
Deep Unitary Convolutional Neural Networks

Hao-Yuan Chang1[0000-0003-2864-7538] (✉) and Kang L. Wang1[0000-0002-9363-1279]

1 University of California, Los Angeles, Los Angeles CA 90095, USA
{h.chang,klwang}@ucla.edu

Abstract. Deep neural networks can suffer from the exploding and vanishing
activation problem, in which the networks fail to train properly because the neu-
ral signals either amplify or attenuate across the layers and become saturated.
While other normalization methods aim to fix the stated problem, most of them
have inference speed penalties in those applications that require running aver-
ages of the neural activations. Here we extend the unitary framework based on
Lie algebra to neural networks of any dimensionalities, overcoming the major
constraints of the prior arts that limit synaptic weights to be square matrices.
Our proposed unitary convolutional neural networks deliver up to 32% faster
inference speeds and up to 50% reduction in permanent hard disk space while
maintaining competitive prediction accuracy.

Keywords: Neural network, Lie algebra, Image recognition.

1 Introduction

1.1 Problem Statement

Recent advancements in semiconductor technology [1] have enabled neural networks
to grow significantly deeper. This abundant computing power enabled computer sci-
entists to drastically increase the depths of neural networks from the 7-layer LeNet
network [2] to the 152-layer contest-wining ResNet architecture [3]. More layers
usually lead to higher recognition accuracy because neural networks make decisions
by drawing decision boundaries in the high dimensional space [4]. A decision bound-
ary is a demarcation in the feature space that separates the different output classes.
The more layers the network has, the more precise these boundaries can be in the high
dimensional feature space; thus, they can achieve higher recognition rates [5]. How-
ever, deep networks often fail to train properly due to poor convergence.

 There are many reasons why a deep network fails to train [6], and the problem that
our proposal fixes is the instability of the forward pass, in which neural activations
either saturate to infinity or diminish to zero. More precisely, depending on the eigen-
values of the synaptic weight matrices [7], neural signals may grow or attenuate as
they travel across neural layers when unbounded activation functions such as the rec-
tified linear units (Relu) are used [8]. The Relu is the most popular nonlinearity due to
its computational efficiency. Suppose the activation is extremely large or small; in

2

this case, the weight update will scale proportionally during training, resulting in ei-
ther a massive or a tiny step.

In short, vanishing and exploding activations occur when the neural signals are not
normalized, and the backpropagated gradients either saturate or die out during net-
work training [9]. Although other schemes such as batch normalization [10], learning
rate tuning [11], and gradient highways [3] can mitigate the issue, none of these
methods eliminate the core problem—the weight matrices have eigenvalues that are
larger or smaller than one. Furthermore, most normalization methods have inference
time penalties. In this work, we aim to devise a way to fundamentally fix the explod-
ing and vanishing activation problem without slowing down the inference speed.

1.2 Proposed Solution

Our proposed solution (Fig. 1) is to eliminate the need to normalize the neural signals
after each layer by constraining the weight matrices, W, to be unitary. Unitary matri-
ces represent rotations in the n-dimensional space1; hence, they preserve the norm
(i.e., the amplitude) of the input vector. With this unique property, unitary networks
can maintain the neural signal strengths without explicit normalization. This tech-
nique allows the designers to eliminate the networks’ normalization blocks and make
inference faster.

We aim to engineer a way to constrain the weights to be unitary. To achieve this,
we leverage the previously reported framework for constructing orthogonal matrices
in recurrent neural networks using Lie algebra [12], which we will explain briefly in
Sect. 2.1. Unlike other approximation methods, this framework guarantees strictly
unitary matrices; however, it is currently limited to square matrices. Our main contri-
bution is that we found a way (Sect. 2.2) to extend the unitary framework based on Lie
algebra to weight matrices of any shapes. By doing so, we expand the applicability of
this framework from recurrent neural networks with square weight matrices to any
neural network structures, drastically increasing its usefulness in state-of-the-art net-
work architectures.

Fig. 1. Unitary network for mitigating exploding and vanishing activations.

1 Unitary matrices can have complex values. When the matrices only contain real compo-

nents, they are called orthogonal matrices, which is a subset of unitary matrices, and our
proposal works in both cases. The eigenvalues of a unitary matrix have modulus 1.

