2107.11100v1 [cs.CR] 23 Jul 2021

arxXiv

Malware Analysis with Artificial Intelligence and a Particular

Attention on Results Interpretability

Benjamin Marais'?, Tony Quertier', and Christophe Chesneau?

L Orange Labs, France
benjamin.marais@orange.com, tony.quertier@orange.com
2 Department of Mathematics, LMNO, University of Caen Normandy, France
christophe.chesneau@unicaen.fr

Abstract. Malware detection and analysis are active research subjects in cybersecurity over the last
years. Indeed, the development of obfuscation techniques, as packing, for example, requires special
attention to detect recent variants of malware. The usual detection methods do not necessarily provide
tools to interpret the results. Therefore, we propose a model based on the transformation of binary files
into grayscale image, which achieves an accuracy rate of 88%. Furthermore, the proposed model can
determine if a sample is packed or encrypted with a precision of 85%. It allows us to analyze results and
act appropriately. Also, by applying attention mechanisms on detection models, we have the possibility
to identify which part of the files looks suspicious. This kind of tool should be very useful for data
analysts, it compensates for the lack of interpretability of the common detection models, and it can
help to understand why some malicious files are undetected.

1 Introduction

In recent years, the number of malware and attacks has increased exponentially. The illustration of
this phenomenon is the number of online submissions to sandboxes, such as Virustotal or Any.run,
among other things. In addition, these malware are increasingly difficult to detect due to very elaborate
evasion techniques. For example, polymorphism is used to evade pattern-matching detection relied on
by security solutions like antivirus software, while some characteristics of polymorphic malware change,
its functional purpose remains the same. These developments make obsolete detection solutions like
signature-based detection. Researchers and companies have therefore turned to artificial intelligence
methods to manage both large volumes and complex malware. In this paper, we will look at the static
analysis of malware for computational issues such as time and resources. Indeed, dynamic analysis
gives very good results, but for companies that have thousands of suspicious files to process, it creates
resource problems because a sandbox can require two to three minutes per file.

1.1 State of art

Malware detection and analysis represent very active fields of study. In recent years, several methods
have been proposed in this regard.

The most popular detection method is signature-based detection [1] [2]. This method consists of stocking
portions of code of benign and malicious files called signatures. It consists of comparing the signature
of a suspicious file with the signature database. A weakness of this method is having the file first,
determining its nature and recorded its signature.

Another common and effective method is called dynamic analysis. It attempts to run suspect files in
secure environments (physical or virtual) named sandbox [3]. It allows analysts to study the behavior of
the file without risk. This process is particularly effective in detecting new malware or known malware
that has been modified with obfuscation techniques. This procedure, however, may be a waste of time
and resources. Also, some malware is able to detect virtual environments and does not run to hide its
nature and behavior.

In order to achieve good results in malware detection, and overcome signature-based detection and
dynamic analysis weaknesses, many approaches to static analysis associated with machine learning
have been investigated in recent works. Static analysis aims to study a file without running it to

understand its purpose and nature. The most natural way is to extract features based on binary file
bit statistics (entropy, distributions...) then to use ML algorithms to perform a binary classification
(Random Forest, XGBoost, Light GBM for example). Among other things, the quality of detection
models depends on features used for training and on the amount of data. In this regard, Anderson et
al. [4] provide Ember, a very good dataset to train ML algorithms. On the other hand, Raff et al. |5] use
Natural Language Processing tools to analyse bit sequences extracted from binary files. Their MalConv
algorithm gives very good results but requires a lot of computing power to train it. Moreover, it has
recently been shown that this technique is very vulnerable to padding and GAN-based evasion methods.
To overcome these weaknesses, Fleshman et al. [6] developed Non-Negative MalConv which reduces the
evasion rate but provides a slight drop in accuracy.

Natataj et al. |7] introduced the use of grayscale images to classify 25 malware families. Authors
convert binary files into images and use the GIST algorithm to extract important features from them.
They train a K-NN with these features and obtain a percentage of accuracy of 97.25%. In addition
to presenting a good classification rate, this method has the characteristic of offering better resilience
against obfuscation, especially against packing, the most used obfuscation method. In the continuity of
this work, Vu et al. [8] proposed the use of RGB (for Red Green Blue) images for malware classification
with their own transformation method called Hybrid Image Transformation (HIT). They encode the
syntactic information in the green channel of an RGB image, while the red and blue channels capture
the entropy information.

