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Abstract. This paper presents a novel method for date estimation of
historical photographs from archival sources. The main contribution is
to formulate the date estimation as a retrieval task, where given a query,
the retrieved images are ranked in terms of the estimated date similar-
ity. The closer are their embedded representations the closer are their
dates. Contrary to the traditional models that design a neural network
that learns a classifier or a regressor, we propose a learning objective
based on the nDCG ranking metric. We have experimentally evaluated
the performance of the method in two different tasks: date estimation
and date-sensitive image retrieval, using the DEW public database, over-
coming the baseline methods.
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1 Introduction

Historical archives and libraries contain a large variability of document sources
that reflect the memory of the past. The recognition of the scanned images of
these documents allows to reconstruct the history. A particular type of archival
data are historical photographs which are full of evidence that tells us the story of
that snapshot in time. One just needs to pay attention to the subtle cues that are
found in different objects that appear in the scene: the clothes that people wear,
their haircut styles, the overall environment, the tools and machinery, the natural
landscape, etc. All of these visual features are important cues for estimating its
creation date. Apart from that, texture and color features might also be of great
help to accurately estimate of image creation date since photographic techniques
have evolved throughout history and have imprinted a specific date fingerprint
on them.

Date estimation of cultural heritage photographic assets is a complex task
that is usually performed by experts (e.g. archivists or genealogists) that ex-
ploit their expert knowledge about all the features mentioned above to provide
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precise date estimations for undated photographs. But their manual labor is
costly and time consuming, and automatic image date estimation models are of
great interest for dealing with large scale archive processing with minimal human
intervention.

Most approaches in date estimation for historical images try to directly com-
pute the estimation through classification or regression [BI9I12]. As alternative
of these classical approaches, in this paper we present a method for date estima-
tion of historical photographs in a retrieval scenario. Thus, the date estimation
of photographs is incorporated in the ranked results for a given query image.
This allows to predict the date of an image contextualized regarding the other
photographs of the collection. In the worst case, when the exact date is not ex-
actly estimated, the user can obtain a relative ordering (one photograph is older
than another one), which is useful in archival tasks of annotating document
sources. The proposed model for historical photograph retrieval is based in a
novel ranking loss function smooth-nDCG based on the Normalized Discounted
Cumulative Gain ranking metric, which is able to train our system according to
a known relevance feedback; in our case the distance in years between images.

The main idea in our approach relies on optimizing rankings such that the
closer is image’s date to the query’s date for a certain photograph the higher will
be ranked. When receiving an unknown image as query the method computes
the distances towards a support dataset, consisting of a collection of images with
known dates. The date is estimated assuming that the highest ranked images
are images from the same date.

In contrast to the literature reviewed in Section [2] our method allows not
only to predict but to rank images given a query. This means that considering
an image from a certain year our system is capable of retrieving a list of images
ordered by time proximity. This may be useful for many applications and systems
that rely on retrieving information from a large amount of data.

The rest of the paper is organized as follows: In Section [2| we present the
most relevant state of the art related to our work. The key components of the
proposed model are described in Section [3] where we describe the learning ob-
jectives considered in the training algorithms, and in Section[d] where we outline
the architecture and training process of the model. Section [5] provides the ex-
perimental evaluation and discussion. Finally, Section [f] draws the conclusions.

2 Related Work

The problem of automatic estimation of the creation date of historical pho-
tographs is receiving increased attention by the computer vision and digital hu-
manities research communities. The first works go back to Schindler et al. [T4J13],
where the objective was to automatically construct time-varying 3D models of a
city from a large collection of historical images of the same scene over time. The
process begins by performing feature detection and matching on a set of input
photographs, followed by structure from motion (SFM) to recover 3D points and
camera poses. The temporal ordering task was formulated as a constraint satis-
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faction problem (CSP) based on the visibility of structural elements (buildings)
in each image.

