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Vincent Nguyen4,5 , Nam Nguyen4, Josef Baloun6,7 , Ladislav Lenc6,7 ,
and Pavel Král6,7

1 EPITA R&D Lab. (LRDE), EPITA, Le Kremlin-Bicêtre, France
joseph.chazalon@lrde.epita.fr

2 Univ. Gustave Eiffel, IGN-ENSG, LaSTIG, Saint-Mande, France
3 LaDéHiS, CRH, EHESS, Paris, France

4 L3i, University of La Rochelle, La Rochelle, France
5 Liris, INSA-Lyon, Lyon, France

6 Department of Computer Science and Engineering, University of West Bohemia,
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Abstract. This paper presents the final results of the ICDAR 2021
Competition on Historical Map Segmentation (MapSeg), encouraging
research on a series of historical atlases of Paris, France, drawn at 1/5000
scale between 1894 and 1937. The competition featured three tasks,
awarded separately. Task 1 consists in detecting building blocks and
was won by the L3IRIS team using a DenseNet-121 network trained
in a weakly supervised fashion. This task is evaluated on 3 large images
containing hundreds of shapes to detect. Task 2 consists in segmenting
map content from the larger map sheet, and was won by the UWB team
using a U-Net-like FCN combined with a binarization method to increase
detection edge accuracy. Task 3 consists in locating intersection points
of geo-referencing lines, and was also won by the UWB team who used
a dedicated pipeline combining binarization, line detection with Hough
transform, candidate filtering, and template matching for intersection
refinement. Tasks 2 and 3 are evaluated on 95 map sheets with com-
plex content. Dataset, evaluation tools and results are available under
permissive licensing at https://icdar21-mapseg.github.io/.
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1 Introduction

Motivation. This competition consists in solving several challenges which arise
during the processing of images of historical maps. In the Western world, the
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Fig. 1. Sample map sheet. Original size: 11136 × 7711 pixels.

Fig. 2. Some map-related challenges (left): visual polysemy, planimetric overlap, text
overlap. . . and some document-related challenges (right): damaged paper, non-straight
lines, image compression, handwritten text. . .

rapid development of geodesy and cartography from the 18th century resulted
in massive production of topographic maps at various scales. City maps are of
utter interest. They contain rich, detailed, and often geometrically accurate rep-
resentations of numerous geographical entities. Recovering spatial and semantic
information represented in old maps requires a so-called vectorization process.
Vectorizing maps consists in transforming rasterized graphical representations of
geographic entities (often maps) into instanced geographic data (or vector data),
that can be subsequently manipulated (using Geographic Information Systems).
This is a key challenge today to better preserve, analyze and disseminate content
for numerous spatial and spatio-temporal analysis purposes.

Tasks. From a document analysis and recognition (DAR) perspective, full map
vectorization covers a wide range of challenges, from content separation to text
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recognition. MapSeg focuses on 3 critical steps of this process. (i) Hierarchi-
cal information extraction, and more specifically the detection of building blocks
which form a core layer of map content. This is addressed in Task 1. (ii) Map
content segmentation, which needs to be performed very early in the processing
pipeline to separate meta-data like titles, legends and other elements from core
map content. This is addressed in Task 2. (iii) Geo-referencing, i.e. mapping his-
torical coordinate system into a recent reference coordinate system. Automating
this process requires the detection of well-referenced points, and we are partic-
ularly interested in detecting intersection points between graticule lines for this
purpose. This is addressed in Task 3.

Dataset. MapSeg dataset is extracted from a series of 9 atlases of the City of
Paris1 produced between 1894 and 1937 by the Map Service (“Service du plan”)
of the City of Paris, France, for the purpose of urban management and planning.
For each year, a set of approximately 20 sheets forms a tiled view of the city,
drawn at 1/5000 scale using trigonometric triangulation. Figure 1 is an example
of such sheet. Such maps are highly detailed and very accurate even by modern
standards. This material provides a very valuable resource for historians and
a rich body of scientific challenges for the document analysis and recognition
(DAR) community: map-related challenges (Fig. 2, left) and document-related
ones (Fig. 2, right). The actual dataset is built from a selection of 132 map sheets
extracted from these atlases. Annotation was performed manually by trained
annotators and required 400 h of manual work to annotate the 5 sheets of the
dataset for Task 1 and 100 h to annotate the 127 sheets for Tasks 2 and 3. A
special care was observed to minimize the spatial and, to some extent, temporal
overlap between train, validation and test sets: except for Task 1 which contains
districts 1 and 2 both in train and test sets (from different atlases to assess
the potential for the exploitation of information redundancy over time), each
district is either in the training, the validation or the test set. This is particularly
important for Tasks 2 and 3 as the general organization of the map sheets are
very similar for sheets representing the same area.