3

1.3 Literature Review

Lie algebra is not the only way to construct unitary matrices. Researchers have ex-
plored many options to construct unitary weights for RNNs, including eigendecompo-
sition [13], Cayley transform [14], square decomposition [15], Householder reflection
[16], and optimization over Stiefel manifolds [17]. These methods decompose the
unitary matrix into smaller parameter spaces with mathematical processes that guar-
antee unitarity; however, the weight matrices in these approaches must be square. For
convolutional neural nets with rectangular weights, there are approximation tech-
niques based on least square fitting [18], singular value decomposition [19], and soft
regularization [20] due to the additional complexity of rectangular filters. These tech-
niques find the best approximates to the unitary weights, but they do not guarantee the
weight matrices to be strictly unitary. On the contrary, our approach combines the
best of the two schools—it is both strictly unitary and applicable to non-square matri-
ces. Our work is the first report of applying the unitary weights based on the Lie alge-
bra framework for a deep convolutional neural network with a comprehensive per-
formance study, aiming to make the unitary network an attractive alternative to con-
ventional normalization methods in inference-time-critical applications.

2 Unitary Neural Networks with Lie Algebra

2.1 Square Unitary Weight Matrices

In this section, we explain the mathematical framework [12] for representing the uni-
tary group with orthogonal matrices, collectively known as the Lie group [21]. Line-
arization of the Lie group about its identity generates a new set of operators; these
new operators form a Lie algebra. Lie algebra is parameterized by the Lie parameters,
which we arrange as a traceless lower triangular matrix, L. We name it Lie parameters
because it contains independent trainable parameters for the neural networks. The
representable algebra through this parameterization is only a subspace of unitary
groups, and it is sufficient for guaranteeing signal stability in deep neural networks.

The Lie parameters (L) are related to the Lie algebra (A) by the following equation:

 𝑨𝑨 = 𝑳𝑳 − 𝑳𝑳𝑇𝑇, (1)

where T corresponds to taking the matrix transpose. An essential feature of matrix A
is that it is a skew-symmetric matrix, i.e., AT = -A, because any compact metric-
preserving group, including the orthogonal group, has anti-symmetric Lie algebra
[22]. Furthermore, the following equation proves that the chosen representation for
the Lie parameters will produce an anti-symmetric Lie algebra:

 𝑨𝑨𝑇𝑇 + 𝑨𝑨 = (𝑳𝑳 − 𝑳𝑳𝑇𝑇)𝑇𝑇 + 𝑳𝑳 − 𝑳𝑳𝑇𝑇 = 0. (2)

Additionally, in the last step of our pipeline to construct unitary matrices, we expo-
nentiate the Lie algebra, A, to obtain the group representation, which will be a unitary
matrix (U):

4

 𝑼𝑼 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑨𝑨) = ∑ 𝑨𝑨𝑁𝑁/𝑁𝑁!∞
𝑁𝑁=0 . (3)

We approximate this matrix exponentiation with an 18-term Taylor series in our im-
plementation. Besides eliminating any term beyond the 18th order in Eq. (3), we effi-
ciently group the computation to avoid redundant multiplications, a standard approach
used in many matrix computation software to save time [23, 24].

Suppose the neural network has square weight matrices. In that case, we can use
the unitary matrices (U) to replace the original weights, forcing the neural signals to
maintain their norms without explicit normalization. We can train the Lie parameters
using backpropagation and automatic differentiation because all steps in the pipeline
above are algebraic functions [25, 26]. As mentioned previously, researchers have
only applied the unitary pipeline to a small recurrent neural network (RNN), which
has a single square weight matrix repeatedly applied in time [12]. Nevertheless, the
requirement for the weights to be square severely limits the usefulness of the present-
ed framework. Using the Lie algebra formalism to construct unitary weights is an
elegant method to regulate signals, and we wish to find a way to bring this concept to
deep convolutional neural nets with any non-square weight matrices.