More related with the task addressed in our work, Palermo et al. [10] explored
automatic date estimation of historical color images based on the evolution of
color imaging processes over time. Their work was formulated as a five-way
decade classification problem, training a set of one-vs-one linear support vector
machines (SVMs) and using hand-crafted color based features (e.g. color co-
occurrence histograms, conditional probability of saturation given hue, hue and
color histograms, etc.). Their models were validated on a small-scale dataset
consisting of 225 and 50 images per decade for training and testing, respectively.

In a similar work, Fernando et al. [3] proposed two new hand-crafted color-
based features that were designed to leverage the discriminative properties of
specific photo acquisition devices: color derivatives and color angles. Using lin-
ear SVMs they outperformed the results of [I0] as well as a baseline of deep
convolutional activation features [2]. On the other hand, martin et al. [§] also
showed that the results of [10] could be slightly improved by replacing the one-
vs-one classification strategy by an ordinal classification framework [4] in which
relative errors between classes (decades) are adequately taken into account.

More recently, Miiller et al. [9] have brought up to date the task of image date
estimation in the wild by contributing a large-scale, publicly available dataset
and providing baseline results with a state-of-the-art deep learning architecture
for visual recognition [I5]. Their dataset, Date Estimation in the Wild (DEW),
contains more than one million Flickrﬂ images captured in the period from 1930
to 1999, and covering a broad range of domains, e.g., city scenes, family photos,
nature, and historical events.

Beyond the problem of unconstrained date estimation of photographs, which
is the focus of this paper, there are other related works that have explored the
automatic prediction of creation dates of certain objects [7I16], or of some specific
types of photographs such as yearbook portraits [5I12].

In this work, contrary to all previously published methods, we approach the
problem of date estimation from an image retrieval perspective. We follow the
work of Brown et al. [I] towards differentiable loss functions for information
retrieval. More precisely, our model learns to estimate the date of an image by
minimizing the the Normalized Discounted Cumulative Gain.

In all our experiments we use Miiller et al.’s Date Estimation in the Wild [9]
dataset. We also share with [J] the use of state of the art convolutional neural
networks in contrast to classic machine learning and computer vision approaches,
such as [3].

3 Learning Objectives

As mentioned in Section [1| our retrieval system relies on a neural network [6]
trained to minimize a differentiable ranking function [I]. Traditionally, infor-
mation retrieval evaluation has been dominated by the mean Average Precision

! nttps://www.flickr.com/
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(mAP) metric. In contrast, we will be using the Normalized Discounted Cumula-
tive Gain (nDCG). The problem with mAP is that it fails in measuring ranking
success when the ground truth relevance of the ranked items is not binary.

In the task of date estimation the ground truth data is numerical and ordinal
(e.g. a set of years in the range 1930 to 1999), thus given a query the metric
should not punish equally for ranking as top result a l-year difference image
than a 20-years difference one. This problem is solved in the nDCG metric by
using a relevance score that measures how relevant is a certain sample to our
query. This allows us to not only to deal with date estimation retrieval but to
explicitly declare what we consider a good ranking.

In this section we derive the formulation of the smooth-nDCG loss function
that we will use to optimize our date estimation model.

Mean Average Precision: First, let us define Average Precision (AP) for a
given query q as

1£24]
AP, = L Z P@n x r(n), (1)
|Pq| n=1

where P@n is the precision at n and r(n) is a binary function on the relevance
of the n-th item in the returned ranked list, P, is the set of all relevant objects
with regard the query g and {2, is the set of retrieved elements from the dataset.
Then, the mAP is defined as:

Q
1
mAP = — S AP, 2
Q; q ()

where @ is the number of queries.

Normalized Discounted Cumulative Gain: In information retrieval, the
normalized Discounted Cumulative Gain (nDCG) is used to measure the perfor-
mance on such scenarios where instead of a binary relevance function, we have
a graded relevance scale. The main idea is that highly relevant elements appear-
ing lower in the retrieval list should be penalized. In the opposite way to mAP,
elements can be relevant despite not being categorically correct with respect to
the query. The Discounted Cumulative Gain (DCG) for a query ¢ is defined as

DCG, = Ii ) _ (3)
1 “— logy(n + 1)’

where r(n) is a graded function on the relevance of the n-th item in the returned
ranked list and {2, is the set of retrieved elements as defined above. In order to
allow a fair comparison among different queries that may have a different sum
of relevance scores, a normalized version was proposed and defined as

DCG
nDCG, = IDCGq , (4)
q
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where IDCG, is the ideal discounted cumulative gain, i.e. assuming a perfect
ranking according to the relevance function. It is formally defined as

|Aq]
IDCG, Z log2 - + ) ()

where A, is the ordered set according the relevance function.

