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Abstract. Deep time series metric learning is challenging due to the dif-
ficult trade-off between temporal invariance to nonlinear distortion and
discriminative power in identifying non-matching sequences. This paper
proposes a novel neural network-based approach for robust yet discrim-
inative time series classification and verification. This approach adapts
a parameterized attention model to time warping for greater and more
adaptive temporal invariance. It is robust against not only local but also
large global distortions, so that even matching pairs that do not satisfy
the monotonicity, continuity, and boundary conditions can still be suc-
cessfully identified. Learning of this model is further guided by dynamic
time warping to impose temporal constraints for stabilized training and
higher discriminative power. It can learn to augment the inter-class vari-
ation through warping, so that similar but different classes can be effec-
tively distinguished. We experimentally demonstrate the superiority of
the proposed approach over previous non-parametric and deep models by
combining it with a deep online signature verification framework, after
confirming its promising behavior in single-letter handwriting classifica-
tion on the Unipen dataset.

Keywords: Attention model - Dynamic time warping - Metric learning
- Signature verification.

1 Introduction

Over the past two decades, time series classification and verification have been
considered to be two of the most challenging problems in data mining. They have
been applied to many applications, such as activity recognition, computational
auditory scene analysis, cybersecurity, electronic health records, and handwritten
biometric recognition [9]. The fundamental problem in these tasks is to define
the distance between time series. This distance must be invariant to nonlinear
temporal distortions, e.g., minute but diverse shifts, scaling, and noise, due to
intra-class variations. It should also be able to capture temporal inconsistency
so that time series of different classes can be optimally distinguished.
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Fig. 1. Comparison between DTW and our approach. While DTW creates the warp-
ing path and distance with a non-parametric algorithm, our approach learns warping
through an attention model where the attention (weights) form the warping path.

Dynamic Time Warping (DTW) [31] is the most widely used measure for this
purpose [2,16,20,22,27]. Tt calculates the minimum temporal alignment cost be-
tween two time series by taking the summation of the distances between local ele-
ments that are optimally matched under monotonicity, continuity, and boundary
conditions (Fig. 1a). By defining this minimum cost as a dissimilarity measure,
DTW achieves invariance to temporal distortions and imposes strong constraints
on the measure. However, DTW relies on handcrafted features and may be less
effective when complex feature representations are required. Meanwhile, Hidden
Markov Models (HMMs) [10, 1] are often reported to be well-suited for time
series classification thanks to their high adaptability to intra-class temporal vari-
ations. Similar to DTW, their limited complexity makes them difficult to take
advantage of the information in the training data.

In recent years, more and more efforts have been made on neural network-
based classification and metric learning [1,4-6, 12,24, 29, 34,39, 40] for discrete
time series. In deep metric learning, a Siamese network or a triplet network is
used to learn the distance metric from data, driving the distance to be small
for matching pairs (data from the same class) and large for non-matching pairs
(data from different classes). Some networks [6,24,29] produce a global feature
representation for the time series, inflicting the heavy loss of useful temporal
information. Others [1, 4, 34] encode the time series into a sequence of multidi-
mensional feature vectors that are not explicitly invariant to nonlinear temporal
distortions. Tallec and Ollivier [32] theoretically proved that the learnable gates
in RNNs formally provide quasi-invariance to temporal transformations. Mean-
while, DECADE [5] and NeuralWarp [12] were proposed, in which the time
series metric is defined as the (weighted) average of all the pairwise distances
between deep feature sequences. These methods [5, 12, 32] offer robustness re-
garding temporal distortions but impose little constraints on the discrimination
of non-matching time series. Wu et al. [39,40] proposed to incorporate the DTW
into a Siamese network for simultaneous temporal invariance and discrimina-
tive power. However, these two approaches remain inefficient because DTW is a
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sequential algorithm and, unlike convolutional and fully connected layers, it is
hard to take advantage of parallel GPU computing.

