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Abstract. Deep neural networks can suffer from the exploding and vanishing 
activation problem, in which the networks fail to train properly because the neu-
ral signals either amplify or attenuate across the layers and become saturated. 
While other normalization methods aim to fix the stated problem, most of them 
have inference speed penalties in those applications that require running aver-
ages of the neural activations. Here we extend the unitary framework based on 
Lie algebra to neural networks of any dimensionalities, overcoming the major 
constraints of the prior arts that limit synaptic weights to be square matrices. 
Our proposed unitary convolutional neural networks deliver up to 32% faster 
inference speeds and up to 50% reduction in permanent hard disk space while 
maintaining competitive prediction accuracy.  
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1 Introduction 

1.1 Problem Statement 

Recent advancements in semiconductor technology [1] have enabled neural networks 
to grow significantly deeper. This abundant computing power enabled computer sci-
entists to drastically increase the depths of neural networks from the 7-layer LeNet 
network [2] to the 152-layer contest-wining ResNet architecture [3]. More layers 
usually lead to higher recognition accuracy because neural networks make decisions 
by drawing decision boundaries in the high dimensional space [4]. A decision bound-
ary is a demarcation in the feature space that separates the different output classes. 
The more layers the network has, the more precise these boundaries can be in the high 
dimensional feature space; thus, they can achieve higher recognition rates [5]. How-
ever, deep networks often fail to train properly due to poor convergence.  

 There are many reasons why a deep network fails to train [6], and the problem that 
our proposal fixes is the instability of the forward pass, in which neural activations 
either saturate to infinity or diminish to zero. More precisely, depending on the eigen-
values of the synaptic weight matrices [7], neural signals may grow or attenuate as 
they travel across neural layers when unbounded activation functions such as the rec-
tified linear units (Relu) are used [8]. The Relu is the most popular nonlinearity due to 
its computational efficiency. Suppose the activation is extremely large or small; in 
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this case, the weight update will scale proportionally during training, resulting in ei-
ther a massive or a tiny step.  

In short, vanishing and exploding activations occur when the neural signals are not 
normalized, and the backpropagated gradients either saturate or die out during net-
work training [9]. Although other schemes such as batch normalization [10], learning 
rate tuning [11], and gradient highways [3] can mitigate the issue, none of these 
methods eliminate the core problem—the weight matrices have eigenvalues that are 
larger or smaller than one. Furthermore, most normalization methods have inference 
time penalties. In this work, we aim to devise a way to fundamentally fix the explod-
ing and vanishing activation problem without slowing down the inference speed.  

1.2 Proposed Solution 

Our proposed solution (Fig. 1) is to eliminate the need to normalize the neural signals 
after each layer by constraining the weight matrices, W, to be unitary. Unitary matri-
ces represent rotations in the n-dimensional space1; hence, they preserve the norm 
(i.e., the amplitude) of the input vector. With this unique property, unitary networks 
can maintain the neural signal strengths without explicit normalization. This tech-
nique allows the designers to eliminate the networks’ normalization blocks and make 
inference faster. 

We aim to engineer a way to constrain the weights to be unitary. To achieve this, 
we leverage the previously reported framework for constructing orthogonal matrices 
in recurrent neural networks using Lie algebra [12], which we will explain briefly in 
Sect. 2.1. Unlike other approximation methods, this framework guarantees strictly 
unitary matrices; however, it is currently limited to square matrices. Our main contri-
bution is that we found a way (Sect. 2.2) to extend the unitary framework based on Lie 
algebra to weight matrices of any shapes. By doing so, we expand the applicability of 
this framework from recurrent neural networks with square weight matrices to any 
neural network structures, drastically increasing its usefulness in state-of-the-art net-
work architectures.  

 
Fig. 1. Unitary network for mitigating exploding and vanishing activations.  