In view of the interest in image recognition, with ImageNet |9] for example, and performance improve-
ments [10] on the topic for several years, some authors proposed using a Convolutional Neural Network
(CNN) apply to binary files converted into grayscale images for malware classification. Rezende [11]
applied transfer learning on ResNet-50 for malware family classification and achieved a percentage of
accuracy of 98.62%. To go deeper into the subject, Yakura et al. [12] used attention mechanism with
CNN to highlight areas in grayscale images that help with classification. Also, they relate areas of
importance to the disassembled function of the code.

Another principal trend in malware research is to protect detection models against obfuscation tech-
niques. Many malware are known, but they have been modified to make them undetectable. For ex-
ample, polymorphic [13] and metamorphic [14] malicious files embed mechanisms that modify their
code apparently but not their behavior. Moreover, malware authors can alter them manually. Kreuk et
al. [15] inject bytes directly into the binary file to perturb the detection model without transforming
its functions. Another modification is to pack malware, and it is one of the commonly used methods to
easily evade antivirus software. Aghakhani et al. |16] give an overview of the limits of detection models
to spot packed malware.

1.2 Contributions and paper plan

The contributions of the study can be summarized as follows:

— Different detection methods are tested on a real database containing complex malware harvested
in the company. In particular, we propose detection models that use grayscale image and HIT
preprocessing on our own dataset of binary files. We compare the results of our models with
models (LGBM, XGBoost, DNN) trained with the Ember dataset and preprocessing.

— We propose models that take into consideration the fact that binary files can be packed or en-
crypted. One objective of this method is to reduce the false positive rate due to the interpretation
of some models that modified files are necessarily malicious. Another objective is to give malware
analysts a tool that provides them with more information on the nature of a suspicious file.

— We implement attention mechanisms to interpret the results of our image recognition algorithms.
This method is used to extract the parts of the image, and therefore of the binary, which contributed
the most to the scoring of the classification. This allows this information to be passed on to security
analysts to facilitate and accelerate reverse engineering work on the malware. Their feedback is
then used to understand algorithm errors and improve this aspect.

This paper is organized as follows: in Section [2} we give a description of our dataset, discussing its
advantages and the different preprocessing methods involved. In Section |3} we present the different
models trained on Ember or on our own datasets. We compare the models and discuss the results and
performances. Section [4]is dedicated to the analysis of modified samples and to attention mechanisms,
two methods which can be an interesting aid for analysts. Section[f|summarizes the results and concludes
the paper.

2 Dataset and preprocessing

2.1 Description of binaries dataset

Our dataset contains 22,835 benign and malware in Portable Executable (PE) format, including packed
or encrypted binary files. Fig. [I| shows the exact distribution of the dataset. The benign files are
derived from harvested Windows executables, and the malwares have been collected in companies and
on sandboxes. The dataset’s main distinguishing feature is that these malware are relatively difficult
to detect. As evidence, they have been undetected by some sandboxes or antivirus programs. As our
dataset contains complex and non-generic malware, it should prevent overfitting during the training of
our models.

= Benign
m Malware

Not Packed/Encrypted
mmm Packed/EnCrypted

Fig. 1: Distribution of our dataset

To train machine learning algorithms, we use the Ember dataset which contains 600,000 PE files for
training and we test on our own dataset to see the results. For the image-based algorithm, we split the
dataset into 80% of training data, 10% of testing data and 10% of validation data. This distribution is
the most optimized to keep a training sample large enough and a testing sample complex enough.

2.2 Is the malware modified ?

A recurring problem when doing static analysis is the analysis of packed or encrypted executables, that
we include under the term ”modified” file in the rest of the paper. Artificial intelligence algorithms
will often classify them as malicious even though many benign executables are modified for industrial
or intellectual property reasons, for example. This is understandable given that these processes will
drastically alter the entropy and distribution of bytes in the executable. A line of thought for better
performance is to take into consideration the modifying nature of binary files during the training of
detection models.

Upstream of the analysis, the use of software such as ByteHist gives an idea of the nature of a
file. Indeed, ByteHist is a tool for generating byte-usage-histograms for all types of files with a special
focus on binary executables in PE-format. ByteHist allows us to see the distribution of bytes in an
executable. The more the executable is packed, the more uniform the distribution is. Fig. [2] presents
some byte distribution examples of one malware and one benign not packed and their UPX-transformed
equivalents.

