff � satisfies every closure in �. It is minimal iff � 6 |= � for every � ( � . It is
supported iff for every 0 ∈ � there is a (ℎ :– �, V) ∈ � such that 0 = ℎV and �, V |= �.

Note 2 (Fixpoint iteration for DLPs [33]). The possible model semantics [33,34] assigns
to a disjunctive logic program sets of Horn programs and takes their intended models
as the possible models of the disjunctive program. The Horn programs represent all
possible ways of making one or more head literals true, for every disjunctive rule. As
a propositional example, the disjunctive program {a :– b, a ∨ c :– b, b :– not d} is
split into the Horn programs {a :– b, b :– not d} and {a :– b, c :– b, b :– not d}.



6 P. Baumgartner

The possible models are {a, b} and {a, b, c}. Non-ground programs have to be fully
ground-instantiated using the program’s (possibly infinite) Herbrand base first.

As explained in [33], the possible models of such ground-instantiated stratified

programs can be constructed by iterated fixpoint computation along the program’s
stratification. For each stratum, in ascending order, the rules with a head predicate from
that stratum are evaluated in the model so far, up to that stratum, and, only if necessary,
made true by adding the head to the model, until fixpoint. In general this construction
requires transfinite induction with a limit ordinal at each stratum. ⊓⊔

From a practical (Fusemate) perspective we are mostly interested in finite fixpoints for
making model computation effective. We start with a definition for the possible models
splitting operator in terms of closures.

Definition 1 (Split program closure). Let % be a program and cl(%) its full closure.

A split program closure of % is obtained from cl(%) by replacing every closure (ℎ1 ∨
· · · ∨ ℎ< ← �, V) in cl(%) by the split closures (ℎ← �, V), for every ℎ ∈ (, where ( is

some non-empty subset of {ℎ1, . . . , ℎ<}.

Note 3 (Flawed Definition of Possible Models). The original paper [33] defines, in our
words, an interpretation � as a possible model of a program% iff � is a minimal supported
model of some split program of %. Unfortunately, there is a flaw in this definition. To
explain, by way of example, take the program% = {a :– a, b :– not a}. It has two minimal
supported models, �good = {1} and �bad = {0}which are exactly the possible models of %
according to this definition. However, while �good will be computed by fixpoint iteration,
�bad will be not. Clearly, �bad is not intended as a possible model in [33]. The example,
thus, disproves the completeness claim for fixpoint iteration in [33] (Theorem 3.1).

The flaw stems from requiring minimality of models as a whole. A fixed definition
needs to match the iterated fixpoint construction, which computes minimal (and sup-
ported) models on a per stratum basis. In the example, only ∅ is a minimal model of
the first stratum {0 :– 0} which is extended to the minimal model {1} of %. The perfect

model semantics of [31] achieves that and will be used below as a more suitable basis
for defining possible models. With that fix, a Theorem 3.1 in [33] will hold. ⊓⊔

Definition 2 (Possible models, adapted from [33] and corrected). An interpretation

� as a possible model of % iff � is a perfect model of some split program closure of %.

2.2 Fusemate Soundness and Completeness

We wish to apply the fixpoint model construction (Note 2) to Fusemate programs. For
this to work, rules must be monotonic and compact.

Definition 3. Let (� :– �, V) be an ordinary rule closure. It is monotonic iff for all �

and � ⊇ � such that every atom in � \ � is in the same stratum as �V, if �, V |= � then

�, V |= �. It is compact iff for all � , if �, V |= � then �, V |= � for some finite � ⊆ � .

In general, monotonicity of an operator guarantees the existence of a least fixpoint,
and compactness guarantees that it can be found by fixpoint iteration. For satisfiable
Horn programs, monotonicity entails the “model intersection property” which entails
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the existence of a unique minimal model. These are all well-known standard results [24],
and the above definitions are formulated in a way to make these results applicable.