As we have exposed, we want to optimize our model at the retrieval list level,
but the two classical retrieval evaluation metrics defined above are not differen-
tiable. In the following we define two ‘smooth’ functions for ranking optimization
that are inspired in the mAP and nDCG metrics respectively.

Ranking Function (R). Following the formulation introduced in [IT], these
two information retrieval metrics can be reformulated by means of the following
ranking function,

IC]

zC—l—i—Zl{ s5i— ;) < 0}, (6)

where C is any set (such as {2, or Pq), 1{-} is the Indicator function, and s; is the
similarity between the i-th element and the query according to S. In this work
we use the cosine similarity as S but other similarities such as inverse euclidean
distance should work as well. Let us then define cosine similarity as:

Vq " Vs
(TISTTTITE (7)
[[og [[lv:

Still, because of the need of a indicator function 1{-}, with this formulation
we are not able to optimize following the gradient based optimization meth-
ods and we require of a differentiable indicator function. Even though several
approximations exists, in this work we followed the one proposed by Quin et
al. [11]. Thus, we make use of the sigmoid function

Glrim) = —— (3

S(U(]a U’i) =

where 7 is the temperature of the sigmoid function. As illustrated in Figure[I]the
smaller is 7 the less smooth will be the function. For small values the gradient is
worse defined but the approximation is better since the sigmoid becomes closer
to the binary step function.

Smooth-AP: Following [I] and replacing the term P@n x r(n) in Eq. 1| by the
Ranking Function introduced in Eq. [6} the AP equation becomes

Z 14+ Zjqu,jyéi 1{Dij < 0} (9)
Pa= ‘73 | ; 1+Zj6()q,j;£i 1{D;; <0}

where we use D;; = s; — s; for a more compact notation. Finally, replacing
the indicator function by the sigmoid function (Eq. we obtain a smooth
approximation of AP
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t=1 t=01 t=0001

Fig. 1. Shape of the smooth indicator function (top) and its derivative (bottom) for
different values of the temperature: 1 (left), 0.1 (middle), 0.001 (right).
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Averaging this approximation for all the queries in a given batch, we can define
our loss as

(10)

Q
£Ap:17lZAPq, (11)
Q i=1
where @ is the number of queries.
Smooth-nDCG: Following the same idea as above, we replace the n-th position
in Eq.|3|by the ranking function, since it defines the position that the i-th element
of the retrieved set, and the DCG metric is expressed as

r(i)
DCGy = Y ! (12)
i€, logy (2 + 2 jea, i HDij < O})

where 7(i) is the same graded function used in Eq. [ but evaluated at element
1. Therefore, the corresponding smooth approximation is

r (i)
DCGy~ Y (13)
i€, 108y (2 + 2 jen, it g(Dij§7'))

when replacing the indicator function by the sigmoid one.
The smooth-nDCG is then defined by replacing the original DCG, by its
smooth approximation in Eq. [4 and the loss £, pcc is defined as

Q
1
EnDCG =1- a Z:RDCG(Z, (14)

where @ is the number of queries.
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Maximize cosine distance

Query

Maximize cosine similarity

Fig. 2. Objective function example, images with closer ground truth should maximize
the similarity in the output space.

