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Abstract. Pyramidal networks are standard methods for multi-scale
object detection. Current researches on feature pyramid networks usu-
ally adopt layer connections to collect features from certain levels of the
feature hierarchy, and do not consider the significant differences among
them. We propose a better architecture of feature pyramid networks,
named selective multi-scale learning (SMSL), to address this issue. SMSL
is efficient and general, which can be integrated in both single-stage and
two-stage detectors to boost detection performance, with nearly no extra
inference cost. RetinaNet combined with SMSL obtains 1.8% improve-
ment in AP (from 39.1% to 40.9%) on COCO dataset. When integrated
with SMSL, two-stage detectors can get around 1.0% improvement in
AP.

Keywords: Multi-scale · Object detection.

1 Introduction

Object detection is a fundamental task in computer vision, whose target is to
classify and locate all objects in an image. Image recognition aims to predict
the probability of all classes for an image, and adopt the top probabilities and
their corresponding classes as final result. Unlike image recognition where there
is usually only one object in an image, in object detection, there usually exists
various objects in the same image, with a wide range of scales. Therefore, it is
difficult to represent different kinds of objects at the same feature representation
level. To achieve this goal, a solution is to use multi-level feature representations.
The features at higher levels are semantically strong with lower resolutions.
While the low-level features are spatially finer with higher resolutions. Hence,
the high-level features are more suitable for large-object detection while the low-
level features are more beneficial for detecting smaller objects. The pyramidal

? Corresponding author

ar
X

iv
:2

20
6.

08
20

6v
1 

 [
cs

.C
V

] 
 1

6 
Ju

n 
20

22



2 J. Chen et al.

architecture with multi-scale feature representations is widely used by many
powerful object detectors [16,22,23].

One of the widely used pyramidal architecture is Feature Pyramid Networks
(FPN) [15]. FPN takes inputs from a backbone model, which is usually con-
structed for image recognition. The backbone model generates feature repre-
sentations in different hierarchies with decreasing resolutions. FPN sequentially
takes two adjacent layers from different levels in backbone as inputs, and com-
bines them with a top-down pathway and lateral connections. The high-level
features, with stronger semantic but lower resolution, are upsampled to fit the
spatial size of the low-level features with higher resolution. Then a binary oper-
ation, usually element-wise summation, is conducted to aggregate the features.
The low-level finer features are semantically enhanced after combination with
high-level features from top-down pathway.

Although FPN is simple and effective for many detectors, there are some
aspects to be improved. Path Aggregation Network (PANet) [18] adds an ad-
ditional bottom-up pathway on the base of FPN. This additional branch can
strengthen the semantically enhanced features after FPN, with finer spatial fea-
tures at lower levels. Balanced Feature Pyramid (BFP) [21] gathers cross-level
features from FPN or other pyramidal architectures to the same level. Then
a refinement module is carried out after element-wise average of the gathered
features. The averaged features, a fusion of features cross all levels, can be con-
sidered as global information. The fused features are then scattered to all levels
and summed up with the original input features. This process merges the orig-
inal features with features from all other levels, enabling detectors to perceive
information from all levels. Recent researches [11,9] explore better connections
of cross-scale features to produce a pyramidal architecture for feature represen-
tations.

However, the above works ignore the variances among features from different
scales and give them the same weights for combination, or only merge features
from partial scales. Inspired by these, we propose an architecture, named selec-
tive multi-scale learning (SMSL), to dynamically learn a better feature represen-
tation for each level from multi-scale features. SMSL can efficiently improve the
detection performance of both single-stage and two-stage detectors with only a
small increase of inference cost.

In this study, we make the following contributions:

– We propose the selective multi-scale learning (SMSL) to generate specific
features for each level by selectively merge features from multi scales.

– Combined with SMSL, RetinaNet achieves performance of 44.3% AP on
COCO dataset.