Competition Protocol. The MapSeg challenge ran from November 2020 to
April 2021. Participants were provided with training and validation sets for each
3 tasks by November 2020. The test phase for Task 1 started with the release of
test data on April 5th, 2021 and ended in April 9th. The test phase for Tasks 2
and 3 started with the release of test data on April 12th, 2021 and ended in
April 16th. Participants were requested to submit the results produced by their
methods (at most 2) over the test images, computed by themselves.

Open Data, Tools and Results. To improve the reliability of the evalua-
tion and competition transparency, evaluation tools were released (executable
and open source code) early in the competition, so participants were able to

1 Atlas municipal des vingt arrondissements de Paris. 1894, 1895, 1898, 1905, 1909,
1912, 1925, 1929, and 1937. Bibliothèque de l’Hôtel de Ville. City of Paris. France.
Online resources for the 1925 atlas: https://bibliotheques-specialisees.paris.fr/ark:/
73873/pf0000935524.
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evaluate their methods on the validation set using exactly the same tools as
the organizers on the test set. More generally, all competition material is made
available under very permissive licenses at https://icdar21-mapseg.github.io/:
dataset with ground truth, evaluation tools and participants results can be down-
loaded, inspected, copied and modified.

Participants. The following teams took part in the competition.

CMM Team: Team: Mateus Sangalli, Beatriz Marcotegui, José Marcio Mar-
tins Da Cruz, Santiago Velasco-Forero, Samy Blusseau; Institutions: Cen-
ter for Mathematical Morphology, Mines ParisTech, PSL Research Univer-
sity, France; Extra material: morphological library Smil: http://smil.cmm.
minesparis.psl.eu; code: https://github.com/MinesParis-MorphoMath.

IRISA Team: Competitor: Aurélie Lemaitre; Institutions: IRISA/Université
Rennes 2, Rennes, France; Extra material: http://www.irisa.fr/intuidoc/.

L3IRIS Team: Team: Vincent Nguyen and Nam Nguyen; Institutions: L3i,
University of La Rochelle, France; Liris, INSA-Lyon, France; Extra material:
https://gitlab.univ-lr.fr/nnguye02/weakbiseg.

UWB Team: Team: Josef Baloun, Ladislav Lenc and Pavel Král; Institu-
tions: Department of Computer Science and Engineering, University of West
Bohemia, Univerzitńı, Pilsen, Czech Republic; NTIS - New Technologies for
the Information Society, University of West Bohemia, Univerzitńı, Pilsen,
Czech Republic; Extra material: https://gitlab.kiv.zcu.cz/balounj/21 icdar
mapseg competition.

WWU Team: Team: Sufian Zaabalawi, Benjamin Risse; Institution: Münster
University, Germany; Extra material: Project on automatic vectorization of
historical cadastral maps: https://dhistory.hypotheses.org/346.

2 Task 1: Detect Building Blocks

This task consists in detecting a set of closed shapes (building blocks) in the
map image. Building blocks are coarser map objects which can regroup several
elements. Detecting these objects is a critical step in the digitization of historical
maps because it provides essential components of a city. Each building block is
symbolized by a closed shape which can enclose other objects and lines. Building
blocks are surrounded by streets, rivers fortification wall or others, and are never
directly connected. Building blocks can sometimes be reduced to a single spacial
building, symbolized by diagonal hatched areas. Given the image of a complete
map sheet and a mask of the map area, participants had to detect each building
block as illustrated in Fig. 3.

2.1 Dataset

Inputs form a set of JPEG RGB images which are quite large (≈8000 × 8000
pixels). They are complete map sheet images as illustrated in Fig. 1, cropped to
the relevant area (using the ground truth from Task 2). Remaining non-relevant
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Fig. 3. Input (left) and output (right, orange overlay) image excerpts for task 1. (Color
figure online)

pixels were replaced by black pixels. Expected output for this task is a binary
mask of the building blocks: pixels falling inside a building block must be marked
with value 255, and other pixels must be marked with value 0. The dataset is
separated as follows: the train set contains 1 image (sheet 1 of 1925 atlas—903
building blocks), the validation set contains 1 image (sheet 14 of 1925 atlas—659
building blocks), and the test set contains 3 images (sheet 1 of 1898 atlas, sheet
3 of 1898 and 1925 atlases—827, 787 and 828 building blocks).