4 Training process

The main contribution of this paper relies on using the smooth-nDCG loss de-
fined in the previous section for optimizing a model that learns to rank elements
with non-binary relevance score. Specifically, our model learns to project im-
ages into an embedding space by minimizing the smooth-nDCG loss function.
In all our experiments we use a Resnet-101 [6] convolutional neural network pre-
trained on the ImageNet dataset. As illustrated in Figure [2|the idea is that in
the learned embedding space the cosine similarity between image projections is
proportional to the actual distance in years. We will discuss in Section [5| how
teaching the system to rank images according to the ground truth criteria leads
the embedding space to follow a certain organization (illustrated in Figure E[)

In order to obtain such embedded representation of the photographs, we
present the training algorithm (see Algorithm that mainly relies on using the
equations presented in the previous Sectionin the output space for optimizing
the CNN so it minimizes the smooth-nDCG loss function (see Eq. and,
consequently, maximizes the nDCG metric in our rankings, meaning that images
will be closer in the output space as they are closer in the ground truth space.

Algorithm 1 Training algorithm for the proposed model.

Input: Input data {X,Y}; CNN f; distance function D; max training iterations T’
QOutput: Network parameters w

repeat N
Process images to output embedding h < fo, ({z:i},25*")

Get Distance matrix from embeddings, all vs all rankings M <« D(h)
Calculate relevance from training set Y Eq. [I5]
Using the relevance score, £ < Eq.
w4 w—I'(VyL)
until Max training iterations 7'
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Input set Qutput embedding All versus all ranking Relevance selection

LY

Fig. 3. Proposed baseline. Once ranked the images in the nDCG space we’ll be com-
puting smooth-nDCG in order to back-propagate the loss through the CNN.

As shown in Figure [3] once we process the images through the CNN, we
compute the rankings for each one of the batch images. We use cosine similarity
as distance function, however it could be replaced by any distance function model
over the vector space. Since nDCG requires a relevance score for each sample, the
design of the relevance function is an important part of the proposed method. A
possible relevance function could be just the inverse distance in years as defined
in Eq.

Additionally, we decided to consider only the closest decade in the relevance
function (illustrated in Figure @), so every image further than 10 years is con-
sidered as relevant as any other. Eq. is the relevance function used in our
model (see Eq. but other relevance settings could be, like Eq.[17|in order to
exponentially punish more the images that should not be as far as they are.

r(n; ) = max(0, v — |yg — ynl) (15)
) = (16)
r(n) = e o=l (17)

where y, and y,, € ) are the dates of the query and the n-th image in the training
set, respectively; and v, in Eq. is an hyper-parameter that has experimentally
set to 10.

Inverse year distance Year difference clipped Exponential year difference

Fig. 4. Different examples of relevance functions for ground truth data.
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Once trained, minimizing the retrieval loss function, we can predict the year
for an unknown image through k-Nearest Neighbors (k-NN) to a support set.

In one hand, we can use a set of N train images as support set; each batch is
randomly selected for each prediction. Note that, since prediction relies on the
k-th most similar images, the bigger the support set the better should perform
the prediction. In Figure [5| we show the date estimation mean absolute error of
our method on the DEW training set depending on the k parameter for the k-NN
search. Hence, we would be using 10-Nearest Neighbors in all our experiments
for the prediction task.

9.6 1

9.5

9.4 4

9.3+

Mean Absolute Error

9.2+

9.14

Fig. 5. Mean Absolute Error (MAE) on prediction by k-Nearest Neighbors with respect
to each k using a randomly selected support set of 128 images

Additionaly, we can compute the retrievals within the entire training set with
Approximate Nearest Neighboursﬂ which allow us to compute the retrievals
efficiently. As it’s shown in Figure [6] the possibility of using the whole train
set makes the k parameter more likely to be huge. We don’t observe a notable
divergence in the results until using a an enormous k parameter, which may
indicate quite good result in terms of retrieval since worst responses are at the
bottom of the dataset.

5 Experiments

In this section we evaluate the performance of the proposed method in two
different tasks: date estimation and date-sensitive image retrieval. In all our
experiments we use the DEW [9] dataset, which is composed of more than one
million images captured in the period from 1930 to 1999. The test set is balanced
across years and contains 1120 images, 16 images per year. The temperature
parameter, 7, in Eq. [§ is set to 0.01.

2 Using public Python library ANNOY for Approximate Nearest Neighbours https:
//github.com/spotify/annoy
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Fig. 6. Mean Absolute Error with different k for k-NN using the entire train set as
support set. Note that the horizontal axis grows logarithmically.