2.2 Unitary Weight Matrices of Any Shapes and Dimensions

In the above section, the weight matrices must be square, forcing the number of neu-
rons for both the input and output of a particular layer to be identical. This require-
ment cannot be satisfied in most convolutional neural nets. Convolutional layers have
weight matrices commonly referred to as “filters.” These filters will convolute with
the input image as the following [5]:

 𝑶𝑶(𝑖𝑖, 𝑗𝑗) = (𝑰𝑰 ∗ 𝑭𝑭)(𝑖𝑖, 𝑗𝑗) = ∑ ∑ 𝑰𝑰(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛)𝑭𝑭(𝑚𝑚,𝑛𝑛)𝑛𝑛𝑚𝑚 , (4)

where O is the output activation map of this layer, I is the input image, and F is the
convolutional filer. An example of convolution is illustrated in Fig. 2(a).

Moreover, we can succinctly represent the convolution as a single dot product
through the Toeplitz matrix arrangement [27, 28]. Suppose we arrange the input im-
age as a Toeplitz matrix and flatten out the filters to a 2-dimensional weight matrix. In
that case, the convolution simplifies to a dot product between the Toeplitz matrix of
the image and the flattened filter weights. Effectively, we convert the convolution
between high-dimensional tensors to multiplications between 2-dimensional matrices.
These flattened filters are usually rectangular m x k matrices, where m ≠ k. If m
matches k, the weight matrix is square, allowing us to apply the unitary pipeline to
ensure each row of the Toeplitz matrix will maintain its norm. On the other hand,
when dealing with rectangular weights, we need to handle them with special care to
achieve the desired effect of norm preservation.

Our innovation is that we discard the excess columns in the unitary matrix when m
≠ k (i.e., when the weight matrix has unequal width vs. height); for now, we will as-
sume m > k because the other cases only require a few slight adjustments. Even
though there is no way around the fact the unitary matrices must be square, we dis-
covered that it is unnecessary to use the whole unitary matrix: we can just take the

5

first few columns that we need. We will construct the unitary matrix as a m x m matrix
(i.e., in the larger of the two dimensions). This way, we can reuse the existing pipeline
in Sect. 2.1. Our proposed pipeline is as follows. We only keep the first k columns of
the Lie parameters, setting everything else to zero. Likewise, we only take the first k
columns of the resulting unitary matrix (U), discarding the rest (Fig. 2(b)). Because
the rectangular matrix now has the correct dimensions, we multiply the input image
(in the Toeplitz form) with the unitary weight matrix. Below is a summary of our
process to construct the unitary rectangular weights in the mathematical form:

 𝑦𝑦� = 𝑾𝑾𝑥̅𝑥, (5)

where

 𝑾𝑾 = [𝑢𝑢1��� 𝑢𝑢2��� … 𝑢𝑢𝑘𝑘���] ∈ 𝑅𝑅𝑚𝑚×𝑘𝑘. (6)

𝑢𝑢1���… 𝑢𝑢𝑘𝑘��� are the first k column vectors from the unitary matrix U (Note that when m ≤
k, we still construct the unitary matrix U in the larger dimension, but W will be trans-
posed to obtain the desired dimensionality for the matrix multiplication). Lastly, the
output vector is explicitly normalized using the Euclidean metric when m > k; this
step is not required for m ≤ k:

 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓������� = � 𝑦𝑦�/‖𝑦𝑦�‖2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 > 𝑘𝑘
𝑦𝑦� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 ≤ 𝑘𝑘 , (7)

where ‖ ∙ ‖2 denotes the Euclidean norm (a.k.a., Euclidean metric or the L2 norm), a
distance measure calculated by squaring all the coordinates, summing the results, and
taking the square root.

In theory, it is possible to avoid the explicit normalization Eq. (7) completely by
one of the following two ways: by partitioning the tall rectangular weight matrix into
a vertical stack of smaller matrices that are either square or wide. Or, by exploring
alternative mappings from the various dimensions of W to m and k to ensure 𝑚𝑚 ≤ 𝑘𝑘.
Nevertheless, we took the direct normalization approach in this work for conceptual
clarity, and it is only required in a small portion of the network. Moreover, even
though it is not ideal to add normalization back to portions of our network, the unitary
weights offer other benefits over conventional normalization. Researchers have found
orthogonal weights lead to more efficient filters with fewer redundancies [20]. Our
normalization process does not add additional training parameters to keep track of the
activations’ mean and variance.