 
1  Unitary matrices can have complex values. When the matrices only contain real compo-

nents, they are called orthogonal matrices, which is a subset of unitary matrices, and our 
proposal works in both cases. The eigenvalues of a unitary matrix have modulus 1.  
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1.3 Literature Review 

Lie algebra is not the only way to construct unitary matrices. Researchers have ex-
plored many options to construct unitary weights for RNNs, including eigendecompo-
sition [13], Cayley transform [14], square decomposition [15], Householder reflection 
[16], and optimization over Stiefel manifolds [17]. These methods decompose the 
unitary matrix into smaller parameter spaces with mathematical processes that guar-
antee unitarity; however, the weight matrices in these approaches must be square. For 
convolutional neural nets with rectangular weights, there are approximation tech-
niques based on least square fitting [18], singular value decomposition [19], and soft 
regularization [20] due to the additional complexity of rectangular filters. These tech-
niques find the best approximates to the unitary weights, but they do not guarantee the 
weight matrices to be strictly unitary. On the contrary, our approach combines the 
best of the two schools—it is both strictly unitary and applicable to non-square matri-
ces. Our work is the first report of applying the unitary weights based on the Lie alge-
bra framework for a deep convolutional neural network with a comprehensive per-
formance study, aiming to make the unitary network an attractive alternative to con-
ventional normalization methods in inference-time-critical applications. 

2 Unitary Neural Networks with Lie Algebra 

2.1 Square Unitary Weight Matrices 

In this section, we explain the mathematical framework [12] for representing the uni-
tary group with orthogonal matrices, collectively known as the Lie group [21]. Line-
arization of the Lie group about its identity generates a new set of operators; these 
new operators form a Lie algebra. Lie algebra is parameterized by the Lie parameters, 
which we arrange as a traceless lower triangular matrix, L. We name it Lie parameters 
because it contains independent trainable parameters for the neural networks. The 
representable algebra through this parameterization is only a subspace of unitary 
groups, and it is sufficient for guaranteeing signal stability in deep neural networks. 

The Lie parameters (L) are related to the Lie algebra (A) by the following equation: 

 𝑨𝑨 = 𝑳𝑳 − 𝑳𝑳𝑇𝑇, (1) 

where T corresponds to taking the matrix transpose. An essential feature of matrix A 
is that it is a skew-symmetric matrix, i.e., AT = -A, because any compact metric-
preserving group, including the orthogonal group, has anti-symmetric Lie algebra 
[22]. Furthermore, the following equation proves that the chosen representation for 
the Lie parameters will produce an anti-symmetric Lie algebra:  

 𝑨𝑨𝑇𝑇 + 𝑨𝑨 = (𝑳𝑳 − 𝑳𝑳𝑇𝑇)𝑇𝑇 + 𝑳𝑳 − 𝑳𝑳𝑇𝑇 = 0. (2) 

Additionally, in the last step of our pipeline to construct unitary matrices, we expo-
nentiate the Lie algebra, A, to obtain the group representation, which will be a unitary 
matrix (U):  
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 𝑼𝑼 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑨𝑨) = ∑ 𝑨𝑨𝑁𝑁/𝑁𝑁!∞
𝑁𝑁=0 . (3) 

We approximate this matrix exponentiation with an 18-term Taylor series in our im-
plementation. Besides eliminating any term beyond the 18th order in Eq. (3), we effi-
ciently group the computation to avoid redundant multiplications, a standard approach 
used in many matrix computation software to save time [23, 24].  

Suppose the neural network has square weight matrices. In that case, we can use 
the unitary matrices (U) to replace the original weights, forcing the neural signals to 
maintain their norms without explicit normalization. We can train the Lie parameters 
using backpropagation and automatic differentiation because all steps in the pipeline 
above are algebraic functions [25, 26]. As mentioned previously, researchers have 
only applied the unitary pipeline to a small recurrent neural network (RNN), which 
has a single square weight matrix repeatedly applied in time [12]. Nevertheless, the 
requirement for the weights to be square severely limits the usefulness of the present-
ed framework. Using the Lie algebra formalism to construct unitary weights is an 
elegant method to regulate signals, and we wish to find a way to bring this concept to 
deep convolutional neural nets with any non-square weight matrices.  

2.2 Unitary Weight Matrices of Any Shapes and Dimensions 

In the above section, the weight matrices must be square, forcing the number of neu-
rons for both the input and output of a particular layer to be identical. This require-
ment cannot be satisfied in most convolutional neural nets. Convolutional layers have 
weight matrices commonly referred to as “filters.” These filters will convolute with 
the input image as the following [5]:  

 𝑶𝑶(𝑖𝑖, 𝑗𝑗) = (𝑰𝑰 ∗ 𝑭𝑭)(𝑖𝑖, 𝑗𝑗) = ∑ ∑ 𝑰𝑰(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛)𝑭𝑭(𝑚𝑚,𝑛𝑛)𝑛𝑛𝑚𝑚 , (4) 

where O is the output activation map of this layer, I is the input image, and F is the 
convolutional filer. An example of convolution is illustrated in Fig. 2(a). 

Moreover, we can succinctly represent the convolution as a single dot product 
through the Toeplitz matrix arrangement [27, 28]. Suppose we arrange the input im-
age as a Toeplitz matrix and flatten out the filters to a 2-dimensional weight matrix. In 
that case, the convolution simplifies to a dot product between the Toeplitz matrix of 
the image and the flattened filter weights. Effectively, we convert the convolution 
between high-dimensional tensors to multiplications between 2-dimensional matrices. 
These flattened filters are usually rectangular m x k matrices, where m ≠ k. If m 
matches k, the weight matrix is square, allowing us to apply the unitary pipeline to 
ensure each row of the Toeplitz matrix will maintain its norm. On the other hand, 
when dealing with rectangular weights, we need to handle them with special care to 
achieve the desired effect of norm preservation. 

Our innovation is that we discard the excess columns in the unitary matrix when m 
≠ k (i.e., when the weight matrix has unequal width vs. height); for now, we will as-
sume m > k because the other cases only require a few slight adjustments. Even 
though there is no way around the fact the unitary matrices must be square, we dis-
covered that it is unnecessary to use the whole unitary matrix: we can just take the 
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first few columns that we need. We will construct the unitary matrix as a m x m matrix 
(i.e., in the larger of the two dimensions). This way, we can reuse the existing pipeline 
in Sect. 2.1. Our proposed pipeline is as follows. We only keep the first k columns of 
the Lie parameters, setting everything else to zero. Likewise, we only take the first k 
columns of the resulting unitary matrix (U), discarding the rest (Fig. 2(b)). Because 
the rectangular matrix now has the correct dimensions, we multiply the input image 
(in the Toeplitz form) with the unitary weight matrix. Below is a summary of our 
process to construct the unitary rectangular weights in the mathematical form: 

 𝑦𝑦� = 𝑾𝑾𝑥̅𝑥, (5) 

where 

 𝑾𝑾 = [ 𝑢𝑢1��� 𝑢𝑢2��� … 𝑢𝑢𝑘𝑘��� ] ∈ 𝑅𝑅𝑚𝑚×𝑘𝑘. (6) 

𝑢𝑢1���… 𝑢𝑢𝑘𝑘��� are the first k column vectors from the unitary matrix U (Note that when m ≤ 
k, we still construct the unitary matrix U in the larger dimension, but W will be trans-
posed to obtain the desired dimensionality for the matrix multiplication). Lastly, the 
output vector is explicitly normalized using the Euclidean metric when m > k; this 
step is not required for m ≤ k: 

 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓������� = � 𝑦𝑦�/‖𝑦𝑦�‖2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 > 𝑘𝑘
𝑦𝑦� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 ≤ 𝑘𝑘 , (7) 

where ‖ ∙ ‖2 denotes the Euclidean norm (a.k.a., Euclidean metric or the L2 norm), a 
distance measure calculated by squaring all the coordinates, summing the results, and 
taking the square root. 

In theory, it is possible to avoid the explicit normalization Eq. (7) completely by 
one of the following two ways: by partitioning the tall rectangular weight matrix into 
a vertical stack of smaller matrices that are either square or wide. Or, by exploring 
alternative mappings from the various dimensions of W to m and k to ensure 𝑚𝑚 ≤ 𝑘𝑘. 
Nevertheless, we took the direct normalization approach in this work for conceptual 
clarity, and it is only required in a small portion of the network. Moreover, even 
though it is not ideal to add normalization back to portions of our network, the unitary 
weights offer other benefits over conventional normalization. Researchers have found 
orthogonal weights lead to more efficient filters with fewer redundancies [20]. Our 
normalization process does not add additional training parameters to keep track of the 
activations’ mean and variance.  