In this paper, we propose a novel deep model for time series metric learning.
The model should be robust with regards to temporal invariance to distortion.
Meanwhile, it should be able to impose temporal constraints on the learned
metric for higher discriminative power in terms of non-matching pairs. To this
end, we first propose an adaptation of a parameterized attention model to met-
ric learning for greater and more adaptive temporal invariance. Given two time
series, which can be raw signals or feature sequences extracted from a Siamese
network, the attention model predicts a flexible decision for each pair of tempo-
ral locations regarding how proper it is to align the local data points at the two
locations in time. The rectangular array of these decisions forms a warping ma-
trix and is used for nonlinear distortion rectification (Fig. 1b). This proposal is
inspired by the great success of attention models employed in image captioning
and machine translation [3,21,36]. Metric learning drives the distance between
a time series and a warped counterpart to be small for matching pairs and large
for non-matching pairs.

We further propose a novel pre-training strategy to initialize the weights of
the proposed model more effectively. The pre-training is guided by DTW so that
temporal constraints can be imposed on the warping matrix for higher discrim-
inative power. By applying the proposed approach to single-letter handwriting
classification and online signature verification, we experimentally demonstrate
our superior performance over conventional non-parametric and deep models for
time series metric learning.

2 Proposed Approach

2.1 Overview

A schematic overview of the proposed network is shown in Fig. 2. Given two time
series A and B as inputs, our network aims to output a distance that measures
their dissimilarity. The time series can be raw signal sequences or deep feature
sequences extracted from a Siamese network. The two inputs are first reshaped
and concatenated to form an “outer concatenation” (see Section 2.2 for details),
which is further passed to a fully convolutional network (FCN), i.e., the U-net
in Fig. 2. The output of the FCN is a matrix P composed of flexible decisions
indicating which local data points in A and B should be aligned in time. Row-
wise softmax is carried out to generate two “warping paths” Pg and P, which
are used to warp B and A, respectively. During testing, the time series distance
is thus measured based on the inputs and their warped counterparts. In this
network, the combination of outer concatenation, FCN, and row-wise softmax
corresponds to the attention model adapted to time series metric learning.

We want the distance measure described above to be small for matching
pairs and large for non-matching pairs during training. To this end, we define a
contrastive loss [141] based on the distance, as shown in Fig. 2 and Section 2.2.
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Fig. 2. Overview of our proposed network (training stage).

We initialize the weights of the network through pre-training, which is guided
by DTW for improved discriminative power and is described in Section 2.3.

2.2 Attention to Warp

In the family of attention models, additive attention [3] and (scaled) dot-product
attention [21,30] are the most widely used. In this study, we choose the param-
eterized additive attention mechanism and adapt it for time warping to ensure
that the learned metric is explicitly invariant to temporal distortions.

Let A € RY*K and B € RY*X denote two multivariate time series, where
W is the temporal length and K is the number of dimensions (variables). The
time series can be a sequence of raw signals, e.g., an online signature, or a se-
quence of feature vectors, e.g., a deep feature sequence extracted from a Siamese
network. We consider a function ® : RW XK x RWXK s RWXW that produces a
warping matrix P = ®(A,B) such that B can be aligned in time with A in the
form of PB. Let p; € R™"W be the i-th row vector of P with i € [1, W]. Suppose
that p; has been I'-normalized. The warped time series PB can thus be under-
stood as a sequence of K-dimensional vectors {p;B}, each corresponding to a
weighted average of all the K-dimensional vectors in B. Based on this warping,
we expect that each p;B best matches with the K-dimensional vector at the i-th
time step of A, so that intra-class temporal distortions can be accommodated.