For the task of date estimation we use the Mean Absolute Error (MAE) as
the standard evaluation metric. Given a set of N images and their corresponding
ground truth date annotations (years) y = {y1,¥2,...,yn}, the MAE for a set
of predictions y" = {y}, y5, ..., YN} is calculated as follows:

N
1 !
MAE = N;'yi — i (18)

For the image retrieval task we use the mAP and nDCG metrics defined in
Section [3} In Table [1| we present a comparison of our methods with the state
of the art in the task of date estimation and with a visual similarity baseline,
that ranks images using the euclidean distance between features extracted from
a ResNet CNN [6] pre-trained on ImageNet. As we will discuss in the conclusions
section, our approach is not directly comparable to Miiller et al.’s [9]. On one
hand, we are not trying to directly improve the prediction task, but a ranking
one; this means that our model has to learn semantics from the images such that
it learns a continuous ordination. On the other hand, the way we are estimating
image’s date is by using a ground truth dataset or support dataset. Nevertheless,
we observe that our model isn’t too far with respect to the state of the art
prediction model. We consider this a good result since estimating the exact year
of a image is not the main purpose of the smooth-nDCG loss function. Note
that in Table [[l we mention a ”cleaned test set”. This is because we observed the
presence of certain placeholder images indicating they are no longer available in
Flickr. We computed the MAE for the weights given by Miller et al.[9] E| for a
proper comparison. The presence of this kind of images may have a low impact
while evaluating a classification or regression, but they can have a higher impact
on predicting with k-NN, since all the retrieved images will be placeholders as
well independently of their associated years.

3 This is an extended version of Miiller et al. [9] made publibly available by the same
authors at https://github.com/TIB-Visual-Analytics/DEW-Model
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Table 1. Mean absolute error comparison of our baseline model on the test set of the
Date Estimation in the Wild (DEW) dataset.

Baseline MAE mAP nDCG
Miiller et al. [9] GoogLeNet (regression) 75 - -
Miiller et al. [9] GoogLeNet (classification) 73 - -
Miiller et al. [9] ResNet50 (classification) (cleaned test set) 712 - -
Visual similarity baseline 124 - 0.69
Smooth-nDCG 256 images support set 8.44 0.12 0.72
Smooth-nDCG 1M images support set 7.48 - 0.75
Smooth-nDCG 1M images support set (weighted kNN) 752 - 0.75

We present as well a result of predicting the year by weighted k-NN where the
predicted year will be the sum of the k£ neighbours multiplied by their similarities
to the query.

Since our model is trained for a retrieval task, we provide further qualitative
examples of good and bad rankings. This exemplifies how our loss function is not
mean to predict years, but finding good rankings according to query’s year. Note
we computed nDCG using as relevance the closeness in years between images’
ground truth clipped at 10 years (see Eq. . Despite it may seem nDCG is
so high and mAP so low; there are many subtle bias in this appearance. Since
the ground truth can be interpreted as a continuous value (such as time) there
are not many matches in any retrieval of N random images for a certain query
regarding to query’s year compared with how many negative samples are there.
Then, mAP hardly punishes results in this situation. In the opposite way, the
same thing happens to nDCG. Since nDCG has this ‘continuous’ or ‘scale’ sense,
any retrieval will have some good samples that satisfies the relevance function
(see Eq. , being the results way less punished if there aren’t many exact
responses in the retrieval. Briefly, we could say nDCG brings us a more balanced
positive/negative ratio than mAP for randomly selected sets to rank (which is
absolutely more realistic than forcing it to be balanced). Additionally, nDCG
allows us to approach retrievals that are not based on obtaining a category but
a wide number of them, or even retrieving non-categorical information such as
date estimation.