As we can see, UPX changes the byte distribution of binary files, in particular for the malware examples
with more modifications than the benign file. Also, it is a common packer and it is easy to unpack binary
files created with UPX. However, many malware are packed with more complex software, making
analysis more difficult.

Backdoor.Win32.DsBot.bks_44b5.exepor.¥Win32.DsBot.bks_44b5_packed.exe| ign. benign_packed.exe|
o

002 002

(a) Malware not packed (b) Malware packed (c) Benign not packed (d) Benign packed

Fig. 2: Byte distribution comparison between malware and benign with ByteHist

2.3 Image-based malware transformation

Before discussing how to turn a binary into an image, let us briefly explain why we use images. First of
all, different sections of a binary can be easily seen when it is transformed into an image, so that it can
give a first orientation to an analyst as to where to look, as we will see in the next section. Then, as
we discussed in the introduction, malware authors can modify parts of their files or use polymorphism
to change their signatures or produce recent variants. Images can capture small alterations yet retain
the global structure of the malware.

Given a static binary, we map it directly to an array of integers between 0 and 255. Hence, each binary
is converted into a one-dimensional array v € [0,255], v is then reshaped into a two-dimensional array
and we follow the resizing scheme as presented in [7]. That is, the width is determined with respect to
the file size. The height of the file is the total length of the one-dimensional array divided by the width.
We rounded up the height and pad zeros if the width is undivisible by the file size. This method allows
us to transform a binary into a grayscale image. The main advantage of this process is that it is very
fast. For 20,000 binaries, it takes at most a few minutes.

(a) Malware not packed (b) Malware packed (c) Benign not packed (d) Benign packed

Fig. 3: Grayscale representation of some binary files

Vu et al. 8] give different methods to transform a binary into an RGB image. Their color encoding
scheme is based on the fact that green is the most sensitive to human vision and has the highest
coefficient value in image grayscale conversion. In particular, with their HIT method, they encode the
syntactic information into the green channel of an RGB image, while the red and blue channels capture
the entropy information. In this way, clean files will intuitively have more green pixels than malicious
files, which contain higher entropy with higher red/blue values. This transformation gives very good
results with image recognition algorithms. The only downside is the transformation time. It takes an
average of 25 seconds to transform a binary into an image with their HIT method.

Fig. 4] presents grayscale and HIT transformations of the binary file introduced previously.

3 Detection based on statics methods

In this part, we study and compare three approaches to malware detection based on static methods
and machine learning algorithms:

(a) Malware not packed (b) Malware packed (c) Benign not packed (d) Benign packed

Fig. 4: HIT representation of some binary files

— First, we train three models on the Ember dataset with their own feature extraction method.

— Then, using this time grayscale images as input, we propose a CNN to detect malware and, to go
further, three hybrid models.

— Finally, we train another CNN on an RGB image using the HIT method.

3.1 Algorithms on binary files

For the static analysis, we will test three algorithms: XGBoost, Light GBM and a deep neural network
(DNN) whose architecture is presented in Fig. [5} XGBoost is a reference algorithm for testing data
but, on a large dataset, there can be some issues with computing time. That’s why we also compare it
with Light BGM which is used by Ember in connection with their dataset.

Let us quickly introduce the Light GBM algorithm which is still less known. It uses a novel technique of
Gradient-based One-Side Sampling (GOSS) to filter out the data instances to find a split value while
XGBoost uses a pre-sorted algorithm and a histogram-based algorithm for computing the best split.
Here, instances are observations. Its main advantages compared to other algorithms like Random Forest
or XGBoost are:

— Faster training speed and higher efficiency.

— Lower memory usage (replaces continuous values with discrete bins, which results in lower memory
usage).

— Better accuracy with more complex tree.

Specifically, if we focus on it in this study, it is mainly because of its capacity to handle a huge amount
of data. It can perform equally well with large datasets and present a significant reduction in training
time as compared to XGBoost.

To begin with, we train algorithms XGBoost and Light GBM on the Ember dataset, and we test them
on our own data. In addition, we train a DNN on the Ember learning dataset too, because this kind
of models goes hand to hand with a large dataset that contains so many features. We use the F1 score
and accuracy score to compare models between them. Results are collected in Table

Table 1: Static models F1 score and accuracy

F1 Score|Accuracy Score
LGBM | 0.9110 0.9001

XGBoost| 0.8275 0.7748
DNN | 0.9160 0.9071

From this table, we can see that Light GBM and DNN performances are very close but that XGBoost
is less performant (either in precision or computing time).

