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Abstract. With the increasing amount of reliance on digital data and
computer networks by corporations and the public in general, the occur-
rence of cyber attacks has become a great threat to the normal func-
tioning of our society. Intrusion detection systems seek to address this
threat by preemptively detecting attacks in real time while attempting to
block them or minimizing their damage. These systems can function in
many ways being some of them based on artificial intelligence methods.
Datasets containing both normal network traffic and cyber attacks are
used for training these algorithms so that they can learn the underlying
patterns of network-based data. The CIDDS-001 is one of the most used
datasets for network-based intrusion detection research. Regarding this
dataset, in the majority of works published so far, the Class label was
used for training machine learning algorithms. However, there is another
label in the CIDDS-001, AttackType, that seems very promising for this
purpose and remains considerably unexplored. This work seeks to make
a comparison between two machine learning models, K-Nearest Neigh-
bours and Random Forest, which were trained with both these labels
in order to ascertain whether AttackType can produce reliable results in
comparison with the Class label.

Keywords: Cybersecurity · Network Intrusion Detection System · Ma-
chine Learning · CIDDS-001

1 Introduction

In the last few years Intrusion Detection System (IDS) research has had a pro-
gressively increasing interest. The application of Artificial Intelligence (AI) meth-
ods for IDS has been widely considered in the literature [1] due to their ability
to learn complex patterns inherent to network-based data. These patterns are
later used in the deployment phase to timely detect probable attack attempts
that threaten a network’s normal functioning and privacy.
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Reliable testbeds comprised of both normal network behaviour and attack
scenarios are required to train AI algorithms and test their detection performance
in controlled environments. The lack of well grounded datasets for the Network
Intrusion Detection Systems (NIDS) setting has been appointed as one of the
major drawbacks of current research [2]. However, in the last few years, some
datasets have been proposed to solve this problem, namely the CTU 13 [3], the
SANTA data set [4], the CICIDS-2017 [2], and the CIDDS-001 dataset [5].

IDS datasets can mainly be divided into two categories, packet-based and
flow-based. The more conventional ones such as DARPA99 [6] or its improved
version, KDD CUP 99 [7] are packet-based. These contain great amounts of
information and features such as packet-headers and payloads [5]. Flow based
datasets, however, such as CTU 13 [3] and CIDDS-001 [5] are usually more
compact as their features are composed of aggregated information that was ex-
tracted from the communications within the network. These types of datasets
were proposed by Wheelus and Zuech et al. [4] in 2014, as they are more recent
and there are relativity fewer examples when compared to packet-based ones.

The CIDDS-001 is a recent flow-based dataset for the IDS setting. It con-
tains unidirectional Netflow data and was generated using Python scripts to
simulate human behaviour on virtual machines of an emulated network. It is
very realistic since it respects operating cycles and working hours in enterprises.
It contains both normal data and different types of cyber attacks, namely ping
scans, port scans, brute forces and denial of services (DoS). Since the technolo-
gies used to generate the attacks are time-dependent the flows of the dataset were
labeled based on their timestamp. Four different labels were considered, Class,
which classifies the flow into normal, attacker, victim, suspicious or unknown,
AttackType, which represents the type of the executed attack, AttackID, which
contains the ID of the attack instance and AttackDescription, which provides a
short description with attack-related details.

In this work, a comparison between the performance of two Machine Learn-
ing (ML) models, Random Forest (RF) and K-Nearest Neighbors (KNN), was
performed under the CIDDS-001 setting. These models were chosen to conduct
this study because they are widely used in the NIDS setting exhibiting great
performances in several testbeds [8, 9].

Most studies around this dataset have used the Class label as target variable,
with one found exception [10], which used AttackType. Therefore, this study seeks
to compare both labels and to evaluate if the AttackType is a reliable target to
train and evaluate ML algorithms in the CIDDS-001 context.

For a SOC operator, knowing that an attack is occurring is extremely im-
portant, but knowing the type of attack is equally important. This knowledge
will influence his following decisions as well as what measures to take in order
to mitigate the threat. Therefore, a system that is capable of not only detecting
attacks but also classifying them is of great use for any IDS.

This paper is organized into multiple sections. Section 2 presents an overview
of the current state of the literature regarding NIDS research on the CIDDS-001
dataset. Section 3 describes the algorithms and testbed chosen to perform this
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study. Section 4 presents the achieved results and their discussion. Section 5
provides the main conclusions of this work as well as future research topics to
be consequently addressed.

2 Related Work

Several anomaly detection approaches based on ML have been proposed in the
context of NIDS. Many works have selected the CIDDS-001 as testbed to train
and test their algorithms. Most of them used the Class label as target vari-
able, presenting outstanding results in model performance. To the best of our
knowledge, only one work, [10], has used the AttackLabel label.

In [11], Verma et al. performed a statistical analysis of the CIDDS-001 dataset
using KNN and K-means clustering. These models were trained using the Class
label, classifying each flow as either suspicious, attack, victim, unknown or nor-
mal. The data used for model training was separated into data from the Exter-
nal server and data from the OpenStack. The algorithms trained on both sets
achieved extremely good results with an accuracy value close to 100%.

In [12], Althubiti et al. trained a Long-Short Term Memory (LSTM) using
the CIDDS-001 dataset and the Class label, achieving an accuracy of almost 85%
and a recall and precision of almost 86% and 88%, respectively. They compared
this model with a Support Vector Machine (SVM), a Näıve Bayes and a Multi-
Layer Perceptron (MLP) which achieved slightly worse results than the LSTM,
around 80%.

In [13], Verma et al. tested a variety of ML models to detect DoS attacks in
the context of internet of things. The CIDDS-001, UNSW-NB15, and NSL-KDD
were used for training and benchmarking with a wide variety of models such
as RF, AdaBoost, gradient boosted machine, regression trees and MLPs. The
models achieved a good performance in detecting DoS attacks for the CIDDS-
001 dataset with the RF presenting an accuracy of almost 95% and an Area
Under the Curve (AUC) of almost 99%.

In [14], I. Kilincer et al. used five of the most widely acknowledged IDS
datasets, CSE-CIC IDS-2018, UNSW-NB15, ISCX-2012, NSL-KDD and CIDDS-
001, and trained a SVM, a KNN and a Decision Tree with each of them. Great
results were achieved for every algorithm, with the KNN trained with CIDDS-
001 dataset achieving an accuracy, recall, precision and f1-score of approximately
97%. The model that achieved the best results with this dataset was the Decision
Tree with all four referred metrics above 99%.

In [15] Zwane et al. performed an analysis of an ensemble learning approach
for a flow based IDS using the CIDDS-001 dataset. A variety of ensemble learning
approaches were employed. These techniques were applied on three algorithms,
Decision Tree, Näıve Bayes and SVMs. A RF was also implemented. Results
greatly differed based on the chosen algorithm and ensemble technique. The
best performing algorithms were the RF and all the ensembles of decision trees
with an accuracy, precision, recall and f1-score of 99%. The ensembles trained
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with the Näıve Bayes and the SVMs performed worse, with all four metrics
varying between 60% and 70%.

In [16], Tama and Rhee performed an attack classification analysis of IoT
network by using deep neural networks for classifying attacks trained using the
CIDDS-001, UNSW-NB15 and GPRS datasets. The deep neural network trained
with the CIDDS-001 achieved excelent results, with an accuracy, precision and
recall of 99%, 99% and 100% respectively.

In [10], N. Oliveira et al. proposed a sequential approach to intrusion de-
tection by using time-based transformations in the algorithms’ input data. The
CIDDS-001 dataset was used for training three distinct algorithms, LSTM, RF
and MLP. Additionally, the AttackType label was chosen instead of the Class
label. The introduced approach achieved 99% accuracy for both the LSTM and
the RF. An F1-score of near 92% was obtained for the LSTM.

As far as we are aware, this is the first work to perform a comparison between
both labels in an attempt to determine if any gain can be obtained from using
AttackType instead of the Class label.

3 Materials and Methods

This section presents the CIDDS-001 dataset and the way it was labelled, as de-
scribed by it’s authors in the technical report [17]. The employed algorithms, RF
and KNN, parameters and configurations are described as well as the evaluation
metrics chosen for validation and comparison.

3.1 Dataset Description

The CIDDS-001 (Coburg Intrusion Detection Data Set) was developed by
Markus Ring et al. [5] in 2017. This dataset is flow-based unlike most con-
ventional datasets, which are packet-based.

The data present in the CIDDS-001 dataset can mainly be divided into two
sets, based on how it was generated. Data generated through OpenStack emulat-
ing a small business environment and data generated through External Server,
capturing real network data. The dataset contains a total of 31959175 flows,
with 31287934 being generated by the OpenStack and 671241 from the External
server. A total of 33 million flows comprises the CIDDS-001, spanning a total of
four weeks of network traffic, from March 3 2017 to April 18 2017. All 33 mil-
lions flows are labelled, containing benign network traffic as well as four different
types of attacks, Ping Scans, Port Scans, DoS and Brute force.