Fusemate rules are always monotonic. In particular for comprehension and collect

this is due to stratification. However collect is not always compact. Given a body literal
collect(G, C sth �), there could be infinitely many substitutions W in the comprehension
{CW | �, VW |= � for some grounding substitution W for fvar(�V)}. Because infinite sets
have no term representation, such a collect literal renders its rule body always unsatisfied,
resulting in incompleteness. One possible way out is to make sure that the variables in
C range only over finite domains, e.g., sets of constants. With this fix, it follows that
fixpoint iteration (Note 2) wrt. SBTP is sound and complete for possible models of
Fusemate programs (Def. 2. The proof is an adaptation of the corresponding one in [33].

Soundness and completeness of fixpoint iteration holds in particular for finite models.
This suggests another “fix”: thanks to stratification, the mentioned incompleteness can
occur only when � itself is infinite at a limit step in the fixpoint iteration. Because
computing (rather, finitely representing) infinite models is out of scope anyway, it is safe
to ignore the compactness problem for finite model computation.

Fusemate. Fusemate implements a bottom-up model computation procedure in the style
of hyper tableaux [13] in a stratified way (SBTP). The Fusemate main loop computes
body matchers V of bodies � of program rules � :– � against a current branch (a model
candidate) and closes it or branches out according to possible models splitting. Each
new branch is for a set ( in Def. 1 and receives all ℎV for ℎ ∈ (.4 This constructs
tableau in a depth-first left-to-right order. Body matcher computation is made more
practical by guaranteed left-to-right evaluation of bodies. This helps to avoid unex-
pected undefinedness of comprehensions and special forms. For example, in the body
of r(time, xs) :– q(time, H), collect(xs, G sth(p(time, G), G > H)) the collect special form
binds the variable xs to the list of all G such that p(time, G) and G > H hold, where H
has already been bound by the preceding q(time, H). See [12] for a formal definition of
left-to-right body matcher computation.

Other than that, Fusemate model computation follows the abstract fixpoint computa-
tion procedure (see Note 2) for finite interpretations. This entails finite model soundness:
if Fusemate terminates on a program % with an open exhausted branch then this branch
contains a finite possible model of %. It also entails finite model completeness: if every
possible model of % is finite then Fusemate will compute each of them in its open
exhausted branches. A formal theorem for these results could be given but is not stated
here because it would require more formalization.

Fusemate’s termination behavior could be improved with a breadth-first strategy,
however at the expense of one-branch-at-a-time space efficiency. In the programs below
this is not a problem.

3 Description Logic Interface

Fusemate can be used as a description logic (DL) reasoner by mapping a DL knowledge
base into a logic program and running that program for satisfiability [12]. This section

4 Body matcher are represented internally in the Scala runtime system without explicit grounding.
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makes that reasoner callable from rules, but other DL reasoners could be coupled, too.
It describes the syntax, semantics, and soundness and completeness properties of the
coupling, and it discusses related work.

The DL terminology follows [5]. To summarize, a DL knowledge base KB consists
of a TBox and an ABox. A TBox ) is a set of GCIs (general concept inclusions), each
of the form � ⊑ � where � and � are DL concept expressions, or just concepts. An
ABox � is a set of ABox assertions, i.e., concept assertions and role assertions of the
forms 0 :� and (0, 1) : A, respectively, where 0 and 1 are individuals and A is a role.
Fusemate currently implementsALCIF , which is ALC extended with inverse roles
and functional roles. A role, hence, is either a role name = or an inverse role name
=−1. Roles can be declared as functional (right-unique). As usual, KB-satisfiability is
assumed to be decidable and concept formation must be closed under negation, so
that query entailment can be reduced to KB unsatisfiability as follows. Given a KB
(�,)) and an ABox &, the (ground) query, define (�,)) |=DL & iff the KB entails &
wrt. the usual first-order logic semantics of description logics, or, equivalently: for all
0 :� ∈ & the KB (� ∪ {0 :¬�}, )) is unsatisfiable and for all (0, 1) : A ∈ & the KB
(� ∪ {0 :∀ A.¬�, 1 : �}, )) is unsatisfiable, where � is a fresh concept name.

The coupling between the rules and the DL reasoner is two-way and dynamic: it is
two-way in the sense that rules can not only call the DL reasoner wrt. a fixed ABox and
a TBox, the rules can also construct ABoxes during model computation, individually in
each possible model. It is dynamic in the sense that ABox assertions are time-stamped,
like ordinary atoms, and also all earlier ABoxes are accessible by the rules.