2.2 Evaluation Protocol

Map vectorization requires an accurate detection of shape boundaries. In order
to assess both the detection and segmentation quality of the target shapes, and
therefore to avoid relying only on pixel-wise accuracy, we use the COCO Panoptic
Quality (PQ) score [8] which is based on an instance segmentation metric. This
indicator is computed as follows:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |
︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP | + 1

2 |FP | + 1
2 |FN |

︸ ︷︷ ︸
recognition quality (RQ)

where TP is the set of matching pairs (p, g) ∈ (P × G) between predictions (P )
and reference (G), FP is the set of unmatched predicted shapes, and FN is the
set of unmatched reference shapes. Shapes are considered as matching when:

IoU(p, g) =
p ∩ g

p ∪ g
> 0.5.

COCO SQ (segmentation quality) is the mean IoU between matching shapes:
matching shapes in reference and prediction have an IoU > 0.5. COCO RQ
(detection/recognition quality) is detection F-score for shape: a predicted shape
is a true positive if it as an IoU > 0.5 with a reference shape. The resulting
COCO PQ indicator ranges from 0 (worst) to 1 (perfect). An alternate formu-
lation of this metric is to consider it as the integral of the detection F-score over
all possible IoU thresholds between 0 and 1 [4]. We also report the “F-Score vs
IoU threshold” curves for each method to better assess their behavior.
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2.3 Method Descriptions

L3IRIS—Winning Method. From previous experiments, the L3IRIS team
reports that both semantic segmentation and instance segmentation approaches
led to moderate results, mainly because of the amount of available data. Instead
of trying to detect building blocks directly, they reversed the problem and
tried to detect non-building-blocks as a binary semantic segmentation problem
which facilitated the training process. Additionally, they considered the prob-
lem in a semi/weakly supervised setting where training data includes 2 images
(val+train): the label is available for one image and is missing for the other
image. Their binary segmentation model relies on a DenseNet-121 [7] backbone
and is trained using the weakly supervised learning method from [12]. Input is
processed as 480 × 480 tiles. During training, tiles are generated by random
crops and augmented with standard perturbations: noise, rotation, gray, scale,
etc. Some post-processing techniques like morphological operators are used to
refine the final mask (open the lightly connected blocks and fill holes). The
parameter for the post-processing step is selected based on the results on the
validation image. Training output is a single models; not ensemble technique
is used. The weakly supervised training enables the training of a segmentation
network in a setting where only a subset of the training objects are labelled. The
overcome the problem of missing labels, the L3IRIS team uses two energy maps
w+ et w− which represent the certainty that a pixel being positive (object’s
pixel) or negative (background pixel). These two energy maps are evolved dur-
ing the training at each epoch based on prediction scores in multiple past epochs.
This technique implicitly minimizes the entropy of the predictions on unlabeled
data which can help to boost the performance of the model [5]. For Task 1, they
considered labeled images (from training set) and unlabeled ones (from valida-
tion set) for which the label was retained for validation. The two energy maps
are applied only for images from the validation set.

CMM Method 1. This method combines two parallel sub-methods, named
1A and 1B. In both sub-methods, the RGB images are first processed by a U-
Net [14] trained to find edges of the blocks. Then, a morphological processing is
applied to the image of edges in order to segment the building blocks. Finally, the
results of both sub-methods are combined to produce a unique output. In method
1A, the U-Net is trained with data augmentation that uses random rotations,
reflections, occlusion by vertical and horizontal lines and color changes. The loss
function penalizes possible false positive pixels (chosen based on the distance
from edge pixels in the color space) with a higher cost. To segment the blocks,
first a top-hat operator is applied to remove large vertical and horizontal lines
and an anisotropic closing [3] is used to remove holes in the edges. Edges are
binarized by a hysteresis threshold and building blocks are obtained by a fill-holes
operator followed by some post-processing. The result is a clean segmentation,
but with some relatively large empty regions. In method 1B, the U-Net is trained
using the same augmentation process, but the loss function weights errors to
compensate class imbalance. Method 2 (described hereafter) is applied to the



ICDAR’21 MapSeg 699

inverse of the edges obtained by this second U-Net. To combine both methods,
a closing by a large structuring element is used to find the dense regions in the
output of 1A, the complement of which are the empty regions of 1A. The final
output is equal to 1A in the dense region and to 1B in the empty regions.