Discarding columns of unitary matrices has important geometrical meanings. A
unitary matrix represents a rotation in the n-dimensional space when m = k; addition-
ally, its columns form a complete set of orthonormal bases in the rotated coordinate
system. We have utilized the latter to paint a geometric understanding of our proce-
dure—each of the k columns is an orthonormal basis in the m-dimensional space. For
m > k, the unitary weight (W) is projecting an input row vector 𝑥̅𝑥 to a lower-
dimensional manifold spanned by the unitary matrix’s first k columns, a subset of
orthonormal bases. When we multiply the Toeplitz matrix with this unitary weight
matrix, we perform a dot product between the row vectors against each orthonormal

6

basis, measuring how much the input vector aligns with a specific basis. According to
the Pythagorean theorem, this projection will produce a shorter vector than the origi-
nal one because we dispose of those vector components associated with the unitary
matrix’s discarded columns. As a result, we need to normalize the output to recuper-
ate the signals lost in missing dimensions.

On the contrary, for m < k, each row of the weight matrix is an orthonormal basis.
In that case, we are mixing the orthonormal bases according to the ratio prescribed by
the input row vector 𝑥̅𝑥, resulting in a higher-dimensional output vector 𝑦𝑦�. This dimen-
sionality expansion happens when we multiply the weight matrix with a row vector
(𝑥̅𝑥) of the Toeplitz matrix that encodes the input image. Effectively, we are projecting
a vector to the larger dimensions through the wide unitary weight (W), and this opera-
tion preserves the Euclidean norm of the input vector 𝑥̅𝑥. To prove this property math-
ematically, we simply compare the norm of 𝑥̅𝑥 against the norm of 𝑦𝑦�. When we use the
orthonormal bases defined by the unitary matrix (U) to describe vector locations, the
first p coordinates of 𝑦𝑦� match 𝑥̅𝑥, and the rest of the coordinates are zeros. Hence,
‖𝑦𝑦�‖2 is the same as ‖𝑥̅𝑥‖2 because the Euclidean norm is defined as the square root of
the sum of the squared coordinates.

Fig. 2. Pipeline to construct unitary weights for a convolutional neural network. (a) convolution
between an example input image and filters. (b) our proposed way of constructing unitary
weights of any dimensions. From the right, Lie parameters contain all the trainable parameters,
and we only need the first k columns. Similarly, we keep the first k columns of the resulting
unitary matrix and reshape them to match the desired dimensionality for the convolutional
filters. In this example, k = cout and m = cin x dH x dW. This mapping will depend on the target
applications.

7

3 Experiments

3.1 Network Architecture

We applied the proposed unitary weight matrices to the residual neural network
(ResNet) for image recognition; our architecture is a narrower and shorter variant of
the popular ResNet-50 [3]. We picked a smaller model to prevent overfitting to the
training data because ResNet-50 was designed for the more complex ImageNet da-
taset. Our network (uResNet-44) has only 43 convolutional layers with a fully con-
nected layer at the end for projecting the high-dimensional neural signals to ten output
classes. We documented the sizes and number of convolutional filters in Fig. 3 for
reproducibility. Also, we studied the scalability in terms of depth with the 92 and 143-
layer networks (uResNet-92 and uResNet-143). See our source code for details2.

3.2 Dataset

We used the CIFAR-10 image recognition dataset created by the Canadian Institute
for Advanced Research, and it contains 60,000 32 x 32 color images with ten labeled
classes. The recognition task is to predict the correct class of each image in the da-
taset. CIFAR-10 is freely available for download [29]. We split the dataset into
50,000 training and 10,000 test images with the same data argumentation scheme as
the original ResNet paper [3]. We also tested our unitary neural network’s susceptibil-
ity to overfitting with the CIFAR-100 dataset [29].