Syntax. Concepts and roles are treated as constants by the rule language while any free
ground term can be a DL individual. More precisely, assume a DL signature whose
concept and role names are disjoint with the signature of the rule language. Let C, C1, C2
be free possibly non-ground terms, � a concept, A a role and tt a time term. An untimed

DL-atom is of the form C :� or (C1, C2) : A. Let IsAAt/3 and HasAAt/4 be distinguished
ordinary predicate symbols. A timed DL-atom is an ordinary atom IsAAt(C, �, tt) or
HasAAt(C1, A, C2, tt), usually written as C :� @ tt or (C1, C2) : A @ tt, respectively. Timed
DL-atoms can appear in heads (and bodies) of ordinary rules. This allows to create time-
stamped ABoxes initially as sets of facts and dynamically during program execution. For
calling the DL reasoner, the rule language is extended by the following DL-call special
forms, where ) is a TBox, � is an ABox, and ®@ (“query”) is a list of untimed DL-atoms.

) |= ®@ DLISSAT()) DLISUNSAT())

(�,)) |= ®@ DLISSAT(�,)) DLISUNSAT(�,))

The free variables are fvar( ®@) in the left column cases, otherwise empty.

Semantics. Logic programming considers syntactically different terms as unequal. This
is not enforced in DLs. Indeed, e.g., if � = {(a, c) : r, (a, b) : r} and r is a functional
role then � is satisfiable by making b and c equal. To avoid such discrepancies, DL
individuals are explicitly equipped with a unique name assumption, as follows.

Given an ABox �, let  (�) = {01, . . . 0=} be the set of all (“known”) individ-
uals mentioned in � and define UNA(�) = {08 : # (08 ,0 9 ) , 0 9 :¬# (08 ,0 9 ) | 08 , 0 9 ∈
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 (�) and 1 ≤ 8 < 9 ≤ =}. In that, # (08 ,0 9 ) are fresh concept names. The set UNA(�)

specifies that all individuals in � must be pairwise unequal (a, b and c in the example).
The definition of rule semantics in Section 2 is extended by DL-calls as follows:

�, V |= ((�,)) |= ®@) iff (� ∪ UNA(�) ∪ UNA( ®@V), )) |=DL ®@V ( ®@V as a set); �, V |=
DLISSAT(�,)) iff (� ∪ UNA(�), )) is satisfiable; �, V |= DLISUNSAT(�,)) iff (� ∪
UNA(�), )) is unsatisfiable.

For the DL-calls on the first line, let time be the pivot variable of the rule containing
the DL-call and take � = abox(�, time V) for the corresponding definition with explicit
�, where abox(�, 3) = {C :� | C :� @ 3 ∈ �} ∪ {(C1, C2) : A | (C1, C2) : A @ 3 ∈ �} is the
induced ABox from � at time 3. Intuitively, such a DL-call gets its ABox from the current
interpretation by projection from its timed DL-atoms at the current time.

Notice the implicit dependency of an induced ABox on timed DL-atoms at pivot
time. This is why for the purpose of stratification every line one DL-call stands for
the two subgoals IsAAt(_, _, time) and HasAAt(_, _, _, time). For constant ABoxes on the
second line stratification is not an issue. (As such they are not very useful - but see
Example 2 and the example in Section 5 below.)

With all that in place, the possibly model semantics for stratified programs defined
in Section 2.1 carries over to the DL coupling without change. Notice that the semantics
of the coupling is agnostic of the notion of (un)satisfiability and entailment in the DL
part. This way, the coupling respects the usual open world semantics of DL reasoning.
Notice also that it is possible that a program has a possible model � whose induced
ABox is unsatisfiable with some TBox ) . If this is not desirable it is easy to reject such
a model with a fail rule utilising a DLISUNSAT()) call.

Soundness and completeness. Soundness and completeness carries over from Sec-
tion 2.2 with some caveats. Incompleteness can arise due to potentially infinite ABoxes
induced at limit ordinals. With an interest in finite models only, this issue can safely be
ignored, as before. A more relevant issue is monotonicity (Def. 3). DLISSAT calls can be
non-monotonic because first-order logic satisfiability is, of course, not always preserved
when a KB grows. This can lead to both incompleteness/unsoundness, depending on a
positive/negative call context. The other two forms are based on unsatisfiability, hence
monotonic, and cause no problem. With those only, iterated fixpoint computation and
Fusemate model computation are both sound and complete for finite possible models.

