Skip to main content

Learning Bipedal Walking Through Morphological Development

  • Conference paper
  • First Online:
Book cover Hybrid Artificial Intelligent Systems (HAIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12886))

Included in the following conference series:

Abstract

Morphological development has shown its efficiency in improving learning and adaptation to the environment in natural organisms from infancy to adulthood. In the case of robot learning, this is not so clear. The results of a series of experiments that have been carried out in previous work have allowed us to extract, from an analytical perspective, some notions about how and under what conditions morphological development may influence learning. In this paper, we want to adopt an engineering or synthesis perspective and test whether these notions can be used to construct a successful morphological development strategy for a difficult task: learning bipedal locomotion. In particular, we have addressed learning to walk in a 14 degrees of freedom NAO type robot and have designed a morphological development strategy to this end. The results obtained have allowed us to validate the relevance of the assumptions made for the design and implementation of a morphological development strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piaget, J., Cook, M.: The Origins of Intelligence in Children. International Universities Press, New York (1952)

    Book  Google Scholar 

  2. Thelen, E.: Motor development as foundation and future of developmental psychology. Int. J. Behav. Dev. 24, 385–397 (2000). https://doi.org/10.1080/016502500750037937

    Article  Google Scholar 

  3. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide evolution. Sci. Rep. 8, 1–17 (2018). https://doi.org/10.1038/s41598-018-31868-7

    Article  Google Scholar 

  4. Baranes, A., Oudeyer, P.-Y.: The interaction of maturational constraints and intrinsic motivations in active motor development. In: IEEE International Conference on Development and Learning (ICDL), pp. 1–8 (2011)

    Google Scholar 

  5. Bongard, J.: The utility of evolving simulated robot morphology increases with task complexity for object manipulation. Artif. Life. 16, 201–223 (2010). https://doi.org/10.1162/artl.2010.Bongard.024

    Article  Google Scholar 

  6. Vujovic, V., Rosendo, A., Brodbeck, L., Iida, F.: Evolutionary developmental robotics: improving morphology and control of physical robots. Artif. Life. 23, 169–185 (2017)

    Article  Google Scholar 

  7. Savastano, P., Nolfi, S.: A robotic model of reaching and grasping development. IEEE Trans. Auton. Ment. Dev. 5, 326–336 (2013)

    Article  Google Scholar 

  8. Ivanchenko, V., Jacobs, R.A.: A developmental approach aids motor learning. Neural Comput. 15, 2051–2065 (2003). https://doi.org/10.1162/089976603322297287

    Article  MATH  Google Scholar 

  9. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl. Acad. Sci. 108, 1234–1239 (2011). https://doi.org/10.1073/pnas.1015390108

    Article  Google Scholar 

  10. Buckingham, D., Bongard, J.: Physical scaffolding accelerates the evolution of robot behavior. Artif. Life. 23, 351–373 (2017)

    Article  Google Scholar 

  11. Naya-Varela, M., Faina, A., Duro, R.J.: An experiment in morphological development for learning ANN based controllers. In: IEEE World Congress on Computational Intelligence (WCCI). Glasgow (UK) (2020)

    Google Scholar 

  12. Naya-Varela, M., Faina, A., Duro, R.J.: Some experiments on the influence of problem hardness in morphological development based learning of neural controllers. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI), vol. 12344, pp. 362–373. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61705-9_30

    Chapter  Google Scholar 

  13. Naya-Varela, M.: Study of morphological development as a tool for learning robotic controllers (2021). http://hdl.handle.net/2183/27718

  14. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., Kanade, T.: Footstep planning for the Honda Asimo humanoid. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 629–634 (2005)

    Google Scholar 

  15. Hartley, R., et al.: Legged robot state-estimation through combined forward kinematic and preintegrated contact factors. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8 (2018)

    Google Scholar 

  16. Feng, S., Xinjilefu, X., Atkeson, C.G., Kim, J.: Optimization based controller design and implementation for the atlas robot in the darpa robotics challenge finals. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 1028–1035 (2015)

    Google Scholar 

  17. Lungarella, M., Berthouze, L.: On the interplay between morphological, neural, and environmental dynamics: a robotic case study. Adapt. Behav. 10, 223–241 (2002). https://doi.org/10.1177/1059712302919993005

    Article  Google Scholar 

  18. Berthouze, L., Lungarella, M.: Motor skill acquisition under environmental perturbations: on the necessity of alternate freezing and freeing of degrees of freedom. Adapt. Behav. 12, 47–64 (2004). https://doi.org/10.1177/105971230401200104

    Article  Google Scholar 

  19. Hardman, D., George Thuruthel, T., Iida, F.: Towards growing robots: a piecewise morphology-controller co-adaptation strategy for legged locomotion. In: Mohammad, A., Dong, X., Russo, M. (eds.) TAROS 2020. LNCS (LNAI), vol. 12228, pp. 357–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63486-5_37

    Chapter  Google Scholar 

  20. Zhu, J., Rong, C., Iida, F., Rosendo, A.: Scaffolded Learning of Bipedal Walkers: Bootstrapping Ontogenetic Development. bioRxiv. (2020). https://doi.org/10.1101/2020.10.03.324632

  21. Ha, D.: Reinforcement learning for improving agent design. Artif. Life. 25, 352–365 (2019). https://doi.org/10.1162/artl_a_00301

    Article  Google Scholar 

  22. Pratt, J., Dilworth, P., Pratt, G.: Virtual model control of a bipedal walking robot. In: Proceedings of International Conference on Robotics and Automation, pp. 193–198 (1997)

    Google Scholar 

  23. Robotics, C.: CoppeliaSim. https://www.coppeliarobotics.com/

  24. James, S., Freese, M., Davison, A.J.: Pyrep: Bringing v-rep to deep robot learning. arXiv Prepr. arXiv1906.11176 (2019)

    Google Scholar 

  25. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)

    Article  Google Scholar 

  26. Chervenski, P., Ryan, S.: MultiNEAT, project website (2012). http://www.multineat.com/

  27. Smith, R.L.: Open Dynamics Engine. https://www.ode.org/

  28. CESGA: CESGA. Centro de Supecomputacion de Galicia. http://www.cesga.es/

  29. Abdi, H.: Holm’s sequential Bonferroni procedure. Encycl. Res. Des. 1, 1–8 (2010)

    Google Scholar 

  30. Ahmad, H., Nakata, Y., Nakamura, Y., Ishiguro, H.: PedestriANS: a bipedal robot with adaptive morphology. Adapt. Behav. 1059712320905177 (2020). https://doi.org/10.1177/1059712320905177

Download references

Acknowledgment

This work has been partially funded by the Ministerio de Ciencia, Innovación y Universidades of Spain/FEDER (grant RTI2018–101114-B-I00) and Xunta de Galicia (grant EDC431C-2021/39). We wish to acknowledge the support received from the Centro de Investigación de Galicia “CITIC”, funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014–2020 Program), by grant ED431G 2019/01. We also want to thank CESGA (Galician Supercomputing Center) for the use of their resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Naya-Varela , A. Faina or R. J. Duro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naya-Varela, M., Faina, A., Duro, R.J. (2021). Learning Bipedal Walking Through Morphological Development. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86271-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86270-1

  • Online ISBN: 978-3-030-86271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics