Lecture Notes in Networks and Systems

Volume 324

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FEEC, University of Campinas— UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA; Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering, KIOS Research Center for Intelligent Systems and Networks, University of Cyprus, Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

The series "Lecture Notes in Networks and Systems" publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/15179

Daisuke Chugo · Mohammad Osman Tokhi · Manuel F. Silva · Taro Nakamura · Khaled Goher Editors

Robotics for Sustainable Future

CLAWAR 2021

Editors Daisuke Chugo Department of Engineering Kwansei Gakuin University Hyogo, Japan

Manuel F. Silva School of Engineering Polytechnic Institute of Porto Porto, Portugal

Khaled Goher School of Engineering University of Lincoln Lincolnshire, UK Mohammad Osman Tokhi School of Engineering London South Bank University London, UK

Taro Nakamura Chuo University Bunkyo-ku, Tokyo, Japan

ISSN 2367-3370 ISSN 2367-3389 (electronic) Lecture Notes in Networks and Systems ISBN 978-3-030-86293-0 ISBN 978-3-030-86294-7 (eBook) https://doi.org/10.1007/978-3-030-86294-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Forward

Climbing and Walking Robots (CLAWAR) started with a six-month exploratory phase in 1996 by four European organizations, namely University of Portsmouth, Royal Military Academy, FZI and RISO with the view to identify robotic stake-holders across Europe. The outcome was initiation of the CLAWAR thematic network of excellence supported by the European Commission over two phases, namely CLAWAR1 under the EC Brite Euram programme during 1998–2002 and CLAWAR2 under the EC GROWTH programme during 2002–2005.

CLAWAR Association was established by end of 2005 to continue the activities of the CLAWAR Network globally, with the mission to advance robotics for the public benefit. The association was registered in March 2006 with the Companies House in the UK as a non-profit-making limited company by guarantee and in 2012 with the Charities Commission in the UK as a charitable organization.

The CLAWAR annual conference series is one of the main activities of CLAWAR Association. The first nine issues of the conference starting from 1998 were held in locations across Europe and further issues in various countries worldwide. The COVID-19 pandemic has had an impact on mode of participation in the conference, and while issues to 22 (2019) were held in physical participation mode, virtual participation mode has been exercised for issues 23 (2020, Russian Federation) and issue 24 (2021, Japan). The CLAWAR conference series has established itself as a popular and high-profile platform for networking and dissemination of research and development findings in the area of mobile robotics and associated technologies.

Preface

CLAWAR 2021 is the twenty-fourth edition of International Conference Series on Climbing and Walking Robots and the Support Technologies for Mobile Machines. The conference is organized by CLAWAR Association in collaboration with Kwansei Gakuin University on a virtual platform in Takarazuka, Japan, during 30 August – 01 September 2021.

CLAWAR 2021 brings new developments and new research findings in robotics technologies within the framework of "robotics for sustainable future". The topics covered include wearable devices assistive robotics from augmentation to full support for those with mobility disorders, innovative designs of components and full systems and application-specific robotic solutions.

The CLAWAR 2021 conference includes a total of 42 regular submission articles from research institutions worldwide. This number has been arrived at through rigorous review of initial submissions, where each paper initially submitted has received at least three reviews. The conference further features three plenary presentations;

Categorizing extreme environments and predicting success Robin R. Murphy, Texas A&M University, USA

Quadruped robots for challenging tasks on unstructured terrains Claudio Semini, Istituto Italiano di Tecnologia, Italy

Service robotics for system integration Hajime Asama, University of Tokyo, Japan

It is believed that this book will serve as a source of inspiration and further innovation in research and development in the rapidly growing area of mobile service robotics.

August 2021

Acknowledgements

The editors would like to thank members of the International Scientific Committee and National Organising Committee of CLAWAR 2021 for their efforts in reviewing the submitted articles;

Ahmad, S., Malaysia Almeshal, A., Kuwait Armada, M., Spain Banfield, I., Panama Belter, D., Poland Berns, K., Germany Bidaud, Ph., France Bonsignorio, F., Italy Bridge, B., UK Briskin, E., Russia Burlacu, A., Romania Chevallereau, C., France Chrysostomou, D., Denmark Costa, M. T., Portugal Dehghani-Sanij, A., UK Dias, A., Portugal Dillmann, R., Germany El Youssef E. S., Brazil Ermolov I. Russia Faina, A., Denmark Farias, P., Brazil Fernandez, R., Spain Ferreira, P., Portugal Friebe, A., Sweden Gallegos Garrido, G., UK Garcia, D., Panama Grand, C., France

Guedes, P., Portugal Hassan, M. K., Malaysia Hwang, K.-S., Taiwan Ion, I., Romania Kaur, A. P., UK Kiriazov, P., Bulgaria Kobayashi, H., Japan Kozłowski, K., Poland Leon-Rodriguez, H., Colombia Marques, L., Portugal Martins, D., Brazil Meija Rincon, L., Brazil Mohamed, Z., Malaysia Molfino, R., Italy Monje, C. A., Spain Montes, H., Panama Moon, S., Korea Muramatsu, S., Japan Muscato, G., Italy Nunuparov, A., Russia Okui, M., Japan Paraforos, D., Germany Park, H. S., Korea Penders, J., UK Petry, M., Portugal Plentz, P. D. M., Brazil Rachkov, M., Russia

- Reina, G., Italy Ribeiro, M., Portugal Rocha, R. P., Portugal Rodríguez Lera, F. J., France Semini, C., Italy Sequeira, J., Portugal Skrzypczynski, P., Poland Su, H., China Tenreiro Machado, J., Portugal Visser, A., The Netherlands
- Wada, M., Japan Wu, J., China Xie, M., Singapore Yatsun, S., Russia Yigit, A., Kuwait Yokota, S., Japan Zhong, Z. W., Singapore Zhukov, A., Russia Zielinska, T., Poland

CLAWAR'2021 Conference Organization

General Co-chairs

Daisuke Chugo	Kwansei Gakuin University, Japan
M. Osman Tokhi	London South Bank University, UK
Sho Yokota	Toyo University, Japan

International Scientific Committee Co-chairs

Taro Nakamura	Chuo University, Japan
Manuel F. Silva	ISEP & INESC TEC, Portugal
Manabu Okui	Chuo University, Japan

International Advisory Committee Chair

Gurvinder S. Virk	CLAWAR Association	ı, UK
-------------------	--------------------	-------

National Organizing Committee Chair

Hiroyuki Kobayashi	Osaka Institute of Technology, Japan
--------------------	--------------------------------------

National Organizing Committee

Satoshi Muramatsu	Tokai University, Japan
Keizo Miyahara	Kwansei Gakuin University, Japan
Takayuki Ishii	Office Ishii Co., Ltd., Japan

Publications Co-chairs

Daisuke Chugo	Kwansei Gakuin University, Japan
M. Osman Tokhi	London South Bank University, UK

Special/Workshop Sessions Chair

Khaled M. Goher University of Lincoln, UK

Local Arrangements Chair

Hiroyuki Kobayashi	Osaka Institute of Technology, Japan
Publicity Co-chairs	
Abdullah Almeshal	College of Technological Studies, Kuwait
Masayoshi Wada	Tokyo University of Science, Japan

Website Chair

* *	Abdullah Almeshal	College of Technological Studies, K	uwait
-----	-------------------	-------------------------------------	-------

International Scientific Committee

Abbas Dehghani-Sanij	University of Leeds, UK
Abdullah Almeshal	Public Authority for Applied Education
	and Training, Kuwait
Adrian Burlacu	The Gheorghe Asachi Technical University
	of Iasi, Romania
Ahmet Yigit	Kuwait University, Kuwait
Aman Kaur	London South Bank University, UK
André Dias	ISEP & INESC TEC, Portugal
Andres Faina	IT University of Copenhagen, Denmark
Andrey Zhukov	MAI, Russia
Anna Friebe	Mälardalen University, Sweden
Armen Nunuparov	Moscow Institute of Physics and Technology,
	Russia
Arnoud Visser	University of Amsterdam, Netherlands
Bryan Bridge	TWI, UK
Christine Chevallereau	Centre National de la Recherche Scientifique,
	France
Christophe Grand	ONERA, France
Claudio Semini	Istituto Italiano di Tecnologia, Italy
Concepción A. Monje	University Carlos III of Madrid, Spain
Daniel Martins	Federal University of Santa Catarina, Brazil
Deyka Garcia	Universidad Tecnologica de Panama, Panama
Dimitrios Paraforos	University of Hohenheim, Germany
Dimitrios Chrysostomou	Aalborg University, Denmark
Dominik Belter	Poznan University of Technology, Poland
Ebrahim Samer El Youssef	Universidade Federal de Santa Catarina, Brazil

Eugene Briskin Fabio Bonsignorio Francisco Rodríguez Lera Gabriela Gallegos Garrido Giovanni Muscato Giulio Reina Hector Montes Franceschi Hernando Leon-Rodriguez Hong Seong Park Hongye Su Humberto Rodríguez Ilka Banfield Ion Ion Ivan Ermolov

Jacques Penders João Sequeira José Tenreiro Machado

- Jun Wu Kao-Shing Hwang Karsten Berns Krzysztof Kozłowski Leonardo Meija Rincon Lino Marques Manuel Armada Marcelo Petry Maria Teresa Costa
- Mário Ribeiro Masayoshi Wada Michael Rachkov Ming Xie Mohd Khair Hassan Okui Manabu Patricia Della Méa Plentz Paulo Farias Paulo Ferreira

Pedro Guedes

Petko Kiriazov Philippe Bidaud Piotr Skrzypczynski Rezia Molfino

Volgograd State Technical University, Russia Heron Robots, Italy University of Luxembourg, Luxembourg London South Bank University, UK University of Catania, Italy Politecnico di Bari, Italy Universidad Tecnologica de Panama, Panama Nueva Granada Military University, Colombia Kangwon National University, South Korea Zhejiang University, Peoples Republic of China Universidad Tecnológica de Panamá, Panama Universidad Tecnológica de Panamá, Panama Politehnica University of Bucharest, Romania Institute for Problems in Mechanics of the Russian Academy of Sciences, Russia Sheffield Hallam University, UK University of Lisbon, Portugal School of Engineering of the Polytechnic of Porto, Portugal Zhejiang University, Peoples Republic of China National Sun Yat-sen University, Taiwan TU Kaiserslautern, Germany Poznan University of Technology, Poland Federal University of Santa Catarina, Brazil University of Coimbra, Portugal Spanish National Research Council, Spain **INESC TEC**, Portugal School of Engineering of the Polytechnic of Porto, Portugal ISO, Portugal Tokyo University of Science, Japan Moscow Polytechnic University, Russia Nanyang Technological University, Singapore Universiti Putra Malaysia, Malaysia Chuo University, Japan Federal University of Santa Catarina, Brazil Universidade Federal da Bahia, Brazil School of Engineering of the Polytechnic of Porto, Portugal School of Engineering of the Polytechnic of Porto, Portugal Bulgarian Academy of Sciences, Bulgaria Sorbonne Université, France Poznan University of Technology, Poland University of Genova, Italy

Roemi Fernandez Rüdiger Dillmann Rui P. Rocha Salmiah Ahmad

Sergey Yatsun Seungbin Moon Teresa Zielinska Z. W. Zhong Zaharuddin Mohamed Spanish National Research Council, Spain University of Karlsruhe, Germany University of Coimbra, Portugal
International Islamic University Malaysia, Malaysia
Southwest State University, Russia
Sejong University, South Korea
Warsaw University of Technology, Poland
Nanyang Technological University, Singapore Universiti Teknologi Malaysia, Malaysia

Contents

Section-1: Biped Locomotion

Studying the Two-Legged Walking System with Video Capture Methods Alexander S. Pechurin, Sergey F. Jatsun, Andrey V. Fedorov, and A. S. Jatsun	3
Stacked Modulation Architecture for Simultaneous Exploration and Navigation of a Biped Robot Tomomichi Sugihara and Takanobu Yamamoto	13
Continuous Inverse Kinematics in Singular Position Patrick Vonwirth and Karsten Berns	24
Analysis of Biped Robot on Uneven Terrain Based on Feed-Forward Control Cong Yan, Fumihiko Asano, Yanqiu Zheng, and Longchuan Li	37
Section-2: Human-Machine/Human-Robot Interaction	
The Spherical Pedal Control Device for Omni-Directional Mobile Robot Manipulation	43
Modelling of Pedestrians Crossing a Crosswalk and Robot Navigation Based on Its Characteristics	54

Section-3: Innovative Actuators and Power Supplies	
A Compliant Leg Structure for Terrestrial and Aquatic Walking Robots Peter Billeschou, Cao D. Do, Jørgen C. Larsen, and Poramate Manoonpong	69
Design and Modelling of a Modular Robotic Joint Marco Rocha, Vitor H. Pinto, José Lima, and Paulo Costa	81
Section-4: Innovative Design of CLAWAR	
The Flatworm-Like Pedal Locomotory Robot WORMESH-II:Fundamental Properties of Pedal Wave LocomotionG. V. C. Rasanga, R. Hodoshima, and S. Kotosaka	95
Experimental Investigation of Locomotive Efficiency of a Soft Robotic Eel with a Largely Passive Body Dinh Quang Nguyen and Van Anh Ho	108
Non-assembly Walking Mechanism for Robotic In-Pipe Inspection George H. Jackson-Mills, Basil A. Shead, James R. Collett, Masego Mphake, Nicholas Fry, Andrew R. Barber, Jordan H. Boyle, Robert C. Richardson, Andrew E. Jackson, and Shaun Whitehead	117
Improved Energy Efficiency via Parallel Elastic Elements for the Straight-Legged Vertically-Compliant Robot SLIDER Ke Wang, Roni Permana Saputra, James Paul Foster, and Petar Kormushev	129
Section-5: Inspection	
Residual Water Removal Mechanism for Obtaining Clear Images with Sewer Pipe Inspection Robot	143
Wireless Communication with Mobile Inspection Robots OperatingWhile Submerged Inside Oil Storage TanksRichard Anvo, Aman Kaur, and Tariq P. Sattar	154
Climbing Robot to Perform Radiography of Wind Blades Tariq P. Sattar, Vitor Marques, Richard N'zebo Anvo, Gabriela Gallegos Garrido, Aman Preet Kaur, Peter Routledge, and Karen Markham	165

Contents

Section-6: Legged Locomotion	
Simulation-Based Climbing Capability Analysis for Quadrupedal Robots Kentaro Uno, Giorgio Valsecchi, Marco Hutter, and Kazuya Yoshida	179
Six-Legged Robot Overturn from an Emergency Position on the Back Under the Influence of Hindrance	192
Passive Gripping Foot for a Legged Robot to Move Over Rough Terrain Sho Hakamada and Sadayoshi Mikami	203
Enhancing Legged Robot Navigation of Rough Terrain via Tail Tapping Daniel Soto, Kelimar Diaz, and Daniel I. Goldman	213
Section-7: Modelling and Simulation of CLAWAR	
ClimbLab: MATLAB Simulation Platform for Legged Climbing Robotics Kentaro Uno, Warley F. R. Ribeiro, Yusuke Koizumi, Keigo Haji, Koki Kurihara, William Jones, and Kazuya Yoshida	229
Modeling and Motion Analysis of Planar Passive-Dynamic WalkerWith Tensegrity Structure Formed by Four Limbs and EightViscoelastic ElementsFumihiko Asano, Yanqiu Zheng, and Longchuan Li	242
Trajectory Planning Strategy for the Links of a Walking Human-Machine System Using a Neural Network Sergey F. Jatsun, Andrei V. Malchikov, Alexey A. Postolniy, and Andrey S. Yatsun	255
Passive Motion Analysis of Two Identical Regular OctagonalObjects That Move on Passively Vibrating Tilted StageFumihiko Asano, Longchuan Li, and Isao Tokuda	262
Analysis of Passive Dynamic Gait of Tensegrity Robot Yanqiu Zheng, Fumihiko Asano, Longchuan Li, and Cong Yan	274
About the Distribution of Traction Efforts Between the Propulsion Devices of Walking Robots	286
Eugene S. Briskin, Vitaly N. Platonov, and Liliya D. Smirnaya	

Regularities of Contact Behavior of Small Supporting Elements (Feet) of Walking Machines and Robots with Weakly Bearing and Water-Saturated Soils	295
Vladimir V. Arykantsev, Vadim V. Chernyshev, Yaroslav V. Kalinin, and Nikolay G. Sharonov	
Realistic 3D Simulation of a Hybrid Legged-Wheeled Robot Inês N. Soares, Vítor H. Pinto, José Lima, and Paulo Costa	303
Section-8: Outdoor and Field Robotics	
Semi-autonomous Mobile Robot for Environmental Surfaces Disinfections Against SARS-CoV-2	317
Horizontal Drilling with Seabed Robotic Explorer Ryosuke Tokoi, Wataru Toyama, Kazuki Tsumura, Tomoki Watanabe, Manabu Okui, Taro Nakamura, and Hiroshi Yoshida	329
Excavation Experiment of Earth Worm Type Seabed Exploration Robot in Actual Sea Area	337
Evaluation of Optimal Cleaning Tools for the Development of a Cleaning Robot for Grease from Ventilation Ducts Yuta Yamanaka, Takehiro Hitomi, Fumio Ito, and Taro Nakamura	348
Development of Automatic Operation System Considering Steering Performance for a Paddy Field Weeding Robot	357
Development of the Object Transfer Robot with Variable Height Using a Pantograph-Type Jack System Kazushi Kurasawa, Hyouga Sugiyama, Satoshi Muramatsu, Katsuhiko Inagaki, Daisuke Chugo, and Hiroshi Hashimoto	369
Section–9: Planning and Control	
Learning and Transfer of Movement Gaits Using Reinforcement Learning David Waidner and Marcus Strand	383
Rolling Resistance Model and Control of Spherical Robot	396

Contents

Automatic Generation of Random Step Environment Modelsfor Gazebo SimulatorRuslan Gabdrahmanov, Tatyana Tsoy, Yang Bai, Mikhail Svinin,and Evgeni Magid	408
The Motion Control Research of the Mobile Robot withVibrating Propulsion Device Which Discretely Interactingwith the Supporting SurfaceDenis V. Bordyugov, Eugene S. Briskin, and Nikolay G. Sharonov	421
Experimental Investigations of the Controlled Motion of the Roller Racer Robot	428
Generation of the Self-motion Manifolds of a Functionally Redundant Robot Using Multi-objective Optimization Ilka Banfield and Humberto Rodríguez	438
Section-10: Wearable Devices and Assistive Robotics	
Evaluation Method of Gait Motion of a Patient Received Total Knee Arthroplasty Using Correlation Between Measurement Data and Evaluation Score Koji Makino, Masahiro Nakamura, Ryo Hagihara, Hidenori Omori, Yoshinobu Hanagata, Kohei Shirataki, Shohei Ueda, and Hidetsugu Terada	455
Lightweight Locomotion Assistant for People with Mild Disabilities Gonçalo Neves, João S. Sequeira, and Cristina Santos	465
Possibility of Getting On/Off Public Vehicle by Manual Wheelchair with 4 Degrees of Freedom Contact Arm Mechanism Fumiaki Takemori and Ryoga Hayashi	477
Author Index	489

List of Contributors

Richard N'zebo Anvo School of Engineering, London South Bank University, London, UK

Vladimir V. Arykantsev Volgograd State Technical University, Volgograd, Russia

Fumihiko Asano School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Yang Bai Information Science and Engineering Department, College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan

Ilka Banfield Mechanical Engineering Faculty, Universidad Tecnológica de Panamá, Panama City, Panama;

LEADS-UTP, Universidad Tecnológica de Panamá, Panama City, Panama

Andrew R. Barber Department of Mechanical Engineering, University of Leeds, Leeds, UK

Karsten Berns Department of Computer Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany

Peter Billeschou University of Southern Denmark, SDU Biorobotics, Odense, Denmark

Denis V. Bordyugov Department of Theoretical Mechanics, Volgograd State Technical University, Volgograd, Russia

Jordan H. Boyle Department of Mechanical Engineering, University of Leeds, Leeds, UK

Eugene S. Briskin Department of Theoretical Mechanics, Volgograd State Technical University, Volgograd, Russia;

Center for Technology Components of Robotics and Mechatronics, Innopolis University, Innopolis, Russia

Vadim V. Chernyshev Volgograd State Technical University, Volgograd, Russia

Daisuke Chugo Kwansei Gakuin University, Sanda, Hyougo, Japan

James R. Collett Department of Mechanical Engineering, University of Leeds, Leeds, UK

Paulo Costa FEUP—Faculty of Engineering, University of Porto, Porto, Portugal; CRIIS—Centre for Robotics in Industry and Intelligent Systems, INESC TEC— Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal

Kelimar Diaz School of Physics, Georgia Tech, Atlanta, GA, USA

Cao D. Do University of Southern Denmark, SDU Biorobotics, Odense, Denmark

Octavio Echeverría LEADS Research Group, Universidad Tecnológica de Panamá, Panama City, Panama;

Fab Lab-UTP, Universidad Tecnológica de Panamá, Panama City, Panama

Andrey V. Fedorov South-West State University, Kursk, Russia

James Paul Foster Department of Electrical and Electronic Engineering, Imperial College London, London, UK

Nicholas Fry Department of Mechanical Engineering, University of Leeds, Leeds, UK

Ruslan Gabdrahmanov Laboratory of Intelligent Robotic Systems, Intelligent Robotics Department, Kazan Federal University, Kazan, Tatarstan Republic, Russian Federation

Gabriela Gallegos Garrido School of Engineering, London South Bank University, London, UK

Daniel I. Goldman School of Physics, Georgia Tech, Atlanta, GA, USA

Yury F. Golubev Keldysh Institute of Applied Mathematics, RAS, Moscow, Russia;

M.V. Lomonosov Moscow State University, Moscow, Russia

Ryo Hagihara University of Yanamashi, Kofu, Japan

Keigo Haji Space Robotics Lab (SRL), Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi, Japan

Sho Hakamada Graduate School of Systems Information Science, Future University Hakodate, Hokkaido, Hakodate, Japan

Yoshinobu Hanagata Kofu Municipal Hospital, Kofu, Japan

Hiroshi Hashimoto Advanced Institute of Industrial Technology, Shinagawa, Japan

Ryoga Hayashi Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan

Takehiro Hitomi Faculty of Science and Technology, Chuo University, Tokyo, Japan

Van Anh Ho School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan

R. Hodoshima Department of Mechanical Engineering, Saitama University, Saitama-shi, Saitama, Japan

Marco Hutter Robotic Systems Lab (RSL), ETH Zurich, Zürich, Switzerland

Katsuhiko Inagaki Tokai University, Hiratsuka, Kanagawa, Japan

Keita Isaka Chuo University, Tokyo, Japan

Fumio Ito Faculty of Science and Technology, Chuo University, Tokyo, Japan; Precision Mechanics, Chuo University, Tokyo, Japan

Tatiana B. Ivanova Udmurt State University, Izhevsk, Russia

George H. Jackson-Mills Department of Mechanical Engineering, University of Leeds, Leeds, UK

Andrew E. Jackson Department of Mechanical Engineering, University of Leeds, Leeds, UK

A. S. Jatsun South-West State University, Kursk, Russia

Sergey F. Jatsun South-West State University, Kursk, Russia

William Jones VisionSpace Technologies GmbH, Darmstadt, Germany

Yaroslav V. Kalinin Volgograd State Technical University, Volgograd, Russia

Yury L. Karavaev Kalashnikov Izhevsk State Technical University, Izhevsk, Russia

Aman Preet Kaur School of Engineering, London South Bank University, London, UK

Alexander A. Kilin Ural Mathematical Center, Udmurt State University, Izhevsk, Russia

Yusuke Koizumi Space Robotics Lab (SRL), Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi, Japan

Victor V. Koryanov Keldysh Institute of Applied Mathematics, RAS, Moscow, Russia

Petar Kormushev Robot Intelligence Lab, Dyson School of Design Engineering, Imperial College London, London, UK

S. Kotosaka Department of Mechanical Engineering, Saitama University, Saitama-shi, Saitama, Japan

Kazushi Kurasawa Tokai University, Hiratsuka, Kanagawa, Japan

Koki Kurihara Space Robotics Lab (SRL), Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi, Japan

Shunichi Kurumaya Precision Mechanics, Chuo University, Tokyo, Japan

Jørgen C. Larsen University of Southern Denmark, SDU Biorobotics, Odense, Denmark

Longchuan Li Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan

José Lima CRIIS—Centre for Robotics in Industry and Intelligent Systems, INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal;

Research Centre in Digitalization and Intelligent Robotics, CeDRI, Polytechnic Institute of Bragança, Bragança, Portugal

Poramate Manoonpong University of Southern Denmark, SDU Biorobotics, Odense, Denmark;

Vidyasirimedhi Institute of Science and Technology, School of Information Science and Technology, Rayong, Thailand

Evgeni Magid Laboratory of Intelligent Robotic Systems, Intelligent Robotics Department, Kazan Federal University, Kazan, Tatarstan Republic, Russian Federation

Koji Makino University of Yanamashi, Kofu, Japan

Andrei V. Malchikov South-West State University, Kursk, Russia

Karen Markham Risehow Hydraulic Center, FORTH Engineering Ltd., Maryport, UK

Vitor Marques School of Engineering, London South Bank University, London, UK

Elena V. Melkumova M.V. Lomonosov Moscow State University, Moscow, Russia

Sadayoshi Mikami Future University Hakodate, Hokkaido, Hakodate, Japan

Héctor Montes LEADS Research Group, Universidad Tecnológica de Panamá, Panama City, Panama;

CINEMI Research Group, Universidad Tecnológica de Panamá, Panama City, Panama;

ARIeS Research Group, Universidad Tecnológica de Panamá, Panama City, Panama

Seiya Moro Department of Mechanical Engineering, National Institute of Technology, Kisarazu College, Kisarazu, Chiba, Japan

Masego Mphake Department of Mechanical Engineering, University of Leeds, Leeds, UK

Satoshi Muramatsu Tokai University, Hiratsuka, Kanagawa, Japan

Masahiro Nakamura Kofu Municipal Hospital, Kofu, Japan

Taro Nakamura Faculty of Science and Technology, Chuo University, Tokyo, Japan;

Precision Mechanics, Chuo University, Tokyo, Japan

Gonçalo Neves Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

Dinh Quang Nguyen School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan

Kenzi Nomura Alnetz Corporation, Yokohama, Japan

Manabu Okui Chuo University, Tokyo, Japan

Hidenori Omori Kofu Municipal Hospital, Kofu, Japan

Alexander S. Pechurin South-West State University, Kursk, Russia

Víctor Perez LEADS Research Group, Universidad Tecnológica de Panamá, Panama City, Panama;

Fab Lab-UTP, Universidad Tecnológica de Panamá, Panama City, Panama

Vítor H. Pinto FEUP—Faculty of Engineering, University of Porto, Porto, Portugal;

CRIIS—Centre for Robotics in Industry and Intelligent Systems, INESC TEC— Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal

Vitaly N. Platonov Department of Theoretical Mechanics, Volgograd State Technical University, Volgograd, Russia

Alexey A. Postolniy South-West State University, Kursk, Russia

G. V. C. Rasanga Graduate School of Science and Engineering, Saitama University, Department of Mechanical Engineering, Saitama-shi, Saitama, Japan

Warley F. R. Ribeiro Space Robotics Lab (SRL), Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi, Japan

Robert C. Richardson Department of Mechanical Engineering, University of Leeds, Leeds, UK

Humberto Rodríguez LEADS Research Group, Universidad Tecnológica de Panamá, Panama City, Panama;

Fab Lab-UTP, Universidad Tecnológica de Panamá, Panama City, Panama; Mechanical Engineering Faculty, Universidad Tecnológica de Panamá, Panama City, Panama;

LEADS-UTP, Universidad Tecnológica de Panamá, Panama City, Panama

Marco Rocha Faculty of Engineering, University of Porto, Porto, Portugal

Peter Routledge Risehow Hydraulic Center, FORTH Engineering Ltd., Maryport, UK

Cristina Santos Universidade do Minho, Braga, Portugal

Roni Permana Saputra Robot Intelligence Lab, Dyson School of Design Engineering, Imperial College London, London, UK;

Research Center for Electrical Power and Mechatronics, Indonesian Institute of Sciences-LIPI, Bandung, Indonesia

Hiroto Sato Precision Mechanics, Chuo University, Tokyo, Japan

Tariq P. Sattar London South Bank University Innovation Centre, London, UK; School of Engineering, London South Bank University, London, UK

Satoharu Sekine Alnetz Corporation, Yokohama, Japan

João S. Sequeira Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

Nikolay G. Sharonov Department of Theoretical Mechanics, Volgograd State Technical University, Volgograd, Russia;

Center for Technology Components of Robotics and Mechatronics, Innopolis University, Innopolis, Russia

Jin-Hua She Tokyo University of Technology, Tokyo, Japan

Basil A. Shead Department of Mechanical Engineering, University of Leeds, Leeds, UK

Kohei Shirataki Kofu Municipal Hospital, Kofu, Japan

Thawanrat Siriwattanalerd Tokai University, Kanagawa, Japan

Liliya D. Smirnaya Department of Theoretical Mechanics, Volgograd State Technical University, Volgograd, Russia;

Center for Technology Components of Robotics and Mechatronics, Innopolis University, Innopolis, Russia

Inês N. Soares FEUP—Faculty of Engineering, University of Porto, Porto, Portugal

Daniel Soto School of Mechanical Engineering, Georgia Tech, Atlanta, GA, USA

Marcus Strand Cooperative State University Baden-Württemberg, Karlsruhe, Germany

Tomomichi Sugihara Preferred Networks, Inc., Tokyo, Japan

Ryosuke Sugimoto Tokai University, Kanagawa, Japan

Hyouga Sugiyama Tokai University, Hiratsuka, Kanagawa, Japan

Mikhail Svinin Information Science and Engineering Department, College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan

Fumiaki Takemori Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan

Hidetsugu Terada University of Yanamashi, Kofu, Japan

Ryosuke Tokoi Chuo University, Tokyo, Japan

Isao Tokuda Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan

Wataru Toyama Chuo University, Tokyo, Japan

Tatyana Tsoy Laboratory of Intelligent Robotic Systems, Intelligent Robotics Department, Kazan Federal University, Kazan, Tatarstan Republic, Russian Federation

Kazuki Tsumura Chuo University, Tokyo, Japan

Hiroaki Uchida Department of Mechanical Engineering, National Institute of Technology, Kisarazu College, Kisarazu, Chiba, Japan

Kosuke Uchiyama Precision Mechanics, Chuo University, Tokyo, Japan

Shohei Ueda Kofu Municipal Hospital, Kofu, Japan

Kentaro Uno Space Robotics Lab (SRL), Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi, Japan

Giorgio Valsecchi Robotic Systems Lab (RSL), ETH Zurich, Zürich, Switzerland

Patrick Vonwirth Department of Computer Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany

David Waidner Cooperative State University Baden-Württemberg, Karlsruhe, Germany

Ke Wang Robot Intelligence Lab, Dyson School of Design Engineering, Imperial College London, London, UK