Unlike packet-based datasets, which usually contain a lot of features, the
CIDDS-001 contains a total of 12 with an additional 4 labels. These are stan-
dard Netflow features, namely source and destination IPs and ports, transport
protocol, duration, date first seen, number of bytes, number of packets, number
of flows, type of service and TCP flags. The dataset contains an additional four
labels, Class, AttackID, AttackType and AttackDescription.
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3.2 Dataset Labelling

The labelling process of the CIDDS-001 is composed of two steps, due to the
different data sources. Both the traffic from the External Server and the one
generated by the OpenStack environment were processed and labelled accord-
ingly. Since the OpenStack traffic was generated in a fully controlled network this
involved using the timestamps, origins and targets of the executed attacks [17],
marking the remaining traffic as normal. A representation of the simulated small
business environment is described in Figure 1.

Fig. 1. Schematic of the emulated small business environment
[17]

As for the traffic originated from the External Server, its labelling process
was not as simple. All traffic incoming into this server from the OpenStack envi-
ronment was benign, and as such was labelled as normal. The additional traffic



6 J. Carneiro et al.

incoming from the three controlled servers, attacker1, attacker2 and attacker3, is
only malicious, so the traffic incoming and outgoing from these servers is labelled
as attacker or victim respectively. All traffic from ports 80 and 443 is labelled
as unknown since it comes from a homepage available to anyone interested in
visiting. And finally all remaining traffic in the External server is labelled as
suspicious [17].

The latter labels, unknown and suspicious, due to their uncertain nature, pose
a problem when training the models. Considering that this traffic can include
both normal and attack entries, and that there is no way to correctly categorize
each one, the use of the whole environment as either normal or attack will create
a strong bias towards these classes.

3.3 Dataset Preprocessing and Sampling

In preparation for the ML methods training, the CIDDS-001 has to go through
a series of preprocessing procedures. This process was largely based on the work
of N. Oliveira et al. [10] that implemented a preprocessing pipeline consisting
of several steps. A visual representation of the overall process is presented in
Figure 2. An initial analysis to detect errors and inconsistent data was made,
eliminating features such as Flows that contains a single value throughout the
whole dataset and correcting others such as Bytes where suffixes like K and M
were replaced by their numerical representation, in order to preserve the sequence
of the flow, the dataset was indexed with the Date first seen feature. Non-
numerical features were encoded using categorical encoding. After applying this
pipeline, there were 10 features remaining, Src IP, Src Port, Dest IP, Dest Port,
Proto, Flags, ToS, Duration, Bytes and Packets, all of them encoded as numbers
and scaled between 0 and 1. The sampling process was likewise performed in the
same manner as N. Oliveira et al. [10], resulting in a representative sample of
the whole dataset. Since the resulting sample is a lot less demanding in terms of
memory, processing power and time but still very representative of the dataset
as a whole. The sample contains a total of 2,535,456 flows between 2:18:05 p.m.,
17 March 2017and 5:42:17 p.m., 20 March 2017. This final sample was then split
into a training and testing set using a simple holdout method where 70% of the
data was used for training and 30% for testing.

Fig. 2. Methodology workflow
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Since this work seeks to compare algorithms trained with both the Atttack-
Type and Class labels, an additional preprocessing step was performed for the
latter. All instances of suspicious, unknown and victim were replaced with the
attack class, transforming the problem as a binary classification task with only
two categories, normal and attack.

3.4 Models

To compare the impact of the Class and AttackType labels in the ML methods
performance, two algorithms were selected to be employed in this work, RF and
KNN. These models have been thoroughly studied by the scientific community
presenting good results for several IDS datasets [18].

RF is an ensemble ML method that makes use of several instances of decision
trees which are trained with different sub-samples of the same dataset to produce
diverse classification rules. When presented with a sample to be classified, all the
decision trees of the ensemble make their own prediction. The final classification
result is decided by majority voting [19]. The parameters selected for the RF are
described in Table 1. These values were selected based on grid search within a
range of possible values.

Table 1. Random Forest Classifier Parameters.

Parameter Value

Nº of Estimators 10
Split Criterion Gini Impurity
Min Samples Split 2
Min Samples Leaf 1
Max features

√
nfeatures

Min Impurity Decrease 0
Class Weight Balanced

On the other hand, KNN is a supervised ML algorithm used for both clas-
sification and regression. When used as a classifier, the algorithms prediction
is the highest frequency class among the sample’s k nearest data points. The
distance between the dataset instances is calculated using a specific metric such
as Euclidean and Manhattan. The parameters selected for the KNN were also
obtained by performing a grid search optimization and are presented in Table 2.