Fig.5: DNN architecture

3.2 Algorithms on grayscale images

Based on Nataraj et al. m work, we transform our dataset into grayscale images and employ them to
train CNN. Our CNN is composed of three convolutional layers, a dense layer with a ReLLU activation
function and a sigmoid function for scoring binaries as presented in the Fig. @ Also, inspired by ,
we propose hybrid models combining CNN and LightGBM, RF or Support Vector Machine (SVM).
Firstly, we use CNN to reduce the number of dimensions and, for each binary image, we go from 4,096
features to 256. Then, we use these 256 new features to train RF, Light GBM and SVM models. As
shown in Table [2] F1 and accuracy scores are still used to compare models.

Table 2: Grayscale models F1 score and accuracy

F1 Score|Accuracy Score
CNN 0.8786 0.8703
CNN+LGBM| 0.8827 0.8703
CNN+RF | 0.8914 0.8804
CNN+SVM | 0.8895 0.8791

As can be seen, the hybrid model combining CNN and RF outperforms the four grayscale models, but
the overall results are close. Also, the performances are relatively close to those of the Light GBM and
the DNN presented in section [3-1}It should be noted that the grayscale models are trained using only
19,400 binary files, whereas the previous models’ training set consists of 600,000 binary files. So, with
the grayscale transformation and a dataset thirty times smaller, our grayscale models remain reliable
for malware detection compared to conventional models and preprocessing.

Fig.6: CNN architecture

3.3 Algorithms on RGB images

We are now evaluating our CNN on the basis of RGB images using HIT transformation. Tableshows
F1 and accuracy scores on the test sample.

Even if the performance of the RGB model is better than the others previously presented, training on a
local machine is quite long with RGB images, but scoring on a single one is fast. Due to the complexity
of HIT algorithm, the transformation time of binaries into images is quite long and takes, on average,
25 seconds for a sample, against less than one second for the grayscale transformation. First of all,
it increases the learning process considerably if we include the time to convert the 24,000 samples.
Moreover, when predicting malware, the score is obtained in less than one second, but the time for
converting the binary into an image is added. Considering this, it’s useless to use HIT transformation
compared to grayscale transformation in corporate case, this is why we will not dwell on training other
models with HIT preprocessing.

Table 3: RGB CNN model F1 score and accuracy
F1 Score|Accuracy Score
CNN| 0.934 0.94

4 Modified binaries analysis and attention mechanism

The objective, in addition to having the most accurate results possible, is to make them usable by an
analyst. To do this, we must be able to understand why our algorithms give high scores or not. This
allows us to improve the learning process in case of error, but also to give a pointer to the analysts
to know where to look. We propose two approaches to facilitate the understanding and analysis of
malware:

— The first approach is to use, during the training of our algorithms, information about the nature of
binary files. In particular, we know if the binary files of the training set are modified. The purpose
is to reduce false positive results caused by these two obfuscation methods, and also give more
information about the nature of the new suspect files.

— The second approach is the use of an attention mechanism on model trains with grayscale images.
We can generate heatmap using the attention mechanism to detect suspicious patterns. Further-
more, the heatmap also helps to understand the results of the malware detection model.

4.1 Modified binaries

In order to reduce the false positive rate due to obfuscation, we also provide two models which are
trained while taking into account the altered nature of the binary file. The two models take in input
grayscale images.

1. The first model is a CNN which returns output information on the nature of the binary file, if it is
a malware or not, and if it is obfuscated or not. So, with a single CNN, we have double knowledge
on the characteristics of the binary file. This model achieves a F1 score of 0.8924 and an accuracy
score of 0.8852.

2. The second model is a superposition of three CNNs. The first one is used to separate binary files,
according to whether they are obfuscated or not, with an accuracy of 85%. The two others are
used to predict if a binary file is a malware or a benign and each model is respectively trained on
modified binary file and not modified binary file. The main advantage of this model is that each
CNN is independent from the other two and can be retrained separately. They also use different
architectures to improve the generalization of the data used to train them. We get a F1 score of
0.8797 and an accuracy score of 0.8699 for this model.

As we can see, the first model gives better results than the second model. Also, it can determine if a
binary file is modified with an accuracy rate of 84%. This information could help malware analysts to
have a better expertise. For example, this can explain why some benign files are detected as malware.
Moreover, it can encourage the use of sandboxes for certain suspicious files if they modified and if the
result of the malware detection is ambiguous.