3.3 Training Details

We modified the source code found in this reference [30] for comparison against con-
ventional normalization techniques, sharing the same learning rate (0.1), learning
schedule (divide by 10 at 100, 150, and 200 epochs), batch size (128), and training
epochs (250). The only modification we made for the unitary neural net is that we
added the unitary pipeline using the method described previously in Sect. 2.2 for the
convolutional layers. We also removed all the normalization blocks in the unitary
version. We trained the regular and the unitary networks with the stochastic gradient
descent optimizer in PyTorch with a momentum setting of 0.9 and weight decay of
2e-4. We measured the neural networks’ speed and memory usage by simulating each
neural architecture one at a time on a single NVIDIA RTX3090 graphics card with 24
GB total video memory.

3.4 Caching of the Unitary Weights

During training, the entire neural pathway is enabled, including the block that con-
tains the Lie parameters, Lie algebra, and Lie group (Fig. 3). Gradients are backprop-
agated from the output to update the Lie parameters. After training is complete, the

2 https://github.com/h-chang/uResNet

8

best unitary weights are cached; thus, we do not need to recompute the unitary
weights during inference.

Fig. 3. The unitary convolutional neural network (CNN) architecture. There are two main dif-
ferences between the regular and the unitary CNN. Firstly, in unitary CNNs, we permanently
remove the normalization blocks to speed up computation because the unitary weights already
preserve the signal strengths across layers. Secondly, unitary CNNs have an additional Lie
block labeled “Activated for training” on the right. The Lie block is active only during the
training mode to learn the Lie parameters. At the end of the training mode, a set of unitary
weights is constructed from the Lie parameters and cached. The convolutional filters will use
these pre-recorded unitary weights during inference. The removal of normalization significantly
improves inference speed. We enlarge one of the unit blocks to illustrate its content; each unit
block contains three convolutional layers. Unit blocks are cascaded to create a feed-forward
convolutional neural network. The only difference between the unit blocks is the number of
convolutional filters, which we label as α, β, and γ in the figure. α Conv1x1 for a layer with α =
16 means that there are 16 convolutional filters with size 3 x 3 in that layer. The rectified linear
unit (Relu) is used as nonlinearity at locations depicted in the figure.

4 Results and Discussion

With our proposed unitary convolutional neural network from Sect. 3, we compare
the performance of our proposal against popular normalization methods and summa-
rize the main results of our experiment in Fig. 4 below. By removing the network’s
unitary pipeline (the block with Lie parameters, Lie algebra, and Lie group in Fig. 3)
during test time, we achieved a much faster inference speed than other normalization
methods, including the batch norm [10], group norm [31], layer norm [32], and in-
stance norm [33]. Each of these methods addresses a specific problem; therefore, the
designer might favor one over the other depending on the application. With our uni-

9

tary convolution, we offer the community another tool in the toolbox that is lightning
fast—32% faster than the instance norm in inference. We compute the speedup by
dividing the inference time of the unitary norm with the instance norm’s in Fig. 4(e).
Our method shares many characteristics with the instance norm; however, instead of
normalizing based on the neural signals’ statistics, we devise a set of unitary weights
to ensure signals maintain their norm per Toeplitz matrix row. Compared to the in-
stance norm’s training time, our training time for the unitary network is also long due
to the need to perform matrix exponentiation. Still, it is possible to further expedite it
by limiting the frequency that we exponentiate (i.e., sharing the same unitary weights
for several iterations). The result shown in Fig. 4 is measured without weight sharing
during training; we will report further improvements in the future.

Fig. 4. Performance comparison between our proposed unitary convolutional network and other
normalization methods. Other methods include the batch norm [10], group norm [31], layer
norm [32], and instance norm [33]. We also included the case without any normalization for
comparison. All metrics are average measurements over four simulation runs. We used the
residual network (ResNet) architecture with 43 convolutional layers to measure the accuracy,
the time, and the memory benchmarks when the networks perform image recognition tasks on
the CIFAR-10 dataset, which has ten unique classes of objects. The accuracy reports the per-
centage of time the network determines the image class correctly with one try. (a, d for training,
inference accuracies, respectively). The training time is the time to train the network with 12.5
million images, while the inference time reports the time to recognize 2.5 million images (b, e).
Because we trained these networks on graphics processors, memory benchmarks measure the
maximum video memory a network consumed during each operation mode (c, f).