– The proposed framework can also be applied to two-stage object detectors
to improve the detection performance.
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2 Related Work

Recognizing multi-scale objects is a fundamental but challenging task in com-
puter vision. Pyramidal feature representations is a general technique [1] in this
area. A simple method is to use convolutional networks (ConvNets) to extract
features from image pyramids. However, this method brings huge computation
burden, as the ConvNets forward repeatedly for the same image. To solve the
problem, an effective solution is to directly take advantage of the features gen-
erated by the ConvNets, instead of using image pyramids. Recent researches
[16,7,3,20] propose many cross-scale connections to connect multi-level features
from the ConvNets. Though keep the original resolution, the connected features
are semantically enhanced.

Partial connections. Partial connections are one of the standard pyramidal
architectures. FPN [15] connects two adjacent layers in the top-down pathway
by upsampling the high-level features to fit the size of the features at lower
level and element-wisely sum up them. This architecture enhances the low-level
features with stronger semantic information from higher levels. Although FPN
is simple and effective to improve feature representations, the features still lack
information from lower levels. To address this problem, Liu et.al [18] propose
Path Aggregation Network (PANet) to add an accessional bottom-up pathway on
the basis of FPN. In PANet, low-level features are downsampled and summed up
with features at higher level. Therefore, the semantically enhanced features after
FPN can obtain finer spatial information. NAS-FPN [6] uses Neural Architecture
Search (NAS) algorithm to discover a better pyramidal architecture covering all
cross-scale connections.

Full connections. Another way to integrate multi-level features is to gather
features and fuse them to generate features for different levels and scatter the
fused features to the corresponding level. Kong et.al [11] first gather multi-level
features and combine them, then use global attention for further refinement.
After that, the local reconfiguration module is employed to further capture lo-
cal information. The produced features are resized and element-wisely summed
up with the original input which is linearly projected by a 1 × 1 convolution.
Balanced Feature Pyramid (BFP) [21] gathers features to a level and applies
element-wise averaging. Then a non-local module is utilized to refine the inte-
grated features, which are then scattered to all levels. The refined features are
element-wisely summed up with the original input features at each level.

The above methods obtain features from partial scales, and usually merge
them through linear operation (such as element-wise summation) which gives
features from different scales the same weights. However, for a specific level, the
features from different scales have different importance. Therefore, the detector
should learn to selectively merge the multi-scale features.
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Fig. 1. (a) The overview of the proposed selective multi-scale learning. (b) The channel
rescaling module. “ C○” and “ S○” denote channel concatenation and channel spliting,
respectively.

3 Selective Multi-Scale Learning

3.1 Network Architecture

Overview Fig 1(a) shows the architecture of selective multi-scale learning. We
use the

{
C3, C4, C5

}
layers from ResNet [8] backbone. Then we generate C6

and C7 layers by separately applying a 3 × 3 convolution with stride 2 on C5

and C6 layers. Therefore, the original inputs are
{
C3, C4, C5, C6, C7

}
, which are

gathered to a level and then passed to channel rescaling (CR) module (Fig 1(b))
and selective feature combination (SFC) module (Fig 2(a)) to generate level-
specific features. At each level, the generated features are then element-wisely
summed up with the corresponding input as the final output.

Channel Rescaling. The features at level l after resizing are denoted as Dl ∈
RC×H×W with a resolutionH×W , and the indexes of the input levels with lowest
and highest resolution are denoted as lmin and lmax. Let L be the number of
levels, then L = lmax − lmin + 1. In our experiments, the gather level is set to
(lmin + lmax)/2.

The context of the multi-level features at each channel is different, so the
importance of features at each channel is as well different. Therefore, we aim to
emphasize the important features and suppress the less useful features, which
can be regarded to select the information via a gate. To achieve this goal, we
propose channel rescaling module to rescale the features at different channels of
the multi-level features. After gathering the multi-level features, we first concat
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Fig. 2. (a) The selective feature combination module. “SCB” deontes the selective
combination module. (b) An selective combination module for the l-th level. “ S○”
denotes channel spliting.

them as:
D̃ =

[
Dlmin , . . . ,Dl, . . . ,Dlmax

]
(1)

where D̃ ∈ RLC×H×W . Then channel rescaling (CR) is accomplished by the
following steps.