Related work. According to the classification in [16], ours is a hybrid approach with
a loose coupling between the description logic and the rule reasoner. The coupling is
done in a DL-safe way [27], in fact, essentially, in a weakly DL-safe [32] way as in
DL+Log. DL+log [32] is among the most expressive languages that combines rules
with ontologies. DL+log rules can query a DL reasoner by taking concept/role names as
unary/binary predicates and using (in our terms) extra existentially quantified variables
in queries. With Fusemate rules one would equivalently use existential role restrictions.
Unlike DL+log, Fusemate allows DL-calls within default negation, cf. Example 2. Most
other hybrid languages, like the one in [27] and dl+Programs [17] do not allow DL
atoms in the head. Unlike as in the other approaches, concepts and roles are terms here
and, hence, can be quantified over in rules. This is advantageous for writing domain
independent rules involving concepts and roles, such as the event calculus in Section 4.
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3.1 Example

As a running example we consider a highly simplified transport scenario. Boxes con-
taining goods are loaded onto a truck, moved to a destination, and unloaded again.
The boxes can contain perishable goods that require cooling, fruits, or non-perishable
goods, toys. Boxes of the former kind (and only those) can be equipped with temperature
sensors and provide a temperature value, which is classified as low (unproblematic) or
high (problematic). A part of this domain is modelled in the description logic ALC
extended with functional roles. The following KB has a TBox on box properties (left),
and an ABox on temperature classes (middle) and box properties (right):

Box ⊑ ∀ Temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox ⊑ ∃ Temp.TempClass High : TempClass Box1 : FruitBox

ToyBox ⊑ ¬∃ Temp.TempClass Box2 : Box

FruitBox ⊑ Box Box3 : ToyBox

ToyBox ⊑ Box Box4 : Box ⊓ ∀ Temp.¬TempClass

Temp is a functional role Box5 : Box ⊓ ∃ Temp.TempClass

Example 1. The ABox assertions can be represented as a program with facts timed at,
say, 0 (“beginning of time”), e.g., Box(5) : Box⊓∃ Temp.TempClass@0.5 Let tbox denote
the TBox above. Some example rules with DL-calls are

1 x : Box@ time :– x : _@ time, tbox |= x : Box

2 TempBox(time, box) :– box : Box@ time, tbox |= box : (∃ Temp.TempClass)
3 KnownTempBox(time, box) :–

4 box : Box@ time, choose(temp, List(Low, High)), tbox |= (box, temp) : Temp

The first rule materializes the Box concept. Any known individual at a given time that is
provable a Box will explicitly become a Box individual at time. While this is redundant
for DL-reasoning, it comes in handy for rules. For example, the second rule applies to
explicitly given Boxes at time that provably have a Temp attribute. Thanks to the first
rule, TempBox(0, Box(8)) is derivable for 8 ∈ {0, 1, 5}. (Recall that the ABox in the DL-call
is formed from the timed DL-atoms at pivot time.) The third rule is a variation of the
second rule and tests if a box has a concrete Temp attribute Low or High instead of
some. ⊓⊔

Example 2. This is an example for a stratified DL-call within default negation and
explicit ABox:

1 ColdBox(time, box) :–

2 box : Box@ time,

3 not (t < time, (I.aboxAt(t), tbox) |= box : Box, (box, High) : Temp)

5 The concrete Fusemate syntax is IsAAt(Box(5), And(Box,Exists(Temp,TempClass)), 0) but we stick
with the better readable “:”-syntax. TBoxes have similar syntax and are typically bound to
(Scala) variables like tbox in the example. In concrete syntax, free constant, function and
predicate symbols start with a capital letter, variables with a lower case letter. An underscore _
is an anonymous variable.
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According to this rule, a box is a ColdBox at a given time if it never provably was a Box
in the past with a High temperature. The (Scala) expression I.aboxAt(t) can be used in
Fusemate to retrieve the induced abox at time t from the current interpretation � .6 Notice
that C is strictly earlier than time which renders the DL-call stratified.

