Skip to main content

Abstract

Enzyme functional annotation has been a challenging problem in Bioinformatics for many years now, with Deep Learning recently appearing as an efficient alternative. Here, the use of recurrent neural networks, trained from sequential data and boosted by the use of attention mechanisms, is analysed. We assess the consequences of the choice of different parameters, as the length of the sequence and type of truncation, often not mentioned in previous studies. We also compare the use of different aminoacid encoding schemes to describe the protein, using one-hot, z-scales and Blosum62 encodings, as well as embedding layers. Lastly, we try to understand what the network is learning and inferring. Our results show that for enzyme classification, networks formed with Bidirectional recurrent layers and attention lead to better results. In addition, using simpler encoding schemes (e.g. one-hot) leads to higher performance. Using attention and embedding layers, we demonstrate that the model is capable of learning biological meaningful representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015)

    Google Scholar 

  2. Almagro Armenteros, J.J., et al.: DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21), 3387–3395 (2017). https://doi.org/10.1093/bioinformatics/btx431

    Article  Google Scholar 

  3. Amidi, A., et al.: EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation. PeerJ 2018(5), 1–18 (2018). https://doi.org/10.7717/peerj.4750

    Article  Google Scholar 

  4. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  5. Bileschi, M.L., et al.: Using deep learning to annotate the protein universe. bioRxiv, pp. 1–29 (2019). https://doi.org/10.1101/626507

  6. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  7. Dalkiran, A., Rifaioglu, A.S., Martin, M.J., Cetin-Atalay, R., Atalay, V., Doğan, T.: ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinform. 19(1), 1–13 (2018). https://doi.org/10.1186/s12859-018-2368-y

    Article  Google Scholar 

  8. Elabd, H., et al.: Amino acid encoding for deep learning applications. BMC Bioinform. 21(1), 1–14 (2020). https://doi.org/10.1186/s12859-020-03546-x

    Article  Google Scholar 

  9. Gao, R., et al.: Prediction of enzyme function based on three parallel deep CNN and amino acid mutation. Int. J. Mol. Sci. 20(11) (2019). https://doi.org/10.3390/ijms20112845

  10. Guo, Y., et al.: DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction. BMC Bioinform. 20(1), 1–12 (2019). https://doi.org/10.1186/s12859-019-2940-0

    Article  Google Scholar 

  11. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89(22), 10915–10919 (1992)

    Article  Google Scholar 

  12. Li, S., Chen, J., Liu, B.: Protein remote homology detection based on bidirectional long short-term memory. BMC Bioinform. 18(1), 1–8 (2017). https://doi.org/10.1186/s12859-017-1842-2

    Article  Google Scholar 

  13. Li, Y., et al.: DEEPre: sequence-based enzyme EC number prediction by deep learning. Bioinformatics 34(5), 760–769 (2018). https://doi.org/10.1093/bioinformatics/btx680

    Article  Google Scholar 

  14. Liu, J., Gong, X.: Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. BMC Bioinform. 20(1), 1–11 (2019). https://doi.org/10.1186/s12859-019-3199-1

    Article  MathSciNet  Google Scholar 

  15. Lopez-del Rio, A., Martin, M., Perera-Lluna, A., Saidi, R.: Effect of sequence padding on the performance of deep learning models in archaeal protein functional prediction. Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-020-71450-8

    Article  Google Scholar 

  16. Raimondi, D., Orlando, G., Vranken, W.F., Moreau, Y.: Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis. Sci. Rep. 9(1), 1–11 (2019). https://doi.org/10.1038/s41598-019-53324-w

    Article  Google Scholar 

  17. Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl. Acad. Sci. U. S. A. 116(28), 13996–14001 (2019). https://doi.org/10.1073/pnas.1821905116

    Article  Google Scholar 

  18. Sandberg, M., et al.: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem. 41(14), 2481–2491 (1998). https://doi.org/10.1021/jm9700575

    Article  Google Scholar 

  19. Schwartz, A.S., et al.: Deep semantic protein representation for annotation, discovery, and engineering. bioRxiv (2018). https://doi.org/10.1101/365965

  20. Semwal, R., Aier, I., Tyagi, P., Varadwaj, P.K.: DeEPn: a deep neural network based tool for enzyme functional annotation. J. Biomol. Struct. Dyn. (2020). https://doi.org/10.1080/07391102.2020.1754292

  21. Sequeira, A.M., Lousa, D., Rocha, M.: ProPythia: a python automated platform for the classification of proteins using machine learning. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds.) Practical Applications of Computational Biology & Bioinformatics. AISC, vol. 1240, pp. 32–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54568-0_4

    Chapter  Google Scholar 

  22. Shi, Q., et al.: Deep learning for mining protein data. Brief. Bioinform. 1–25 (2019). https://doi.org/10.1093/bib/bbz156

  23. Strodthoff, N., Wagner, P., Wenzel, M., Samek, W.: UDSMProt: universal deep sequence models for protein classification. Bioinformatics 36(8), 2401–2409 (2020). https://doi.org/10.1093/bioinformatics/btaa003

    Article  Google Scholar 

  24. Suzek, B.E., et al.: UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31(6), 926–932 (2015). https://doi.org/10.1093/bioinformatics/btu739

    Article  Google Scholar 

  25. Van Westen, G.J., et al.: Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. J. Cheminform. 5(9), 1–11 (2013). https://doi.org/10.1186/1758-2946-5-42

    Article  Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NIPS), pp. 5999–6009 (2017)

    Google Scholar 

  27. Vig, J., et al.: BERTology meets biology: interpreting attention in protein language models. bioRxiv (2020). https://doi.org/10.1101/2020.06.26.174417

  28. Zou, Z., Tian, S., Gao, X., Li, Y.: mlDEEPre: multi-functional enzyme function prediction with hierarchical multi-label deep learning. Front. Genet. 10, 1–10 (2019). https://doi.org/10.3389/fgene.2018.00714

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Regional Development Fund under the scope of Norte2020, through the project DeepBio (ref. NORTE-01-0247-FEDER-039831). This study was also supported by the PhD scholarship with reference 2020.07867.BD, granted by the Portuguese Foundation for Science and Technology and the European social fund under the scope of Norte2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Marta Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sequeira, A.M., Rocha, M. (2022). Recurrent Deep Neural Networks for Enzyme Functional Annotation. In: Rocha, M., Fdez-Riverola, F., Mohamad, M.S., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021). PACBB 2021. Lecture Notes in Networks and Systems, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-86258-9_7

Download citation

Publish with us

Policies and ethics