For a specific channel of D̃, we get the global information by using global
average pooling (GAP). We denote the result after GAP as x. The result of the
c′-th channel can be calculated as:

xc′ =
1

HW

H∑
i=1

W∑
j=1

D̃c′,i,j (2)

We then generate the weights for each channel by two fully connected (FC)
layers followed by the sigmoid function:

s = σ(W2δ(W1x)) (3)

where W1 ∈ RLC
r ×LC , W2 ∈ RLC×LC

r , δ is the ReLU function and σ denotes
the sigmoid function. r is the reduction ratio, and is set to 8 in our experiments.

We denote the output after channel resclaing module as J. For the c′-th
channel, the output Jc′ is generated by rescaling D̃c′ with sc′ :

Jc′ = sc′ ⊗ D̃c′ (4)

where ⊗ denotes the channel-wise multiplication.
Then we split J into L groups:

J =
[
Qlmin , . . . ,Ql, . . . ,Qlmax

]
(5)
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Ql = J1+(l−1)C:lC,:,: (6)

where l ∈ {lmin, . . . , lmax}.

Selective Feature Combination
Local Feature. A simple approach is to scatter the L rescaled features Q ={
Qlmin , . . . ,Qlmax

}
to all levels. However, as mentioned before, features at differ-

ent levels have various semantic contexts and are thus suitable to detect objects
with different sizes. In addition, the features scattered to l-th level shall put
more emphasis on the neighboring levels, i.e.

{
Ql−1,Ql,Ql+1

}
, as they have

more similar semantic contexts.
Motivated by these observations, we design a selective combination (SFC)

module (Fig 2(b)) to combine the set of Q features to generate local feature
Fl, which is to be scattered to the l-th level. The C channel feature Fl =
{Fl

1, . . . ,F
l
c, . . . ,F

l
C} is a weighted combination of Q. The weights are differ-

ent for each target level and learned by the following steps.
Our goal is to adaptively select features from different levels. An effective idea

is to use gate to control the information flow from multiple levels. To achieve
this goal, we should aggregate the features from multiple levels. A simple way
is to use concatenation to merge the features, but this requires more parame-
ters. Therefore, we use element-wise summation to merge features from multiple
levels:

Q̃ =

lmax∑
i=lmin

Qi (7)

then we create the global context g ∈ RC by simply using average pooling, the
c-th element of the global context can be formulated as:

gc =
1

H ×W

H∑
i=1

W∑
j=1

Q̃c,i,j (8)

Next, we compact the global context into feature zl ∈ RC
r to guide the

adaptive selection. r is the reduction ratio, and is set as 8 in our experiments.
To achieve this, we apply a fully connected (FC) layer to generate the result:

zl = δ(L(FCl1(g))) = δ(L(Wlg)) (9)

where Wl ∈ RC
r ×C , L denotes the Layer Normalization [2] and δ is the ReLU

function [19].
To adaptively select features from different levels, a soft attention across

channels is employed. The soft attention is a channel-wise weight generated
under the guidance of the compacted global context zl. We first generate the
original weight Ul ∈ RLC using an FC layer:

Ul = FCl2(zl) = Vlzl (10)
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where Vl ∈ RC×LC . Then we reshape the weight Ul ∈ RLC into Ml ∈ RL×C .
Let Al ∈ RL×C be the soft attention weight for

{
Qlmin , . . . ,Qlmax

}
.

For a specific level i and channel c, the soft attention weight Al
i,c can be

computed as:

Al
i,c =

eM
l
i,c∑lmax

j=lmin
eM

l
j,c

(11)

After adaptive selection, all the features from different levels own their spe-
cific weights in the channel-wise aspect. The final output Fl ∈ RC are the
weighted summation of multi-level features via the soft attention weights. For
the c-th channel, the output Fl

c can be calculated as:

Kl
i,c = Al

i,c ⊗Qi
c, i ∈ {lmin, . . . , lmax} (12)

Fl
c =

lmax∑
i=lmin

Kl
i,c (13)

where ⊗ denotes the channel-wise multiplication.

Global Feature. As global context has been widely used in rescaling and
weight features of different levels, we argue that a global feature represents the
overall information of all levels shall also be learned and injected into the L local
features Fl, before they are scattered to the target levels. The same combination
process described above can be used to learn the weights of Q, which can be used
to calculate the global feature Fg. We use the non-local [24] module with embed
Gaussian attention to further refine Fg to G. As justified by the ablation study
in experimental section, the inclusion of G can further increase the performance
of the feature pyramid network.