An example for theDLISUNSATDL-call is in the rule fail :– Now(time), DLISUNSAT(tbox).
This rule abandons a current model candidate if its induced abox at the current time
“Now” is inconsistent with tbox. ⊓⊔

4 Event Calculus Embedding

The event calculus (EC) is a logical language for representing and reasoning about
actions and their effects [20,35]. At its core, effects are fluents, i.e., statements whose
truth value can change over time, and the event calculus provides a framework for
specifying the effects of actions in terms of initiating or terminating fluents.

Many versions of the EC exists, see [26] for a start. The approach below makes do
with a basic version that is inspired by the discrete event calculus in [28] with integer
time. The event calculus of [28] is operationalized by translation to propositional SAT.
Its implementation in the “decreasoner” is geared for efficiency and can be used to
solve planning and diagnosis tasks, among others. The version below is tailored for
the model computation tasks mentioned in the introduction, where a fixed sequence of
events at given timepoints can be supposed.7 It rests on minimal model semantics and
stratified default negation. Most of it is not overly specific to Fusemate, and answer set
programming encodings of the event calculus, e.g. [21], should be applicable as well.

The rest of this section explains the EC/DL integration grouped into “axiom sets”:

– Domain independent EC axioms: principles of actions initiating/terminating fluents
– Domain independent EC/DL integration axioms: ABox assertions as fluents
– Domain dependent axioms: initial situation and concrete actions effects
– Concrete actions: events driving the model computation
– Fusemate specific rules

Domain independentaxioms. The EC main syntactic categories are Fluents and Actions,
both given via designated sub-signatures of the term signature. They are used with EC-

predicates in intended sorting as follows:

Initiates : T × Action × Fluent Initiated : T × Fluent

Terminates : T × Action × Fluent Terminated : T × Fluent

StronglyTerminates : T × Action × Fluent StronglyTerminated : T × Fluent

HoldsAt : T × Fluent Happens : T × Action

The EC was originally introduced as a Prolog logic program. The following domain

independent rules are similar but modified for stratified bottom-up model computation.

6 Access to � is unusual for logic programming systems. See [12] for a discussion of this features.
7 Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the

model computation from there. The paper [11] already has a “supply-chain” example for that.
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Some rules use a “strong negation” operator negwhich can be applied to ordinary atoms
in the body or the head. Fusemate implements the usual semantic [18] which amounts
to adding the rules fail :– ?(time, ®G), neg ?(time, ®G) for every ordinary predicate ?.

1 Initiated(time+1, f) :– Happens(time, a), Initiates(time, a, f) // H1

2 Terminated(time+1, f) :– Happens(time, a), Terminates(time, a, f) // H2

3 StronglyTerminated(time+1, f) :– Happens(time, a), StronglyTerminates(time, a, f) // H3

4 Terminated(time, f) :– StronglyTerminated(time, f) // H4

6 HoldsAt(time, f) :– Initiated(time, f), not Terminated(time, f) // EC3

7 neg(HoldsAt(time, f)) :– StronglyTerminated(time, f), not Initiated(time, f) // EC4

9 HoldsAt(time, f) :– Step(time, prev), HoldsAt(prev, f), not Terminated(time, f) // EC5

10 neg(HoldsAt(time, f)) :– Step(time, prev), neg(HoldsAt(prev, f)), not Initiated(time, f) // EC6

In the rules above, the variable f stands for fluents and a for actions. The axioms H1 – H3
specify the dependencies between fluents and actions in general. The distinction between
Initiates and Initiatedwas made for being able to distinguish between initiation by actions
(“loading a box on a truck initiates the box being on the truck”) and initiation as a matter
of circumstances or their consequences (“smoke initiated alarm bell ringing”).

The core relation is HoldsAt(time,f) which can hold true at time because f is Initiated
at time (EC3), or was true at the previous time step but not terminated (EC5, frame
axiom). Similarly for the negated case. Notice the difference between Terminated and
StronglyTerminated. The former removesHoldsAt(time, f) from the model, the latter inserts
neg(HoldsAt(time,f)) into it. That is, this is a three-valued logic. With default negation
one can distinguish the three cases.