8 J. Carneiro et al.

Table 2. KNN Classifier Parameters.

Parameter Value

Nº of Neighbors 3
Weights Uniform
Leaf Size 30
Metric Minkowski

4 Results and Discussion

Generally a robust evaluation of ML models considers several metrics [20]. In
this work four metrics were used: accuracy, precision, recall and F1-score [21].
Accuracy is a generalist metric that usually gives a good indication of an algo-
rithm’s performance. Precision measures the amount of positive predictions that
were actually negative. Recall determines how many of the total positive label
instances were correctly labelled. F1-score is calculated using both recall and
precision, being a good metric to be accounted when a balance between these
metrics is intended. Additionally, this metric is extremely reliable when dealing
with unbalanced datasets, such as CIDDS-001, since it is not biased towards the
majority class [20].

To perform the required computations, Google Colab [22] was used as hard-
ware support providing free access to considerable amounts of disk space and
RAM. However, the hardware is not unlimited and there are no guarantees that
it remains the same over time. Therefore, a comparison between the models
computing time cost could not be performed.

4.1 Label Comparison

The results obtained for the Class label were near 100% for all metrics for both
models, RF and KNN. On the other hand, the ones regarding the AttackType
label are quite distinct being highly influenced by the algorithms performance
on the minority classes, such as ping scan and brute force. The macro-averaged
results are descibed in Table 3.

Table 3. AttackType Label Macro Average Model Results.

Model Accuracy Precision Recall F1-Score

Random Forest 0.9560 0.9032 0.9239 0.9134
KNN 0.9694 0.9037 0.9290 0.9161

Table 4 shows the results of the trained RF model for the classification of
each type of attack with the AttackType label.
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Table 4. AttackType Label Random Forest Model Results.

Class Precision Recall F1-Score

Brute Force 0.9791 0.9868 0.9239
DoS 1.0000 0.9999 1.0000
No Attack 0.9999 1.0000 1.0000
Ping Scan 0.8104 0.5344 0.6441
Port Scan 0.9906 0.9950 0.9928

Table 5 displays the same information but for the trained KNN model.

Table 5. AttackType Label KNN Model Results.

Class Precision Recall F1-Score

Brute Force 0.9920 0.9815 0.9867
DoS 0.9999 0.9999 0.9999
No Attack 0.9999 1.0000 0.9999
Ping Scan 0.8650 0.5406 0.6654
Port Scan 0.9900 0.9965 0.9932

4.2 Discussion

As stated in [17], the labelling process of the traffic incoming from the External
Server in the CIDDS-01 dataset with regards to the Class label isn’t accurate,
as all traffic incoming from ports 80 and 443 is labelled as either unknown or
suspicious without any real certainty of whether that flow relates to an attack or
not. Additionally a score of nearly 100% for all metrics in both models trained
with this label is abnormal and not coherent, therefore it is highly probable that
these models are overfitted and that these results do not reflect their intrusion
detection capability.

As for the results of the AttackType label, they appear to be very promising
since the labelling process accurately identifies all the attacks that were per-
formed in the testbed. This presents a great advantage over the Class label since
it assures a more robust and less biased classifier. The obtained results are also
lower in terms of macro F1-score since it is typically hard for machine learning
algorithms to perform well for the minority classes of unbalanced datasets such
as CIDDS-001. Nevertheless, both models performed quite well for all attack
types with the exception of the ping scan class.

5 Conclusion

This work has established a comparison between two labels, Class and Attack-
Type, of the CIDDS-001 dataset, a widely regarded testbed for NIDS research.
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Two ML algorithms, RF and KNN, were trained with both these labels in order
to compare their performance as classifiers and assure that the AttackType can
be a reliable target variable although Class is more commonly used in previous
works.

The results for the Class label were near 100% for all metrics for both mod-
els, seemingly too perfect, suggesting the occurrence of over-fitting. Differently,
although the results regarding AttackType are slightly lower in terms of abso-
lute values, these seem to be a lot more promising since the labeling process
assures the correct identification of all attacks performed in the testbed. The
KNN achieved the best F1-score value, 91.61%, slightly above the one presented
by the RF, 91.34%.

This research, to the best of our knowledge, is the first to address a compari-
son between both these labels and to appoint that the Class labelling process is
quite less reliable than the one for the AttackType. As future work, the Attack-
Type label will be explored in greater detail by experimenting with other ML
algorithms in an attempt to improve the presented results.
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