The L local features to be scattered to the l-th target level, F̃l, can now be
calculated as the element-wise summation of Fl and global feature G:

F̃l = Fl ⊕G (14)

where ⊕ denotes the element-wise summation.

After feature fusion, the fused features are then scattered to the same size
as the input of the corresponding level via resizing. For the l-th level, the final
features F̂l can be computed as:

F̂l = Resize(F̃l)⊕Cl (15)

where Resize denotes the resizing function, ⊕ denotes the element-wise summa-
tion.
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4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct our experiments on the COCO dataset [17]. For training, we use
the data in train-2017 split, which contains 115k images. For ablation study,
we use the data in the val-2017 split consisting of 5k images as validation. We
report our main results on the test-dev (20k images without public annotations
available) split. All the results are reported in the standard COCO-style Average
Precision (AP ) metrics.

4.2 Implementation Details

For fair comparisons, all the experiments are conducted on the MMDetection
[4] platform. If not specified, for all other hyper-parameters, we follow the same
settings in MMDetection [4] for fair comparison.

Training details. The training settings are as follows if not specified. We use
ResNet-50 [8] as our backbone networks, and RetinaNet [16] as our detector.
The backbone network is initialized with the pretrained model on ImageNet [5].
We use the stochastic gradient descent (SGD) optimizer to train our networks
for 12 epochs with batch size 16. The initial learning rate is 0.01 and divided by
10 after 8 and 11 epochs. The input images are resized to have a resolution of
∼ 1333× 800.

Inference details. The inference settings are as follows if not specified. For
inference, we first select the top 1000 confidence predictions from each prediction
layer. Then, we use a confidence threshold of 0.05 to filter out the predictions
with low confidence for each class. Then, we apply non-maximum suppression
(NMS) to the filtered predictions for each class separately with a threshold of
0.5. Finally, we adopt the predictions with top 100 confidences for each image
as the final results.

Table 1. Ablation studies on component effectiveness on COCO val-2017, with ResNet-
50 [8] backbone. “LF”, “GF”, and “CR” denote Local Features, Global Feature, and
Channel Rescaling respectively.

LF GF CR AP AP50 AP75 APS APM APL

X 35.5 55.5 37.7 20.8 39.7 46.2

X X 35.8 56.5 37.9 21.1 40.2 46.4

X X 35.8 56.0 38.0 20.5 40.0 47.1

X X X 36.1 56.6 38.4 21.2 40.3 47.3
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Table 2. Application in other pyramidal architectures based on RetinaNet detector
(1st group) and two-stage detectors (2nd group) on COCO val-2017. “*” denotes our
re-implementation. “Params” denotes the number of total parameters (M) and “Time”
denotes the inference time (ms) on single Tesla P100.

SMSL AP AP50 AP75 Params (M) Time (ms)

Arch

FPN 35.5 55.3 37.9 37.74 96.8

FPN X 36.4[+0.9] 56.9 38.9 38.72 99.0

PANet* 35.9 55.8 38.4 39.51 100.6

PANet* X 37.0[+1.1] 57.6 39.4 40.49 101.6

Detector

Mask 35.2 56.4 37.9 44.18 92.6

Mask X 36.0[+0.8] 57.6 38.6 45.15 97.2

Cascade 38.1 55.9 41.1 69.17 84.0

Cascade X 39.1[+1.0] 57.5 42.2 70.15 88.0

4.3 Ablation Study

As our selective multi-scale learning approach mainly consists of two steps, i.e.
CR and SFC, we firstly justify the importance of the proposed module using
ablation study. As the local features (LF) are necessary to scatter to the feature
pyramid, we only perform an ablation study on the global feature (GF) included
in the combination module. The two modules, i.e. CR and GF are removed to
see their effects on the performance of the baseline, which are shown in Table 1.

The second row in the table suggests that the CR module improve the overall
AP of baseline from 35.5% to 35.8%. Compared to the baseline, the adoption of
GF improves AP and AP50 by 0.3% and 1.1%, respectively. When both modules
are used, the AP is further improved to 36.1%. In summary, both CR and GF
can enhance the features and effectively boost the detection performance, which
justify the usefulness of our approach.