Notice that fluents are initiated or terminated in H1 – H3 with a delay of one time
step. This was done so that the Initiates and Terminates predicates can be defined in a
stratified way in terms of HoldsAt at the current time. Without the delay SBTP would be
violated in such cases. The increase in time will not cause non-termination of model
computation because H1 – H3 are conditioned on events happening (as long as there are
only finitely many events).

4.1 Linking Description Logic with the Event Calculus

Section 3 introduced timed DL-atoms for specifying (timestamped) ABoxes. Typically,
ABox assertions should be preserved over time unless there is reason for change. Exam-
ples are the initial ABox assertions in Example 1 and role assertions in Example 4 below.
This immediately suggests to utilize the event calculus for treating ABox assertions as
fluents. The following explains this in more detail.

Domain independent axioms. From now on, untimed DL-atoms are allowed in fluent
positions. Untimed DL-atoms are enough because fluents occur within EC-predicate
atoms which by themselves provide the time. The following axioms are added as domain
independent axioms to restore the timed DL-atom versions of the fluents:

1 x : c@ time :– HoldsAt(time, x : c) // DL1
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2 x : Neg(c)@ time :– neg(HoldsAt(time, x : c)) // DL2

3 (x, y): r@ time :– HoldsAt(time,(x, y) : r) //DL3

Notice the use of variables 2 and A in concept and role positions, which makes it
possible to formulate these axioms independent of a concrete DL KB. The DL2 axiom
expresses strongly negated concept membership equivalently by membership in the
negated concept.

The axioms DL1 – DL3 are obviously reasonable in any domain. Their converse is
not, however. Not everything holding true at a point in time should by default extend
into the future, e.g., a person’s birthday.

Domain dependent axioms. Domain dependent axioms comprise fluents that hold ini-
tially and specifications of action effects in terms of initiation and termination of fluents.
An example for the former is the fact for Box(5) in Example 1, which could be rewritten
as HoldsAt(0, Box(5) : Box ⊓ ∃ Temp.TempClass).

Example 3. The following rules specify the effects of Load and Unload actions of boxes
in terms of these boxes being OnTruck.

1 Initiates(time, Load(box), OnTruck(box)) :– box : Box@ time

2 StronglyTerminates(time, Unload, OnTruck(box)) :– HoldsAt(time, OnTruck(box))

The first rule makes sure in its body that only boxes that exist at a time can be loaded.
The second rule concludes that all boxes loaded will definitely not be not on the truck
after unload. All other boxes are untouched. Notice that the OnTruck fluent is not a DL
concept (it doesn’t have to be). ⊓⊔

Concrete actions. What is still missing are concrete actions happening for triggering
the model computation in the combined Rules/DL/EC domain model. In the running
example we consider the following scenario unfolding:

Time 10 20 30 40 50
Action Load Box0

Load Box1

Load Box2 Load Box3
Load Box4

Unload

Sensor Box0 : −10° Box2 : 10° Box0 : 2° Box0 : 20°

These actions are easily represented as facts, e.g.,Happens(10, Load(Box(0))). The tem-
perature measurement at time 20 for Box(2)becomesHappens(20, SensorEvent(Box(2), 10)).

Concrete domains. Real-world applications require reasoning with concrete domains
(numeric types, strings, etc). Extending DLs with concrete domains while preserving
satisfiability is possible only under tight expressivity bounds. See [25] for a survey. One
way to mitigate this problem is to use rules and built-ins for concrete domains and to
pass symbolic abstractions to the DL reasoner.

Example 4. This rule demonstrates abstracting a concrete box temperature sensor read-
ing as a Temp attribute.

1 Initiates(time, SensorEvent(box, temp), (box, High) : Temp) and

2 Terminates(time, SensorEvent(box, temp), (box, Low) : Temp) ) :–

3 Happens(time, SensorEvent(box, temp)), temp > 0
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The given action Happens(20, SensorEvent(Box(2), 10)) with the rule above and rules H1
and H6 will derive HoldsAt(21, (Box(2),High) : Temp). From that, with DL1 and the rules
in Example 1, Box(2) will become a TempBox and even a KnownTempBox from time 21

onwards. ⊓⊔

Fusemate specific rules. Fusemate provides the user with a number of non-standard
operators, see [12]. One of them is the aggregation operator COLLECT.