4.2 Interpretibility of results and most important bytes

In this section, we present an approach that can help analysts to interpret the results of detection models
based on the transformation of binary files into grayscale images. A grayscale image representation of
an executable has distinct texture depending on the relevant sections of the file [21]. We can use
tools like PE file to extract information from the binary and see the relationship between the PE file
and its grayscale image representation. Fig. [7] shows an executable transformed into an image, the
corresponding sections of the PE file (left), and information associated with each texture (right).

The associations of PE file and grayscale image can allow an analyst to quickly visualize the areas of
interest of the binary file. To go further in the analysis, it should be necessary to study which parts of
the image have contributed to the results of malware detection algorithm. To do this, we use attention
mechanisms that consist of highlighting the pixels that influence the most the prediction score of our
algorithm.

We use GradCAM++ [22] with our own CNN presented in section The GradeCAM++ algorithm
extracts from the CNN the pixels that influence the most the model’s decision, i.e. those that determine
if the file is benign or malicious. It returns heatmap which could be interpreted as follows, the more the
image area impacts the CNN prediction, the warmer the coloring. Fig. [§] presents heatmaps of the four
binaries introduced in section ‘We observe that the malware and its packed version do not have the

Code
— Zero Padding

— .rdata }——+ ASCII text
}—»L‘uimtlahzed Data
.data
— Initialized Data
~
Zero Padding
}—5 ISIC }_/'

Fig. 7: Grayscale image with corresponding section (left) and texture interpretation (right)

same activation zones. We can make the same remark about the benign. Also, as the byte distribution
of the packed malware has undergone a lot of modifications, we see that more zones and pixels are lit
up compared to the original malware. This means that the model needs more information to make a
decision.

(a) Malware not packed (b) Malware packed (c) Benign not packed (d) Benign packed

Fig. 8: Attention map of some binary files

On the other hand, this kind of representation could help to understand why a binary file is misclassified.
For example, a common evasion technique is called padding and relies on adding byte sequences to
artificially increase the size of a file and fool the antivirus. With image representation, this kind of
technique is easily detected. However, as we can see in Fig. [0} for the two examples, the padding zone
is considered as an important part of the file. Even if the malware is correctly detected, the benign
file is misclassified and labeled as malware. So, the padding is considered as a malicious criterion. This
knowledge could be taken into consideration to increase the performance of the malware detection
model.

The activation map on binary file images seems to be an interesting and useful tool to help malware
analysts. However, it is necessary to deepen this subject to fully exploit the potential of this technique.
Indeed, we show the possible use of heatmap for packing or padding binary files analysis but there are
many other obfuscation techniques. Furthermore, we focus here on images of malware and benign, but
an extension of this approach will be to extract code directly from the binary file based on the hot zone
of the corresponding heatmap.

5 Conclusion and results

Before concluding this paper, let us start by summarizing the results. In fact, CNN trained on RGB
images based on HIT provides better results. However, the transformation time is too important to pro-
vide an efficient method for industrial deployment. Next, the DNN and Light GBM models demonstrate

(a) Benign (b) Malware

Fig.9: Example of binary files detected as malware due to padding

the expected effectiveness of the Ember dataset. Our models, which use grayscale images as input,
are slightly less efficient than theirs. The results, however, are quite comparable to a training sample
thirty times smaller. Finally, the two models train on grayscale images with information on whether
the original binary file has undergone modifications or not pointed out the potential of this method for
malware detection. They also provide more information on binary files than common detection models.
CNN algorithm hybridized with RF, LGBM and SVM show an interesting detection potential. We will
focus on this in future work to determine capacity or limit of this kind of models.

We have presented in this article different approaches to static malware detection. A recurring problem
in many organizations is the computational time required for dynamic analysis of malware in a sandbox.
However, with some modified malware, we know it is sometimes the only solution. We do not claim
here to be able to replace this analysis, but we prefer proposing an overlay. Our algorithms enable us to
quickly analyze a large amount of malware, determine which ones may or may not be malicious, while
moderating the result if the binary is detected as modified or not. This can allow us to use dynamic
analysis only on those binaries and, thus, save time and resources. In addition, analyzing the most
important pixels and sections in image can also provide significant information for analysts. That can
save them time in the detailed study of the suspicious binary by indicating where to look for it.