The function ® can be decomposed into W x W kernel functions denoted
by ¢. Let a; € R'™X and b; € R™¥ be the vectors of A and B at the i-
th and j-th time steps, respectively. Let p;; be the j-th element in p;. The
kernel function p;; = ¢(a;, b;) thus transforms a; and b; into a flexible decision
regarding whether the two vectors best match each other (p;; ~ 1) or not (p;; ~
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0). According to additive attention [3], ¢ can be defined by a neural network
consisting of one or more fully connected layers, which takes the concatenation
of a; and b; as the input.

In the case of the proposed approach, the attention model can be realized
more efficiently. Let A be reshaped to a W x 1 x K tensor and be horizontally
stacked W times. Similarly, B is reshaped to a 1 x W x K tensor and is vertically
stacked W times. They are then concatenated along their third axis, leading to a
W x W x 2K tensor. We call this operation an “outer concatenation” (analogous
to the outer product) and denote it by A @ B. Instead of obtaining each p;;
individually, we can obtain the warping matrix P at once by the convolution
between the outer concatenation A @B and the kernel function . Our attention
model @ can thus be defined by an FCN.

Backbone Network. In this paper, we adopt U-net [28], which was originally
developed for biomedical image segmentation, as the FCN to define ®. Since the
input (outer concatenation) A @& B of the FCN can be regarded as a 2K-channel
“image” of size W x W, and the output (warping matrix) P as a single-channel
“image” of the same size, it is appropriate to employ U-net as the FCN for direct
“image-to-image” mapping. Compared to the 1 x 1 convolution described above,
the U-net linearly increases the size of the receptive field by stacking multiple
3 x 3 convolution layers. The flexible decision p;; thus depends not only on the
local data points a; and b; but also on their neighborhood along the time axis.
This enables the exploitation of beneficial contextual information. Note that for
simplicity, we have assumed that the input time series A and B have the same
length W, but our approach is not limited to this assumption since U-net can
naturally handle inputs (outer concatenation A @ B) of arbitrary size.
Learning. Once the warping matrix P is output from the U-net, a row-wise
softmax is conducted on P to ensure that each p; € P is {!-normalized and to
make it peakier. B is then warped according to PsB to compensate for temporal
distortions, where P is the output of the softmax. During training, a contrastive
loss can thus be defined by Eq. (1), which is adapted from the extensively used
conventional contrastive loss [14].

wrllA —PBJ} if 2 =1
max (0,7 — 77 |A — P.B|%) otherwise

L(A,P,B) = { 1)
Here, 7 is the margin of the hinge loss, and z € {0,1} defines whether A and
B are non-matching or matching, respectively. The distance between the two
time series is defined by the Frobenius norm of the difference matrix A — P,B.
Minimizing Eq. (1) drives this distance to be small for matching pairs and large
for non-matching pairs.

To make the model symmetric, another warping path P, is created by trans-
posing P and then executing row-wise softmax. A is warped according to P;A.
A second contrastive loss can thus be defined between B and P, A as in Eq. (2).

_1 _ 2 3 —
L(B,PtA>={WK”B PiAlg ifz=1 (2)

max (0,7 — 77 |B — P;A|%) otherwise
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Fig. 3. Overview of our proposed network (pre-training stage).

Inference. During testing, the proposed model takes two times series as in-
puts and predicts a distance measuring their dissimilarity. This distance can be
applied to a k-NN classifier for classification or a threshold classifier for verifica-
tion. Specifically, we define the distance by Eq. (3), which is the average of the
distances between A and P,B and between B and P;A.

1
d(A,B,P) = 5z (1A — PBf; + B - P/A|) (3)

2.3 Pre-training Guided by Dynamic Time Warping

In our experiments, we found that the widely-used He initialization [15] could
not initialize the weights of the proposed model effectively on some datasets.
Specifically, the contrastive losses in Egs. (1) and (2) do not decrease as the
training stage progresses. The reason might be because the attention model
takes no temporal constraint into account and is limited for distinguishing non-
matching pairs of time series.