Additionally, as we observe in Figure [7] we compute the average cosine sim-
ilarity between clusters from different groups of years. This shows us how our
output space is distributed with respect to the ground truth data. As we ex-
pected; clusters for closer years are the most similar between themselves. This is
because ranking is nothing but taking the closer points to our query; by forcing
our system to take those points that satisfies the relevance function (see Eq. ,
points in the embedding space will have to be organized such that distances are
proportional to ground truth’s distances.
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NDCG Cluster Distribution
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Fig. 7. Clusters average similarity for each 5 year interval. We observe a certain visible
pattern in the diagonal; the closer the years the closer the clusters.

Finally, in Figure[J] we compare the top-5 retrieved images for a given query
with our model and with the visual similarity baseline model, that ranks images
using the distance between features extracted from a ResNet CNN [6] pre-trained
on ImageNet. We appreciate that the visual similarity model retrieves images
that are visually similar to the query but belong to a totally different date. On
the contrary, our model performs better for the same query in terms of retrieving
similar dates although for some of the top ranked images the objects layout is
quite different to the query. Additionally, we present the results with a mixed
model that re-ranks images with the mean ranking between both methods for
each image in the test set; in this way we obtain a ranking with visually similar
images from the same date as the query.

6 Conclusions

In this paper we have proposed a method for estimating the date of historic
photographs. The main novelty of the presented work is that we do not formulate
the solution to the problem as a prediction task, but as an information retrieval
one. Hence metrics such as mean absolute error do not have to be considered
as important as retrieval metrics. Even so, we managed to build an application-
level model that can estimate the date from the output embedding space with
a decent error according to previous baselines [9]. Since our prediction method
is essentially a clustering or k-Nearest Neighbors method we are using a known
support set, so predictions relies on already labeled data.

However, considering the output embedding space Figure [7] we conclude that
smooth-nDCG function works pretty well for ranking large-scale image data
with deeper ground truth structures; unlike smooth-AP [1], smooth-nDCG cares
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Query | Responses

Query 1948

1951 | 3 years away 1950 | 2 years away 1947 |1 years away 1954 | 6 years away
- § 7 —

L

1946 | 2 years away 1952 | 4 years away 1954 |6 years away 1957 |9 years away 1957 |9 years away

| s

caml

Fig. 8. Qualitative results for our date estimation model. We show a set of images from
the DEW test set and indicate their ground truth year annotation and distance to the

query.

1936

Fig. 9. Qualitative results for a retrieval system that combines our date estimation
model and a visual similarity model. The top-left image is the query, in each row
we show the top-5 retrieved images using a visual similarity model (top), our model
(middle), and the combination of the two rankings (bottom).
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Query | Responses

Query 1981 1978 | 3 years away 1980 | 1 years away 1977 | 4 years away 1983 | 2 years away
1 ! ¥ . 3]
PR 01 25

1980 | 1 years away 1977 | 4 years away 1977 |4 years away 1972 |9 years away

Fig. 10. Possible biased retrieval due lack of balance in the training set.

about the whole sorted batch retrieved, not only how many good images are,
but how are the bad ones distributed along the ranking. This allowed us to re-
trieval ordered information (such as years), or tree-structured information where
different categories can be closer or further depending on how the tree is like.

In the case of date estimation in the wild [9] dataset, we found out some
problematic patterns that can lead the retrieval task to certain bias. As there
is not a clear balance between categories in the dataset, many classes such as
trains or vehicles may be clustered together regardless the actual dates of the
images Figure However, it is not easy to say when a certain category is
most likely to be linked to a certain period of time. For example, selfies are
a category way more common nowadays than 20 years ago. Something similar
may happen with certain categories that could be biasing the retrieval to a pure
object classification task; however we found out many good clues, Figures [7]
that indicate our embedding for ranking images is working properly.

Despite further research is needed; smooth-nDCG usage for large-scale im-
age retrieval is a promising novel approach with many practical applications.
Since Brown et al.[I] smoothed us the path to minimize the average precision,
we propose smooth-nDCG to model more complex retrieval problems where dif-
ferent labels should not be punished equally according to a certain criteria. As
we commented in smooth-nDCG brings a new way of ranking images beyond
categorical labels from a neural network approach; then we would like to con-
sider this approach as an application example for larger information retrieval
problems with a more complex structure.
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