Discarding columns of unitary matrices has important geometrical meanings. A 
unitary matrix represents a rotation in the n-dimensional space when m = k; addition-
ally, its columns form a complete set of orthonormal bases in the rotated coordinate 
system. We have utilized the latter to paint a geometric understanding of our proce-
dure—each of the k columns is an orthonormal basis in the m-dimensional space. For 
m > k, the unitary weight (W) is projecting an input row vector 𝑥̅𝑥  to a lower-
dimensional manifold spanned by the unitary matrix’s first k columns, a subset of 
orthonormal bases. When we multiply the Toeplitz matrix with this unitary weight 
matrix, we perform a dot product between the row vectors against each orthonormal 
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basis, measuring how much the input vector aligns with a specific basis. According to 
the Pythagorean theorem, this projection will produce a shorter vector than the origi-
nal one because we dispose of those vector components associated with the unitary 
matrix’s discarded columns. As a result, we need to normalize the output to recuper-
ate the signals lost in missing dimensions. 

On the contrary, for m < k, each row of the weight matrix is an orthonormal basis. 
In that case, we are mixing the orthonormal bases according to the ratio prescribed by 
the input row vector 𝑥̅𝑥, resulting in a higher-dimensional output vector 𝑦𝑦�. This dimen-
sionality expansion happens when we multiply the weight matrix with a row vector 
(𝑥̅𝑥) of the Toeplitz matrix that encodes the input image. Effectively, we are projecting 
a vector to the larger dimensions through the wide unitary weight (W), and this opera-
tion preserves the Euclidean norm of the input vector 𝑥̅𝑥. To prove this property math-
ematically, we simply compare the norm of 𝑥̅𝑥 against the norm of 𝑦𝑦�. When we use the 
orthonormal bases defined by the unitary matrix (U) to describe vector locations, the 
first p coordinates of 𝑦𝑦� match 𝑥̅𝑥, and the rest of the coordinates are zeros. Hence, 
‖𝑦𝑦�‖2 is the same as ‖𝑥̅𝑥‖2 because the Euclidean norm is defined as the square root of 
the sum of the squared coordinates. 

 
Fig. 2. Pipeline to construct unitary weights for a convolutional neural network. (a) convolution 
between an example input image and filters. (b) our proposed way of constructing unitary 
weights of any dimensions. From the right, Lie parameters contain all the trainable parameters, 
and we only need the first k columns. Similarly, we keep the first k columns of the resulting 
unitary matrix and reshape them to match the desired dimensionality for the convolutional 
filters. In this example, k = cout and m = cin x dH x dW. This mapping will depend on the target 
applications. 
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3 Experiments 

3.1 Network Architecture 

We applied the proposed unitary weight matrices to the residual neural network 
(ResNet) for image recognition; our architecture is a narrower and shorter variant of 
the popular ResNet-50 [3]. We picked a smaller model to prevent overfitting to the 
training data because ResNet-50 was designed for the more complex ImageNet da-
taset. Our network (uResNet-44) has only 43 convolutional layers with a fully con-
nected layer at the end for projecting the high-dimensional neural signals to ten output 
classes. We documented the sizes and number of convolutional filters in Fig. 3 for 
reproducibility. Also, we studied the scalability in terms of depth with the 92 and 143-
layer networks (uResNet-92 and uResNet-143). See our source code for details2. 

3.2 Dataset 

We used the CIFAR-10 image recognition dataset created by the Canadian Institute 
for Advanced Research, and it contains 60,000 32 x 32 color images with ten labeled 
classes. The recognition task is to predict the correct class of each image in the da-
taset. CIFAR-10 is freely available for download [29]. We split the dataset into 
50,000 training and 10,000 test images with the same data argumentation scheme as 
the original ResNet paper [3]. We also tested our unitary neural network’s susceptibil-
ity to overfitting with the CIFAR-100 dataset [29]. 

3.3 Training Details 

We modified the source code found in this reference [30] for comparison against con-
ventional normalization techniques, sharing the same learning rate (0.1), learning 
schedule (divide by 10 at 100, 150, and 200 epochs), batch size (128), and training 
epochs (250). The only modification we made for the unitary neural net is that we 
added the unitary pipeline using the method described previously in Sect. 2.2 for the 
convolutional layers. We also removed all the normalization blocks in the unitary 
version. We trained the regular and the unitary networks with the stochastic gradient 
descent optimizer in PyTorch with a momentum setting of 0.9 and weight decay of 
2e-4. We measured the neural networks’ speed and memory usage by simulating each 
neural architecture one at a time on a single NVIDIA RTX3090 graphics card with 24 
GB total video memory.  

3.4 Caching of the Unitary Weights 

During training, the entire neural pathway is enabled, including the block that con-
tains the Lie parameters, Lie algebra, and Lie group (Fig. 3). Gradients are backprop-
agated from the output to update the Lie parameters. After training is complete, the 

 
2  https://github.com/h-chang/uResNet 
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best unitary weights are cached; thus, we do not need to recompute the unitary 
weights during inference.  

 

 
Fig. 3. The unitary convolutional neural network (CNN) architecture. There are two main dif-
ferences between the regular and the unitary CNN. Firstly, in unitary CNNs, we permanently 
remove the normalization blocks to speed up computation because the unitary weights already 
preserve the signal strengths across layers. Secondly, unitary CNNs have an additional Lie 
block labeled “Activated for training” on the right. The Lie block is active only during the 
training mode to learn the Lie parameters. At the end of the training mode, a set of unitary 
weights is constructed from the Lie parameters and cached. The convolutional filters will use 
these pre-recorded unitary weights during inference. The removal of normalization significantly 
improves inference speed. We enlarge one of the unit blocks to illustrate its content; each unit 
block contains three convolutional layers. Unit blocks are cascaded to create a feed-forward 
convolutional neural network. The only difference between the unit blocks is the number of 
convolutional filters, which we label as α, β, and γ in the figure. α Conv1x1 for a layer with α = 
16 means that there are 16 convolutional filters with size 3 x 3 in that layer. The rectified linear 
unit (Relu) is used as nonlinearity at locations depicted in the figure. 

4 Results and Discussion 

With our proposed unitary convolutional neural network from Sect. 3, we compare 
the performance of our proposal against popular normalization methods and summa-
rize the main results of our experiment in Fig. 4 below. By removing the network’s 
unitary pipeline (the block with Lie parameters, Lie algebra, and Lie group in Fig. 3) 
during test time, we achieved a much faster inference speed than other normalization 
methods, including the batch norm [10], group norm [31], layer norm [32], and in-
stance norm [33]. Each of these methods addresses a specific problem; therefore, the 
designer might favor one over the other depending on the application. With our uni-
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tary convolution, we offer the community another tool in the toolbox that is lightning 
fast—32% faster than the instance norm in inference. We compute the speedup by 
dividing the inference time of the unitary norm with the instance norm’s in Fig. 4(e). 
Our method shares many characteristics with the instance norm; however, instead of 
normalizing based on the neural signals’ statistics, we devise a set of unitary weights 
to ensure signals maintain their norm per Toeplitz matrix row. Compared to the in-
stance norm’s training time, our training time for the unitary network is also long due 
to the need to perform matrix exponentiation. Still, it is possible to further expedite it 
by limiting the frequency that we exponentiate (i.e., sharing the same unitary weights 
for several iterations). The result shown in Fig. 4 is measured without weight sharing 
during training; we will report further improvements in the future. 

 
Fig. 4. Performance comparison between our proposed unitary convolutional network and other 
normalization methods. Other methods include the batch norm [10], group norm [31], layer 
norm [32], and instance norm [33]. We also included the case without any normalization for 
comparison. All metrics are average measurements over four simulation runs. We used the 
residual network (ResNet) architecture with 43 convolutional layers to measure the accuracy, 
the time, and the memory benchmarks when the networks perform image recognition tasks on 
the CIFAR-10 dataset, which has ten unique classes of objects. The accuracy reports the per-
centage of time the network determines the image class correctly with one try. (a, d for training, 
inference accuracies, respectively). The training time is the time to train the network with 12.5 
million images, while the inference time reports the time to recognize 2.5 million images (b, e). 
Because we trained these networks on graphics processors, memory benchmarks measure the 
maximum video memory a network consumed during each operation mode (c, f). 