In this paper, we incorporate temporal constraints in our model through pre-
training guided by DTW. Specifically, we pre-train the U-net weights to be used
in the proposed model with the guidance of DTW. As shown in Fig. 3, the input
(outer concatenation A @B of the two time series) and output (matrix P) of the
U-net as well as the row-wise softmax remains the same as those shown in Fig. 2
and Section 2.2. The difference from the training stage lies in the loss function.
To define the loss, we first apply DTW to the inputs A and B and obtain its
warping path in the form of a binary matrix. A row-wise softmax is then applied
to this matrix, which is similar to the same softmax for P. Let Pprw denote the
output of the softmax. Here, we want to make the attention model mimic DTW
and force it to produce a warp matrix P, that is as close to PpTw as possible.
Therefore, we adopt the mean squared error (MSE) between the two matrices
as the loss function of pre-training, as shown in Eq. (4).

LP,,Pprw) = IPs — Pprwl|% (4)

w2
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Another loss can also be defined based on the nearly symmetric warping matrix
P;. In this paper, we do not do this for simplicity.

Note that mimicking DTW during pre-training is to guide the learning of
our attention model so that its discriminative power can be improved. Our final
purpose is not to mimic DTW but to learn warping through metric learning.

3 Experiments

To evaluate the performance of the proposed approach, we conducted experi-
ments using Unipen [13], an online single-letter handwriting dataset, and MCYT-
100 [26], an online signature dataset.

3.1 Online Single-Letter Handwriting Classification (Unipen)

Among the multiple subsets officially offered by the provider, Unipen la (numeri-
cal digits), Unipen 1b (uppercase alphabet), and Unipen lc (lowercase alphabet)
were selected for evaluation. For all three subsets, each time series is a sequence
of 2D coordinates of the pen tip, resized to the same fixed temporal length 50.
Some statistics are shown in Table 1.

For each class, two sets of 200 data were randomly sampled and used as
validation and test data, respectively. The rest of the data were used as training
data. When training the network, matching and non-matching pairs were created
between all training data. Given a test time series, its distances from all training
time series were calculated and a k-nearest neighbor (k-NN) classifier was used
to determine its class label (k = 3 in this paper).

Baselines. The proposed approach was compared with the four subsequent
baselines. In addition, the performance of the proposed approach without pre-
training was also included in the comparison.

DTW. Given a test time series, its distances from the training time series are
measured by applying DTW to their raw signals (2D coordinates). This baseline
serves as a representative of a non-parametric (non-training) distance measure.

Support Vector Machine (SVM). For this baseline, we trained an SVM with a
radial basis function (RBF) kernel for classification. The raw signals were used
for training and testing.

Classification Network (CN). This is a convolutional neural network (CNN) that
consists of eight convolutional layers and three fully connected (FC) layers. It
was trained using a cross-entropy loss.

Siamese Network (SN). This network has almost the same architecture as CN,
but was trained with contrastive loss. Its last FC layer produces a global feature
representation rather than a probability distribution of classes. Similar to DTW
and the proposed approach, SN uses a k-NN classifier for classification.

Implementation Details. The U-Net used in our model consists of an encoder
and a decoder that are almost symmetrical, both containing seven convolution
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Table 1. Classification accuracy (%) for Unipen.

Method Unipen 1la Unipen 1b Unipen 1c
Proposed 99.0 98.0 95.5
w /o pre-training 98.4 97.3 90.7
DTW 98.4 96.0 94.1
SVM 98.2 93.9 94.1
CN 98.3 96.2 95.5
SN 98.6 97.2 95.5
##class 10 26 26
#training (per class) 756.2 232.3 391.2
#validation (per class) 200 200 200
#test (per class) 200 200 200

Table 2. Number of misclassifications between similar but different classes.