Example 5. Consider the rule

1 Unloaded(time+1, boxes) :–

2 Happens(time, Unload),

3 COLLECT(boxes, box STH HoldsAt(time, OnTruck(box)))

This rule aggregates all unloaded boxes into one set, boxes, one tick after Unload time. It
is not formulated as a fluent to make it a timepoint property. In the example, the Unload
happens at time 50, which leads to Unloaded(51, Set(Box(0), Box(1), Box(2), Box(3), Box(4)).
Notice that these are exactly the boxes loaded over time, at timepoints 10, 20, and 30. ⊓⊔

4.2 Ramification Problem

The ramification problem is concerned with indirect consequences of an action. Such
consequences could be in conflict with facts holding at the time of the action or other
consequences. This problem is particularly prominent in the combination with DL,
where effects (i.e., fluents) can be entailed implicitly by the DL KB, and possibly in an
opaque way. Trying to terminate such a fluent can be futile, as it could be re-instated
implicitly or explicitly by materialization.

A good example is the entailment of TempBox(0, Box(0)) as discussed in Example 1.
Suppose we wish to re-purpose Box(0) and no longer use it for temperature sensitive
transport. In terms of the modelling, Box(0) shall no longer belong to the (entailed)
concept ∃Temp.TempClass.

The ramification problem has been extensively researched in the EC literature,
see [35]. For instance, one could impose state constraints, if-and-only if conditions, so
that terminating an entailed fluent propagates down; or one could use effect constraints
that propagate termination of actions to other actions. A first attempt in this direction is
a rule that terminates a fluent that entails the property to be removed:

1 Terminated(time+1, (box, temp) : Temp)) :–

2 RemoveTemp(time, box), // Some condition for removing box Temp

3 (box, temp) : Temp@ time // Attribute to be removed

This rule works as expected for Box2 after explicitly having received a Temp-attribute at
time 20, cf. Example 4. It does not work, however, for, e.g., Box0. As a FruitBox, Box0

has a Temp attribute implied by the TBox.
One way to fix this problem in the running example is to terminate all concept

assertions for the box as any of them might entail a Temp attribute, and only retain that
it is a Box:
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1 (Terminated(time, box : concept) and Initiated(time, box : Box)):–

2 RemoveTemp(time, box), // Some condition for removing box Temp

3 box : concept @ time, concept != Box // Concept to be removed

4 // Similar rule for removing role assertions omitted

While this measure achieves the desired effect, it may also remove box properties that
could be retained, e.g., the size of the box (if it were part of the example, that is).

The KB revision problem has been studied extensively in database and AI settings.
For DLs, there are algorithms for instance level updates of an ABox, where, in first-
order logic terms, the ABox is a set of ground atoms over known individuals, see [19].
Very recently, Baader etal [7,6] devised algorithms for semantically optimally revising
ABoxes that may contain quantifiers (e.g. Box5 in the running example). All these result
are for lightweight description logics, though.

5 Putting it all Together

This section completes the running example with rules for diagnostic reasoning. Suppose
a given subset of the boxes {Box0, . . . , Box5} is unloaded at the destination. We are
interested in determining the status of the delivery and computing possible models as
explanations under these constraints:

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling would affect all boxes).
4. If all unloaded boxes with a temperature sensor can consistently be assumed to have

high temperature then box tampering can be excluded (because broken cooling is
the more likely explanation).

The following rules determine the status of the delivery as “ok” or “anomalous”. There
are two cases of anomalies, (a) the truck cooling is broken or (b) some box has been
tampered with. The rules feature disjunctive heads, strong negation, DL-calls, Scala
builtin calls and the set datatype.