In future work, we will concentrate on attention mechanisms. The objective is to match the areas
of importance, extracted with attention mechanisms, with the associated malicious code to help the
analysts in their work. On the other hand, we want to use reinforcement learning to understand and
prevent malware evasion mechanisms.

References

1. Andrew H Sung, Jianyun Xu, Patrick Chavez, and Srinivas Mukkamala. Static analyzer of vicious
executables. In 20th Annual Computer Security Applications Conference, pages 326-334. IEEE,
2004.

2. V Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar. Signature generation and de-
tection of malware families. In Australasian Conference on Information Security and Privacy, pages
336-349. Springer, 2008.

3. Mihai Vasilescu, Laura Gheorghe, and Nicolae Tapus. Practical malware analysis based on sand-
boxing. Proceedings - RoEduNet IEEE International Conference, pages 7-12, 2014.

4. Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe malware machine
learning models. arXiv preprint arXiv:1804.04637, 2018.

5. Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles
Nicholas. Malware detection by eating a whole exe. arXiv preprint arXiv:1710.09435, 2017.

6. William Fleshman, Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Non-negative
networks against adversarial attacks. arXiv preprint arXiv:1806.06108, 2018.

7. Lakshmanan Nataraj, Sreejith Karthikeyan, Gregoire Jacob, and Bangalore S Manjunath. Mal-
ware images: visualization and automatic classification. In Proceedings of the 8th international
symposium on visualization for cyber security, pages 1-7, 2011.

10

http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1710.09435
http://arxiv.org/abs/1806.06108

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

Duc-Ly Vu, Trong-Kha Nguyen, Tam V Nguyen, Tu N Nguyen, Fabio Massacci, and Phu H Phung.
A convolutional transformation network for malware classification. In 2019 6th NAFOSTED Con-
ference on Information and Computer Science (NICS), pages 234-239. IEEE, 2019.

. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248-255. Ieee, 2009.

Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, StefanWestberg, Paheding Sidike,
Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari. The his-
tory began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint
arXiv:1803.01164, 2018.

Edmar Rezende, Guilherme Ruppert, Tiago Carvalho, Fabio Ramos, and Paulo De Geus. Malicious
software classification using transfer learning of resnet-50 deep neural network. In 2017 16th IEEE
International Conference on Machine Learning and Applications (ICMLA), pages 1011-1014. IEEE,
2017.

Hiromu Yakura, Shinnosuke Shinozaki, Reon Nishimura, Yoshihiro Oyama, and Jun Sakuma. Mal-
ware analysis of imaged binary samples by convolutional neural network with attention mechanism.
In Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pages
127-134, 2018.

Ashu Sharma and S. K. Sahay. Evolution and Detection of Polymorphic and Metamorphic Mal-
wares: A Survey. Interna- tional Journal of Computer Applications, 90(2):7-11, 2014.

Qinghua Zhang and Douglas S. Reeves. MetaAware: Identifying metamorphic malware. Proceed-
ings - Annual Computer Security Applications Conference, ACSAC, (January 2008):411-420, 2007.
Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph Keshet.
Adversarial examples on discrete sequences for beating whole-binary malware detection. arXiv
preprint jarXiv:1802.04528, pages 490-510, 2018.

Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Ortolani, Davide
Balzarotti, Giovanni Vigna, and Christopher Kruegel. When malware is packin’heat; limits of
machine learning classifiers based on static analysis features. In Network and Distributed Systems
Security (NDSS) Symposium 2020, 2020.

Christian Wojner. Bytehist. https://www.cert.at/en/downloads/software /software-bytehist.
Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785-794,
2016.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146-3154, 2017.

Yihan Xiao, Cheng Xing, Taining Zhang, and Zhongkai Zhao. An intrusion detection model based
on feature reduction and convolutional neural networks. IEEE Access, 7:42210-42219, 2019.
Gregory Conti, Sergey Bratus, Anna Shubina, Andrew Lichtenberg, Roy Ragsdale, Robert Perez-
Alemany, Benjamin Sang- ster, and Matthew Supan. A visual study of primitive binary fragment
types. Black Hat USA, pages 1-17, 2010.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839-847. IEEE,
2018.

11

http://arxiv.org/abs/1803.01164
http://arxiv.org/abs/1802.04528

	Malware Analysis with Artificial Intelligence and a Particular Attention on Results Interpretability