4.4 Application in Pyramid Architectures.

In this section, we evaluate the effectiveness of our method on different pyramidal
architectures by combining them with our method. As shown in the 1st group
of Table 2, when combined with SMSL, FPN [15] and PANet [21] get 0.9% and
1.1% improvement in AP respectively, with only a small increase of parameters
and little extra inference time (+2.2 ms and +1.0 ms, respectively).

4.5 Application in Two-Stage Detectors

In this section, we conduct experiments to evaluate the effectiveness of our
method on two-stage detectors, including Mask R-CNN [7] and Cascade R-CNN
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Table 3. Comparisons with mainstream methods on COCO test-dev. “†” denotes re-
sults under multi-scale testing.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN [15] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN [7] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

LH R-CNN [14] ResNet-101 41.5 - - 25.2 45.3 53.1

Cascade R-CNN [3] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

TridentNet [13] ResNet-101-DCN 48.4 69.7 53.5 31.8 51.3 60.3

Single-stage methods

ExtremeNet [28] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1

FoveaBox [10] ResNet-101 40.6 60.1 43.5 23.3 45.2 54.5

FoveaBox [10] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6

CornerNet [12] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

CornerNet [12]† Hourglass-104 42.2 57.8 45.2 20.7 44.8 56.6

FreeAnchor [27] ResNet-101 43.1 62.2 46.4 24.5 46.1 54.8

FreeAnchor [27] ResNeXt-101 44.9 64.3 48.5 26.8 48.3 55.9

FSAF [29] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3

FSAF [29] ResNeXt-101 42.9 63.8 46.3 26.6 46.2 52.7

FCOS [23] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6

FCOS [23] ResNeXt-101 44.7 64.1 48.4 27.6 47.5 55.6

ATSS [26] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6

Dense RepPoints [25] ResNeXt-101-DCN 48.9 69.2 53.4 30.5 51.9 61.2

RetinaNet [16] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet (ours) ResNet-101 40.9 62.3 44.1 25.1 44.7 49.9

RetinaNet (ours)† ResNet-101 42.7 63.8 46.3 27.8 45.1 52.5

RetinaNet [16] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

RetinaNet (ours) ResNeXt-101 42.6 64.4 45.7 26.7 46.3 51.8

RetinaNet (ours)† ResNeXt-101 44.3 65.5 48.2 29.4 46.9 54.5

[3]. The resolution of the input image is set to 640× 640. The batch size is ad-
justed according to the memory limitation with a linearly scaled learning rate.
As shown in the 2nd group of Table 2, when combined with SMSL, Mask R-
CNN and Cascade R-CNN get 0.8% and 1.0% improvement in AP, with nearly
no extra inference time (+4.6 ms and +4.0 ms, respectively). The results justify
the effectiveness of our method on two-stage detectors.

4.6 Comparisons with Mainstream Methods

After ablation study and comparison with pyramidal networks, we now compare
our approach with mainstream methods in Table 3. Both single-stage and two-
stage detectors are included for comparison. We report the performance of our
SFPN using both ResNet-101 and ResNeXt-101 backbones. We adopt 2× longer
training with scale-jitter. For ResNeXt-101 backbone, due to memory limitation,
we train the detector using batch size 12 with a linearly scaled learning rate.
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As shown in Table 3, combined with our method, RetinaNet with ResNet-
101 backbone get 1.8% improvement in AP. With ResNeXt-101 backbone and
single-scale setting, RetinaNet with our method achieves 42.6% AP, which is
close to two-stage detectors, such as Cascade R-CNN (42.8% AP). If multi-scale
test is adopted, the best performance of RetinaNet can be further boosted to
44.3% AP, which surpasses many mainstream object detectors.

5 Conclusions

In this paper, we propose selective multi-scale learning, which considers the dif-
ferent importance of the cross-scale features and selectively combine multi-scale
features. SMSL can effectively improve the detection performance of single-stage
detector, with almost no extra inference cost. The experimental results shows
that SMSL can also be applied to two-stage detectors to boost the detection
performance.
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