Unipen 1b Unipen 1c
Method Jvs. T Uvs. V fvs. t gvs.y hvs. k hvs.n vV VS. W
Proposed 7 13 10 6 6 13 2
DTW 28 23 16 24 16 20 7

layers. The feature maps output by the encoder are concatenated with the corre-
sponding layers of the decoder by skip connections. Further details can be found
in the supplementary document'. Adam [17] was used as the optimizer to train
the model, and the learning rate was set to 0.0001. The batch size was set to
512. The margin 7 used in Eqs. (1) and (2) was set to one. The training was
conducted for up to 20 epochs, and the best model was selected based on the
performance measured by the validation data.

Results. The classification results when using Unipen are shown in Table 1. In
all three subsets, the proposed approach outperformed or at least was comparable
to all baselines. These results confirm the superiority of our deep model in terms
of learnable time warping (compared to DTW) and high discriminative power
(compared to SVM, CN, and SN). Although the improvement in accuracy is
consistent, the range of improvement is not very large. This may be due to a
large amount of training data and the short length and low dimensionality of
the time series, which render this handwriting classification task a relatively
easy classification problem. This also explains the small difference in accuracy
between our models w/ and w/o pre-training. In Section 3.2, we apply our model
to a more complex verification problem for further evaluation.

Examining the results of Unipen 1b, we found that the largest improvement
achieved by the proposed approach lies in the discrimination between J (with a

! http://human.ait.kyushu-u.ac.jp/~matsuo/ICDAR2021_Appendix.pdf
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Fig. 4. Training and validation losses.

horizontal serif) and T and between U and V. Table 2 compares DTW and the
proposed approach in terms of the number of misclassifications between such
similar but different alphabetic classes. Figure 4 shows the graphs of training
and validation losses, which show good convergence and few signs of overfitting.

3.2  Online Signature Verification (MCYT-100)

We considered the most common type of signature verification, namely deciding
whether a test signature is a genuine signature or a skilled forgery (a signature
imitated by a forger) in relation to a claimed identity (subject). To this end, we
adopted the dataset MCYT-100 [26] because it is one of the largest online sig-
nature datasets in the literature. MCTY-100 contains 100 subjects, each having
25 genuine signatures and 25 skilled forgeries. Each signature is a time series of
5D variables (2D coordinates, pressure, azimuth, and altitude angles of the pen
tip). The temporal length ranges from a few hundred to a few thousand.

We tested the proposed approach with the following training protocol. The
first 90/80/70/60/50% of subjects in MCYT-100 were used for training and the
remaining subjects for testing. Therefore, the training and test sets are com-
pletely non-overlapping in terms of both classes (subjects) and time series (sig-
natures). During testing, for each subject in the test set, the first five genuine
signatures were used as reference signatures. The remaining genuine signatures
and all the skilled forgeries were used as test signatures. The distances between
each test signature and all the reference signatures of the claimed subject were
computed and their average was used as the distance between the test signature
and the claimed identity. This distance can be passed to a subject-independent
threshold classifier for the final decision of signature authenticity. For each test
signature, its distance to the corresponding five reference signatures is averaged.
Based on this averaged distance, all test signatures (of all subjects) are then
sorted and an Equal Error Rate (EER) is calculated, as in most related studies.

Implementation Details. For MCYT-100, we adopted the deep dynamic time
warping (DDTW) [39] for time series feature learning. Specifically, a Siamese
network with two raw signatures as input and two feature sequences as output
was trained by DDTW following the training protocol described above. The tem-
poral length W of each feature sequence is 256, and the number of dimensions
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Table 3. EER(%) of online signature verification for MCYT-100.