In our experiment, both unitary network and batch normalization do not calculate 
running statistics (i.e., means and variances) during inference while group, layer, and 
instance norms track running statistics in the test set. Batch normalization is the sec-
ond fastest and can potentially match the speed of the unitary network if the batch 
normalization layer is absorbed into the previous convolutional filters. However, 
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batch normalization will not perform well in applications that require small batch 
sizes or normalization per data sample such as making adjustments to the contrast of 
individual images [33]. Group, layer, and instance normalizations work on a per-
image basis; the difference between them is the number of channels that they average 
over. In our experiment, we picked a group size of eight; hence, the group normaliza-
tion needs to keep track of eight means and variances per image. Contrary to layer 
norm that only requires one mean and one variance per image, instance norm track as 
many means and variances as the number of channels, which is up to 256 in our archi-
tecture. Our unitary network maintains the L2 norm of each row in the Toeplitz ma-
trix representation per image, delivering similar effects as the instance norm but with-
out the inference speed penalty. The mapping between the filters and the unitary ma-
trix determines which dimension of the activation map that the unitary network is 
effectively normalizing. For this reason, practitioners should assign cout, cin, dH, and 
dW to m and k in Fig. 2 differently based on the target applications. 

The unitary network also uses less temporary memory (dynamic random-access 
memory or DRAM) required to backpropagate neural signals through the normaliza-
tion layers during training; more specifically, 8% less than all other normalization 
methods. Despite our advantages in inference speed and training memory, unitary 
networks’ accuracy is slightly lower in general. Unitary weights constrain the signals 
to be on the n-sphere (or k-sphere since we have k dimensions) by design and are less 
expressive than free weights. Nevertheless, our accuracy is comparable to other nor-
malizations and even surpasses the inference accuracy of layer norm. An additional 
advantage for the unitary network is apparent when we save the model parameters to 
hard disks: as we demonstrated in Fig. 2, the matrices encoding the Lie parameters 
have many zeros, which lead to better compression of the parameter files. An approx-
imation for model size saving is roughly a 15% to 50% reduction in disk space when 
working with unitary convolutional architectures. We compute the 50% reduction by 
leveraging the fact that we only need to record half of the values in a triangular Lie 
parameter matrix, assuming that the weight matrix is square. 

Our unitary neural networks are less susceptible to overfitting. Using the CIFAR-
100 dataset and the same network structure (uResNet-44), we discovered that unitary 
networks have a smaller gap between the training loss (1.44) and the testing loss 
(1.62). While Regular neural networks with batch normalization have a larger gap 
between the training loss (0.0699) and the testing loss (1.56). Furthermore, our uni-
tary networks can be deepened to 100+ layers without the costly normalization 
blocks: the 92-layer version (uResNet-92) achieves 99.6% and 90.4% in training and 
testing accuracies, respectively, on CIFAR-10. Similarly, the 143-layer version 
(uResNet-143) delivers 99.7% and 90.7% in training and testing accuracies. 

5 Conclusion 

We report here the first instance of using unitary matrices constructed according to 
the Lie algebra for rectangular convolutional filters, which eliminates the exploding 
and vanishing activations in deep convolutional neural networks. With clear geomet-
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rical interpretations, our theory is a breakthrough based on rigorous, exact construc-
tion of the unitary weights applicable to all types of neural networks including but not 
limited to convolution. The key innovation is that we found a way to ensure signal 
unitarity with unitary weight matrices of any shapes and dimensions such that the 
neural signals will propagate across the network without amplification or degradation. 
Moreover, unlike traditional normalization, our approach has the least impact on in-
ference time, achieving a 32% speedup in recognizing color images when compared 
to instance normalization. The effective normalization dimension is adjustable in our 
framework through the mapping between the convolutional filters and the unitary 
matrices. Our proposal also reduces hard disk storage by up to 50% depending on the 
neural architectures. The presented framework establishes unitary matrices as a design 
principle for building fundamentally stable neural systems. 
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