Method 2. This method is fully morphological. It works on a gray-level image,
obtained by computing the luminance from the RGB color image. The main
steps are the following: (i) Area closing with 1000 pixels as area threshold; this
step aims at removing small dark components such as letters. (ii) Inversion
of contrast of the resulting image followed by a fill-holes operator; The result
of this step is an image where most blocks appear as flat zones, and so do
large portions of streets. (iii) The morphological gradient of the previous image
is computed and then reconstructed by erosion starting from markers chosen
as the minima with dynamic not smaller than h = 2. This produces a new,
simplified, gradient image. (iv) The watershed transform is applied to the latter
image, yielding a labelled image. (v) A filtering of labelled components removes
(that is, sets to zero) components smaller than 2000 pixels and larger than 1M
pixels; and also removes the components with area smaller than 0.3 times the
area of their bounding box (this removes large star-shaped street components).
All kept components are set to 255 to produce a binary image. (vi) A fill-holes
operator is applied to the latter binary image. (vii) Removal of river components:
A mask of the river is computed by a morphological algorithm based on a large
opening followed by a much larger closing, a threshold and further refinements.
Components with an intersection of at least 60% of their area with the river
mask are removed.

WWU Method 1. This method relies on a binary semantic segmentation U-
Net [14] trained with Dice loss on a manual selection of 2000 image patches of
size 256 × 256 × 3 covering representative map areas. The binary segmentation
ground truth is directly used as target. This U-Net architecture uses 5 blocks and
each convolutional layer has a 3 × 3 kernel filter with no padding. The expending
path uses transpose convolutions with 2× stride. Intermediate activations use
RELU and the final activation is a sigmoid.

Method 2. This method relies on a Deep Distance transform. The binary label
image is first transformed into a Euclidean distance transform map (DTM),
which highlights the inner region of the building blocks more than the outer
edges. Like for method 1, 2000 training patch pairs of size 256 × 256 are gener-
ated. The U-Net architecture is similar to the previous method, except that the
loss function is the mean square error loss (MSE) and the prediction is a DTM.
This DTM is then thresholded and a watershed transform is used to fill regions
of interest and extract building block shapes.

2.4 Results and Discussion

Results and ranking of each submitted method is given in Fig. 4: table on the left
summarizes the COCO PQ indicators we computed and the plot on the right
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Rank Team (method) COCO PQ (%) ↑
1 L3IRIS 74.1
2 CMM (1) 62.6
3 CMM (2) 44.0
4 WWU (1) 06.4
5 WWU (2) 04.2

Fig. 4. Final COCO PQ scores for Task 1 (left)—score ranges from 0 (worst) to 100%
(best), and plot of the F-Score for each threshold between 0.5 and 1 (right). COCO
PQ is the area under this curve plus 1

2
times the intersect at 0.5.

illustrates the evolution of the retrieval F-Score for each possible IoU threshold
between 0.5 and 1. While the WWU 1 and 2 approaches get low scores, it must
be noted that this is due to local connections between shapes which led to a
strong penalty with the COCO PQ metric. As they implement very natural
ways to tackle such problem, they provide a very valuable performance baseline.
CMM method 2 is fully morphological and suffers from an insufficient filtering of
noise content, while CMM method 1 gets much better results by combining edge
filtering using some fully convolutional network with morphological filtering.
L3IRIS winning approach improves over this workflow by leveraging weakly-
supervised training followed by some morphological post-processing.

3 Task 2: Segment Map Content Area

This task consists in segmenting the map content from the rest of the sheet.
This is a rather classical document analysis task as it consists in focusing on
the relevant area in order to perform a dedicated analysis. In our case, Task 1
would be the following stage in the pipeline. Given the image of a complete map
sheet (illustrated in Fig. 1), participants had to locate the boundary of the map
content, as illustrated in Fig. 5.

3.1 Dataset

The inputs form a set of JPEG RGB images which are quite large (≈10000
× 10000 pixels). They are complete map sheet images. Expected output for
this task is a binary mask of the map content area: pixels belonging to map
contents are marked with value 255 and other pixels are marked with value
0. The dataset is separated as follows: the train set contains 26 images, the
validation set contains 6 images, and the test set contains 95 images. As in the
atlas series we have multiple occurrences of similar sheets representing the same
area, we made sure that each sheet appeared in only one set.
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Fig. 5. Illustration of expected outputs for Task 2: green area is the map content and
red hatched area is the background. (Color figure online)

3.2 Evaluation Protocol

We evaluated the quality of the segmentation using the Hausdorff distance
between the ground-truth shape and the predicted one. This measure has the
advantage over the IoU, Jaccard index and other area measures that it keeps a
good “contrast” between results in the case of large objects (because there is no
normalization by the area). More specifically, we use the “Hausdorff 95” variant
which discards the 5 percentiles of higher values (assumed to be outliers) to
produce a more stable measure. Finally, we averaged indicators for all individual
map images to produce a global indicator. The resulting measure is an error
measure which ranges from 0 (best) to a large value depending on image size.

3.3 Method Descriptions

UWB—Winning Method. This method is based on the U-Net-like fully con-
volutional networked used in [1]. This network takes a whole downsampled page
as an input and predicts the border of the expected area. Border training sam-
ples were generated from the original ground truth (GT) files. The values are
computed using a Gaussian function, where σ = 50 and the distance from border
is used. Training is performed using the training set and augmentation (mirror-
ing, rotation and random distortion) [2] to increase the amount of the training
samples. To improve the location of the detected border, a binarized image
is generated using a recursive Otsu filter [13] followed by the removal of small
components. Network prediction and the binarized image are post-processed and
combined with the use of connected components and morphological operations,
which parameters are calibrated on the validation set. The result of the process
is the predicted mask of a map content area.
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CMM. This method assumes that the area of interest is characterized by the
presence of black lines connected to each other all over the map. These con-
nections being due either to the external frame, graticule lines, streets, or text
superimposed to the map. Thus, the main idea is detecting black lines and recon-
structing them from a predefined rectangle marker in the center of the image.
The method is implemented with the following steps. (i) Eliminate map mar-
gin (M) detected by the quasi-flat zone algorithm and removed from the whole
image (I0): I = I0−M . (ii) Then, black lines (B), are extracted by a thresholded
black-top-hat (B = Otsu(I−ϕ(I))) (iii) A white rectangle (R) is drawn centered
in the middle of the image and of dimensions W

2 × H
2 , with W and H the image

width and height respectively. (iv) Black lines B are reconstructed by dilation
from the centered rectangle: Bs = Build(R,B). Several dark frames surround
the map. Only the inner one is connected to the drawn rectangle R and delimits
the area of interest. (v) The frame (black line surrounding the map) may not be
complete due to lack of contrast or noise. A watershed is applied to the inverse of
the distance function in order to close the contour with markers = R ∪ border.
The region corresponding to marker R becomes the area of interest. (vi) Finally,
legends are removed from the area of interest. Legends are the regions from the
inverse of Bs that are rectangular and close to the border of the area of interest.

IRISA. This approach is entirely based on a grammatical rule-based system [9]
which combines visual clues of line segments extracted in the document at vari-
ous levels of a spatial pyramid. The line segment extractor, based on a multi-scale
Kalman filtering [10], is fast and robust to noise, and can deal with slope and
curvature. Border detection is performed in two steps: (i) Line segments are
first extracted at low resolution level (scale 1:16) to provides visual clues on the
presence of the double rulings outside the map region. Then, the coarse enclos-
ing rectangle is detected using a set of grammar rules. (ii) Line segments are
extracted at medium resolution level (scale 1:2) to detect parts of contours of
the maps, and of title regions. Another set of grammar rules are then used to
describe and detect the rectangular contour with smaller rectangle (title and
legend) in the corners. The performance is this approach is limited by the gram-
mar rules which do not consider, though it would be possible, the fact that the
map content may lay outside the rectangular region, nor it considers that some
legend components may not be located at the corners of the map.