Percentage of Training Data

Method 90% 80% 70% 60% 50%
Proposed 0.50 2.00 2.33 2.13 2.20
DTW [23,39] 4.00 3.00 4.17 4.37 4.60

w/ raw signatures as inputs 5.00 6.25 5.73 6.37 6.96
SN 5.50 6.80 6.27 7.33 8.40

w/ local embedding loss [39] 3.50 3.40 3.75 3.75 5.50
DDTW [39] 1.00 2.20 2.53 2.25 2.40
PSN [40] 0.50 2.50 2.40 2.50 4.50

K is 64. This network was then used to extract feature sequences from all train-
ing, reference, and test signatures. Afterward, we built the proposed deep model
with two feature sequences as input time series and a distance as output and
trained it in the way described in Section 2. During testing, this trained model
was applied to the feature sequences of all reference and test signatures in order
to calculate their distances. It is also possible to jointly learn feature represen-
tation and warping in an end-to-end manner, which will be our future work.
Implementation details of DDTW can be found from its original paper [39].
The U-net for MCYT-100 is the same as Unipen, but the encoder and decoder
each have eight convolution layers. This difference is due to the different size of
outer concatenation. The learning rate was set to 0.0001. The batch size was set
to 15. The ratio of matching to non-matching pairs per batch was fixed at 1: 2.

Baselines. We compared our approach with the following four baselines.

DTW [23,59]. In this baseline, each signature was represented by a handcrafted
feature sequence [23]. The distances between test and reference signatures were
then measured with DTW. In addition, the performance of DTW that takes raw
signatures as inputs was also included in the comparison.

SN. This SN has almost the same architecture as DDTW but was trained with
conventional contrastive loss. Its output is not a feature sequence but a global
feature vector produced by average pooling, and thus considers no temporal
constraint. Another SN was also trained with the same local embedding loss as
DDTW. It considers temporal constraint but offers limited temporal invariance.

DDTW [39]. The only difference between DDTW and our approach lies in the
warping process. DDTW uses DTW for warping, while our approach warps sig-
natures with the proposed deep attention model.

Prewarping Siamese Network (PSN) [/0]. This approach prewarps two signa-
tures with DTW for temporal invariance. A Siamese network with the warped
signatures as inputs and a distance as output is then trained with the same
local embedding loss as DDTW. Similar to DDTW, PSN takes both temporal
invariance and temporal constraint into account.
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Fig. 5. Distributions of distances measured by DDTW [39] for MCYT-100. The sub-
captions indicate the percentage of training data.

Fig. 6. Distributions of distances measured by proposed approach for MCYT-100. The
sub-captions indicate the percentage of training data.

Results. The EERs of our approach and the baselines are shown in Table. 3. In
general, our approach outperformed all baselines in all experiments. Our lower
EER than DTW indicates our superiority in the ability to learn complex rep-
resentations over handcrafted features. Our approach also significantly outper-
formed its competitors, which only consider either temporal invariance (SN)
or temporal constraints (SN w/ local embedding loss). Our improvement over
DDTW shows the greater effectiveness of our trainable attention model in terms
of warping and distance measurement compared to the traditional DTW.

Figures 5 and 6 show the histograms of the distances of matching and non-
matching pairs, corresponding to DDTW and the proposed approach, respec-
tively. We can see that our approach shows a much smaller overlap than DTW.
As described above, DDTW focuses only on learning time series features, while
our approach further improves warping through learning to facilitate easier sep-
aration of the distances of matching and non-matching pairs.

We also tested our approach without pre-training, where He initialization [15]
was used to initialize the model weights. However, the contrastive losses could
not decrease as the training progresses. The reason may be due to the difficulty
of the signature verification task, such as the small amount of training data and
the subtle difference between genuine signatures and skilled forgeries. The failure
of He initialization confirms the necessity of pre-training based on DTW.

Table 4 compares our performance with the state-of-the-art EERs previ-
ously reported for MCYT. Noted that similar to DDTW and PSN, our model is
learning-based and so our superior accuracy was obtained using only the test set,
which contains many fewer subjects. The comparison is thus biased toward our
model relative to the state of the art. In the future, we shall consider training
the network with a larger dataset and testing it on the whole of MCYT-100.