Tomoki Watanabe Chuo University, Tokyo, Japan

Shaun Whitehead Department of Mechanical Engineering, University of Leeds, Leeds, UK

Shunsuke Yamada Kwansei Gakuin University, Hyogo, Japan

Takanobu Yamamoto Osaka University, Suita, Osaka, Japan

Yuta Yamanaka Faculty of Science and Technology, Chuo University, Tokyo, Japan

Cong Yan School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Andrey S. Yatsun South-West State University, Kursk, Russia

Kirill Yefremov Kalashnikov Izhevsk State Technical University, Izhevsk, Russia

Sho Yokota Toyo University, Saitama, Japan

Hiroshi Yoshida Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan

Kazuya Yoshida Space Robotics Lab (SRL), Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi, Japan

Yanqiu Zheng School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

List of Abbreviations

Abd	Abduction
ABS	Acrylonitrile butadiene styrene
AC	Alternating current
ADC	Analog-to-digital converter
Add	Adduction
AI	Artificial intelligence
API	American Petroleum Institute
ATEX	Atmospheres explosives
BL	Body length
BLDC	Brushless direct current
CAD	Computer aided design
CAN	Controlled area network
CANOpen	Controlled area network open protocol
CBT	Canonical biped track
CCDF	Complementary cumulative distribution function
CCW	Counter clock-wise
CNC	Computer numerical control
COM	Centre of mass
COT	Cost of transport
CPU	Central processing unit
CW	Clock-wise
DC	Direct current
DLS	Damped least square
DoF	Degrees of freedom
DZC	Dead zone compensation
ECHA	European Chemical Agency
EMW	Electro-magnetic wave
ENG	Elevation-and-normal grid
EoM	Equation of motion
EPA	Environmental Protection Agency

EVA	Ethylene-vinyl acetate
EWEA	European Wind Energy Association
FABRIK	Forward and backward reaching inverse kinematics
FF	Feed forward
FK	Forward kinematics
FPS	Floating processing unit
GIA	Gravito-inertial acceleration
GNSS	Global navigation satellite system
GP	Gaussian process
GPS	Global positioning system
GPU	Graphical processing unit
GUI	Graphical user interface
HMS	Human machine system
Ι	Integral
IBR	Inchworm boring robot
ID	Identifier
IEC	International Electro-technical Commission
IK	Inverse kinematics
IMC	Internal model control
IMU	Inertial measurement unit
IP	Ingress protection
I2C	Inter integrated circuit
LED	Light emitting diode
LIDAR	Light detection and ranging
LiPo	Lithium polymer
LIRS	Laboratory of Intelligent Robotic Systems
MCU	Microprocessor control unit
MDBF	Mean displacement before failure
MDP	Markov decision process
ML	Machine learning
MOEA	Multi objective evolutionary algorithm
MOGA	Multi-objective genetic algorithms
MSS	Musculoskeletal system
NDT	Non-destructive testing
NMT	Network management
NSGA	Non-sorting genetic algorithm
ODE	Open dynamics engine
OpenGL	Open graphics library
PC	Personal computer
PCB	Printed circuit board
PD	Proportional derivative
PI	Proportional integral
PID	Proportional-integral-derivative
PIG	Pipeline inspection gauge
PLA	Poly-lactic acid

PPM	Profile position mode
PPO	Proximal policy optimization
PVA	Poly vinyl alcohol
PVC	Poly-vinyl chloride
PWM	Pulse width modulation
RC	Radio controlled
RF	Radio frequency
RHex	Robotic hexapod
RMS	Root mean square
ROS	Robot operating system
RS	Recommended standard
RSE	Random step environment
RTF	Real time factor
RTK	Real time kinematic
RW	Rimless wheel
SAC	Soft-actor critic
SARS-CoV-2	Severe acute respiratory syndrome coronavirus 2
SC	Smart cane
SDLS	Selectively damped least square
SE	Squared exponential
SEAN	Simultaneous exploration and navigation
SLS	Selective laser sintering
SSE	Screw subsurface explorer
SSH	Secure shell
STL	Stereolithography
SURF	Speeded up robust features
SW	Smart walkers
SLAM	Simultaneous localisation and mapping
THA	Total hip arthroplasty
TSM	Tumble stability margin
UART	Universal asynchronous receiver transmitter
UCB	Upper confidence bound
UGV	Unmanned ground vehicle
ULV	Ultra low volume
USAR	Urban search and rescue
USB	Universal serial bus
UT	Underwater technology
UTP	Technological University of Panama
UVC	Ultra violet C
WHO	World Health Organization
WT	Wind turbine
WTB	Wind turbine blade
WTT	Wind turbine tower
ZMP	Zero-moment point
	1