L3IRIS. This approach leverages the cutting edge few-shot learning technique
HSNet [11] for image segmentation, in order to cope with the limited amount
of training data. With this architecture, the prediction of a new image (query
image) will be based on the trained model and a training image (support image).
In practice, the L3IRIS team trained the HSNet [11] from scratch with a Resnet
50 backbone from available data to predict the content area in the input map
with 512 × 512 image input. Because post-processing techniques to smooth and
fill edges did not improve the evaluation error, the authors kept the results from
the single trained model as the final predicted maps.
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Rank Team Hausdorff 95 (pix.) ↓
1 UWB 19
2 CMM 85
3 IRISA 112
4 L3IRIS 126

Fig. 6. Final Hausdorff 95 errors for Task 2 (left)—values range from 0 pixels (best)
to arbitrarily large values, and error distribution for all test images (right).

3.4 Results and Discussion

Results and ranking of each submitted method is given in Fig. 6: table on the left
summarizes the Hausdorff 95 indicators we computed and the plot on the right
illustrates the error distribution (in log scale) for all test images. The L3IRIS
method, based on a single FCN leveraging recent few-shot learning technique
produces overly smoothed masks. The IRISA method, based on a robust line seg-
ment detector embedded in a rule-based system, was penalized by unseen frame
configurations. However, it produced very accurate results for know configura-
tions. The CMM approach, based on morphological processing, also produced
very accurate frame detection and generalized better. The remaining errors are
due to missed regions considered as background close to the boundary. The
UWB winning method, finally, efficiently combines a coarse map content detec-
tion thanks to a deep network, with a re-adjustment of detected boundaries using
a recursive Otsu binarization and some morphological post-processing.

4 Task 3: Locate Graticule Lines Intersections

This task consists in locating the intersection points of graticule lines. Gratic-
ule lines are lines indicating the North/South/East/West major coordinates in
the map. They are drawn every 1000 m in each direction and overlap with the
rest of the map content. Their intersections are very useful to geo-reference the
map image, i.e. for projecting map content in a modern geographical coordinate
reference system. Given the image of a complete map sheet, participants had to
locate the intersection points of such lines, as illustrated in Fig. 7.

4.1 Dataset

The inputs for this task are exactly the same as Task 2. Expected output for
this task is, for each input image, the list intersection coordinates. The dataset
is separated exactly as for Task 2 in terms of train, validation and test sets.
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Fig. 7. Illustration of expected outputs for Task 3: dashed green lines are the graticule
lines and red dots are the intersections points to locate. (Color figure online)

4.2 Evaluation Protocol

For each map sheet, we compared the predicted coordinates with the expected
ones. We used an indicator which considers detection and localization accuracy
simultaneously, like what we did for Task 1. A predicted point was considered as a
correct detection if it was the closest predicted point of a ground truth (expected)
point and if the distance between the expected point and the predicted one is
smaller than a given threshold. We considered all possible thresholds between
0 and 50 pixels, which roughly corresponds to 20 m for these map images, and
is an upper limit over which the registration would be seriously disrupted. In
practice, we computed for each map sheet and for each possible threshold the
number of correct predictions, the number of incorrect ones and the number
of expected elements. This allowed us to plot the Fβ score vs threshold curve
for a range of thresholds. We set β = 0.5 to weights recall lower than precision
because for this task it takes several good detections to correct a wrong one in the
final registration. The area under this “F0.5 score vs threshold” curve was used
as performance indicator; such indicator blends two indicators: point detection
and spatial accuracy. Finally, we computed the average of the measures for all
individual map images to produce a global indicator. The resulting measure is
a value between 0 (worst) and 1 (best).

4.3 Method Descriptions

UWB—Winning Method. This method is based on three main steps. (i)
First, a binary image is generated using the recursive Otsu approach described
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in Sect. 3.3. This image is then masked using the map content area predicted for
Task 2. (ii) Graticule lines are then detected a Hough Line Transform. While
the accumulator bins contain a lot of noise, the following heuristics were used
to filter the candidates: graticule lines are assumed to be straight, to be equally
spaced and either parallel or perpendicular, and there should be at least four
lines in each image. To enable finding, filtering, correcting, fixing and rating peak
groups that represents each graticule line in Hough accumulator, each candidate
contains information about its rating, angle and distance between lines. Rating
and distance information is used to select the best configuration. (iii) Intersec-
tions are finally coarsely estimated from the intersections between Hough lines,
then corrected and filtered using the predicted mask from the Task 2, using
some template matching with a cross rotated by the corresponding angle. The
approach does not require any learning and the parameters are calibrated using
both train and validation subsets.