1 OK(time) :– Unloaded(time, boxes), not Anomaly(time, _)

3 Anomaly(time, TamperedBox(box)) or Anomaly(time, BrokenCooling) :–

4 Unloaded(time, boxes),

5 (box, High) : Temp@ time,

6 boxes ∋ box

8 neg(Anomaly(time, BrokenCooling)) and neg(Anomaly(time, TamperedBox(box))) :–

9 Unloaded(time, boxes),

10 (box, Low) : Temp@ time,

11 boxes ∋ box
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13 fail :– Anomaly(time, TamperedBox(box)),

14 Unloaded(time, unloadedBoxes),

15 COLLECT(boxes, box STH (TempBox(time, box), unloadedBoxes ∋ box)),
16 LET(assertions, boxes map { (_, High) : Temp }), // unloaded boxes ascribed High Temp

17 DLISSAT(I.aboxAt(time) ++ assertions, tbox)

The first rule makes the delivery ok in absence of any anomaly. The second rule observes
an anomaly if some unloaded box has a High temperature. The anomaly could be either
type, or both, this rule makes a guess. The third and the fourth rule are eliminating
guesses. The third rule says that the truck cooling is not broken if evidenced by the
existence of a Low temperature box. Moreover, each of these boxes has not been tampered
with. The fourth rule is the most interesting one. It eliminates a tampered-box anomaly
by considering all unloaded boxes that are known to be equipped with temperature
sensors. The rationale is that if all these boxes can consistently be assumed to have High
temperature then box tampering is unlikely (broken cooling is more likely).

This reasoning is achieved by collecting in line 15 in the boxes variable the mentioned
boxes (TempBox was defined is Example 1). Line 16 assigns to a variable assertions the
value of the stated Scala expression for constructingHigh temperature role assertions for
boxes. Finally, the DL-call on line 17 checks the satisfiability of the KB consisting of the
current abox temporarily extended with assertions and the static TBox. It is important to
know that fail rules are always tried last for a fixed current time, after all ordinary rules.
This way, the usages of COLLECT and DLISSAT in the last rule are stratified.

The correct diagnosis is Anomaly(51, BrokenCooling). In the course of events, the
TempBoxes are Box0, Box1, Box2, and Box5 (Box2 becomes one only at time 20.) The
unloaded boxes at time 50 are Box0, Box1, Box2, and Box4. In their intersection, Box0

and Box2 have High Temp values, which gives rise to an anomaly. Only the box Box1

has an unknown Temp value, which is consistent with High and, hence, excludes a
TamperedBox anomaly. Moreover, for every box, neither a TamperedBox anomaly nor a
negated TamperedBox anomaly is derived.

If the Box0 sensor reading at time 40 is changed from 10 to -10 then the diagnosis is

1 Anomaly(51, TamperedBox(Box(2)))

2 neg(Anomaly(51, TamperedBox(Box(0))))

3 neg(Anomaly(51, BrokenCooling))

Both diagnosis are the only possible models in each case and nothing is known about
Box1. The Fusemate runtime is approx. 4 seconds in each case on a modern PC. The
main bottleneck is lack of performance of the coupled DL-reasoner, which is a proof-
of-concept implementation only.

6 Conclusions

This paper introduced a knowledge representation language that, for the first time,
combines the event calculus with description logic in a logic programming framework
for model computation. The paper demonstrated the interplay of these three components
by means of an elaborated example.
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Results are in parts at an abstract level. They include conditions for finite-model
soundness and completeness of the rules/DL reasoner coupling that are re-usable in
other systems that support stratification in a similar way ([37], e.g.).

The diagnosis rules in Section 5, among others, utilized Fusemate’s specific set
comprehension operator (COLLECT) and might be hard to emulate in other systems. It
might be possible to run the example in this paper with an expressive system like
DLV [22] without too many changes.

The modelling in the example emphasised the possibility to distinguish between
absent, unknown or known attribute values, which was enabled by the description logic-
s/rules integration. One might want to go a step further and add “dynamic existentials”
to the picture. These are unknown or implicit actions that must have existed to cause
observed effects. Recovered or speculating such actions can be expressed already with
the (implemented) belief revision framework of [11]. Experimenting with that within
the framework here is future work.

The perhaps most pressing open issue is the EC ramification problem (Section 4.2),
which is particularly pronounced with the DL integration into the EC. Recent advances
on ABox updates might help [7,6].

Acknowledgements. I am grateful to the reviewers for their constructive feedback.
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