After training with 90% of the subjects, the EER of our approach was 0.5%,
as shown in Table 3. Using similar experimental protocols, the EER of Syn-



12 S. Matsuo et al.

Table 4. EERs (%) published on MCYT. #sub indicates the number of subjects in
the test set. The number of reference signatures is five for all methods.

Method #sub Deep? EER (%)
Yanikoglu & Kholmatov [41] 100 X 7.80
Vivaracho-Pascual et al. [37] 280 X 6.60
Faundez-Zanuy [3] 280 X 5.42
Nanni & Lumini [25] 100 X 5.20
Cpalka et al. [7] 100 X 4.88
Sae-Bae & Memon [30)] 100 X 4.02
Tang et al. [33] 100 X 3.16
DDTW [39] 50 v 2.40
PSN [10] 50 v 4.50
Proposed Approach 50 v 2.20

Sig2Vec [18] was 1.7%, the EER of Li et al. [19] was 10.5%, and the accuracy of
OSVNet [38] was 93.0%. All of these previous studies are deep signature verifica-
tion approaches. These results demonstrate the superiority of our approach over
the state of the art. In this section, we have applied our approach only to skilled
forgery verification, but it can be easily adapted to identify random forgeries.
We will demonstrate this in the future. We also plan to test our approach on a
larger dataset such as DeepSignDB [35].

3.3 Qualitative Analysis

Figure 7 shows examples of warping behavior of our approach on the Unipen
dataset. In all examples, our network correctly classified the two time series into
matching and non-matching pairs. Some interesting behaviors can be observed.
For relatively easy matching pairs (first two rows in Fig. 7a), our network pre-
dicted warp paths that satisfied the monotonicity, continuity, and boundary con-
ditions similar to DTW. When two letters of the same class but with completely
different stroke orders came along (last two rows in Fig. 7a), our network could
learn to adaptively break through the temporal constraints described above, de-
fying the common wisdom of time warping. The correct classifications shown in
the last two examples in Fig. 7a are not accidental, but because the training
data includes such intra-class variation in stroke order (Fig. 8) and thanks to
the great robustness of our attention model. The conventional DTW is obviously
not capable of handling such challenging time series.

Figure 7b shows some challenging examples of non-matching pairs that are
very similar in both appearance and stroke order. The warping suggested by
DTW could not effectively distinguish these pairs. In comparison, if we focus on
the pair of input handwriting A vs. warped “handwriting” P;B (or B vs. P;A),
we can observe a significant difference in appearance. That is, our network could
learn to augment the inter-class variation through warping, so that similar but
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PprwB  PprwA

ﬂlHDUU

Fig. 7. Examples of input time series A and B, DTW distance matrix (DM), DTW
warping path Pprw, output P of U-net, our warping matrix Ps, DTW-warped B and
A, and our warped time series PsB and P;A. Each time series starts with the darkest
color. For DM, Pprw, P, and P, the brighter the color, the larger the value.

A 00U 0. LS
IR A T

Fig. 8. Examples of Unipen training data of J (top) and T (bottom). Each time series
starts with the darkest color and finishes with the lightest color. For both classes, the
leftmost four letters have a totally different stroke order from the rightmost ones.

different classes could be distinguished in a much easier manner. These results
demonstrate the high discriminative power of our approach.

4 Conclusion

We proposed to learn a warping function to align the indices of time series using
an attention model specialized for metric learning. This model is invariant not
only to local or semi-local temporal distortions, but also to large global ones,
so that even matching pairs that do not satisfy the monotonicity, continuity,
and boundary conditions can still be successfully identified. We also proposed
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to pre-train our model with the guidance of DTW for stabilized learning and
higher discriminative power.

The proposed pre-training can actually be accomplished using general time

series data that do not have to be included in the training set. If this is true, our
model would be relieved of the requirement for large-scale labeled data in the
target (classification or verification) domain. This property would be beneficial
for tasks, e.g., signature verification or writer identification, where only a small
dataset is available. We will investigate this in future research.
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