IRISA. This method is based on two main steps. (i) The same line segment
detector as the one used by the IRISA team for Task 2 (Sect. 3.3) is used to
detect candidates. This results in a large amount of false positives with segments
detected in many map objects. (ii) The DMOS rule grammar system [9] is used
to efficiently filter candidates using a dedicated set of rules. Such rules enable
the integration of constraints like perpendicularity or regular spacing between
the lines, and the exploration of the hypothesis space thanks to the efficient
back-tracking of the underlying logical programming framework.

CMM. This method combines morphological processing and the Radon trans-
form. Morphological operators can be disturbed by noise disconnecting long lines
while the Radon transform can integrate the contribution of short segments that
may correspond to a fine texture. The process consists in the following six steps.
(i) First, the image is sub-sampled by a factor 10 in order to speed up the pro-
cess and to make it more robust to potential line discontinuities. An erosion
of size 10 is applied before sub-sampling to preserve black lines. (ii) Then the
frame is detected. Oriented gradients combined with morphological filters are
used for this purpose, inspired by the method proposed in [6] for building façade
analysis. (iii) Line directions are then found. Directional closings from 0 to 30
degrees with a step of 1 degree, followed by black top-hat and Otsu threshold
are applied. The angle leading to the longest detected line is selected. (iv) The
Radon transform of the previous black top-hat at the selected direction and
its orthogonal are computed. Line locations correspond to the maxima of the
Radon transform. (v) Lines are equally spaced in the map. The period of this
grid is obtained as the maximum of the autocorrelation of the Radon transform.
Equidistant lines are added on the whole map, whether they have been detected
by the Radon transform or not. Applied to both directions, this generates the
graticule lines. (vi) Finally a refinement is applied to localize precisely the line
intersections at the full scale. In the neighborhood of each detected intersection,
a closing is applied with a cross structuring element (with lines of length 20)
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Rank Team Detection score (%) ↑
1 UWB 92.5
2 IRISA 89.2
3 CMM 86.6
4 L3IRIS 73.6

Fig. 8. Final detection score for Task 3 (left)—score ranges from 0 (worst) to 100
(best), and plot of the Fβ=0.5 value for each distance threshold (right)—normalized by
the maximum distance of 50 pixels.

at the previously detected orientations. The minimum of the resulting image
provides the precise location of the intersection. If the contrast of the resulting
closing is too low (<10), the point is inferred from the other points that were
successfully found in the refinement step on the corresponding intersecting lines.

L3IRIS. This method is based on a deep intersection detector followed by a
filtering technique based on a Hough transform. The process consists in the
following five steps. (i) First, cross signs (all the points that are similar to the
target points) are detected using a U-Net model [14] for point segmentation,
trained with the 26 training images. The ground truth was generated by drawing
a circle at each point’s location over a zero background. The resulting model
detects many points, among which the target points. (ii) From these candidates,
a Hough transform is used (with additional heuristics) to detect graticule lines.
The parameters of the Hough transform are selected automatically based on the
number of final points in the last step. (iii) A clustering algorithm is then used to
select line candidates forming a regular grid (parallel and orthogonal lines). (iv)
Finally, intersections between these lines are filtered using the predicted mask
from Task 2 (Sect. 3.3) to get the final set of points.

4.4 Results and Discussion

Results and ranking of each submitted method is given in Fig. 8: table on the
left summarizes the detection score we computed and the plot on the right
illustrates the evolution of the retrieval Fβ score for each possible normalized
distance threshold. The L3IRIS approach is penalized by a lack of local confirma-
tion of intersection hypothesis, leading to false positives, misses, and sub-optimal
location. The CMM approach produced very accurate detections thanks to mor-
phological filters, but the Radon transform seems to generate extra hypothesis
or discard groups of them and therefore has some stability issues. The IRISA
approach performed globally very well thanks to is robust line segment detector
and its rule-based system, despite some false positives. The UWB winning app-
roach, finally, efficiently combined a binary preprocessing with a coarse Hough
transform and a final refinement leading to superior accuracy.
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5 Conclusion

This competition succeeded in advancing the state of the art on historical atlas
vectorization, and we thank all participants for their great submissions.
Shape extraction (Task 1) still require some progress to automate the process
completely. Map content detection (Task 2) and graticule line detection (Task 3)
are almost solved by proposed approaches. Future work will need to improve on
shape detection, and start to tackle shape classification and text recognition.
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