In our experiment, both unitary network and batch normalization do not calculate
running statistics (i.e., means and variances) during inference while group, layer, and
instance norms track running statistics in the test set. Batch normalization is the sec-
ond fastest and can potentially match the speed of the unitary network if the batch
normalization layer is absorbed into the previous convolutional filters. However,

10

batch normalization will not perform well in applications that require small batch
sizes or normalization per data sample such as making adjustments to the contrast of
individual images [33]. Group, layer, and instance normalizations work on a per-
image basis; the difference between them is the number of channels that they average
over. In our experiment, we picked a group size of eight; hence, the group normaliza-
tion needs to keep track of eight means and variances per image. Contrary to layer
norm that only requires one mean and one variance per image, instance norm track as
many means and variances as the number of channels, which is up to 256 in our archi-
tecture. Our unitary network maintains the L2 norm of each row in the Toeplitz ma-
trix representation per image, delivering similar effects as the instance norm but with-
out the inference speed penalty. The mapping between the filters and the unitary ma-
trix determines which dimension of the activation map that the unitary network is
effectively normalizing. For this reason, practitioners should assign cout, cin, dH, and
dW to m and k in Fig. 2 differently based on the target applications.

The unitary network also uses less temporary memory (dynamic random-access
memory or DRAM) required to backpropagate neural signals through the normaliza-
tion layers during training; more specifically, 8% less than all other normalization
methods. Despite our advantages in inference speed and training memory, unitary
networks’ accuracy is slightly lower in general. Unitary weights constrain the signals
to be on the n-sphere (or k-sphere since we have k dimensions) by design and are less
expressive than free weights. Nevertheless, our accuracy is comparable to other nor-
malizations and even surpasses the inference accuracy of layer norm. An additional
advantage for the unitary network is apparent when we save the model parameters to
hard disks: as we demonstrated in Fig. 2, the matrices encoding the Lie parameters
have many zeros, which lead to better compression of the parameter files. An approx-
imation for model size saving is roughly a 15% to 50% reduction in disk space when
working with unitary convolutional architectures. We compute the 50% reduction by
leveraging the fact that we only need to record half of the values in a triangular Lie
parameter matrix, assuming that the weight matrix is square.

Our unitary neural networks are less susceptible to overfitting. Using the CIFAR-
100 dataset and the same network structure (uResNet-44), we discovered that unitary
networks have a smaller gap between the training loss (1.44) and the testing loss
(1.62). While Regular neural networks with batch normalization have a larger gap
between the training loss (0.0699) and the testing loss (1.56). Furthermore, our uni-
tary networks can be deepened to 100+ layers without the costly normalization
blocks: the 92-layer version (uResNet-92) achieves 99.6% and 90.4% in training and
testing accuracies, respectively, on CIFAR-10. Similarly, the 143-layer version
(uResNet-143) delivers 99.7% and 90.7% in training and testing accuracies.

5 Conclusion

We report here the first instance of using unitary matrices constructed according to
the Lie algebra for rectangular convolutional filters, which eliminates the exploding
and vanishing activations in deep convolutional neural networks. With clear geomet-

11

rical interpretations, our theory is a breakthrough based on rigorous, exact construc-
tion of the unitary weights applicable to all types of neural networks including but not
limited to convolution. The key innovation is that we found a way to ensure signal
unitarity with unitary weight matrices of any shapes and dimensions such that the
neural signals will propagate across the network without amplification or degradation.
Moreover, unlike traditional normalization, our approach has the least impact on in-
ference time, achieving a 32% speedup in recognizing color images when compared
to instance normalization. The effective normalization dimension is adjustable in our
framework through the mapping between the convolutional filters and the unitary
matrices. Our proposal also reduces hard disk storage by up to 50% depending on the
neural architectures. The presented framework establishes unitary matrices as a design
principle for building fundamentally stable neural systems.

References

1. Mollick, E.: Establishing Moore’s Law. IEEE Annals of the History of Computing. 28,
62–75 (2006). https://doi.org/10.1109/MAHC.2006.45

2. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel,
L.D.: Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computa-
tion. 1, 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–
778 (2015)

4. Montufar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the Number of Linear Regions of
Deep Neural Networks. Advances in Neural Information Processing Systems. 27, (2014)

5. Goodfellow, I.: Deep Learning. MIT Press (2016)
6. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training Recurrent Neural Net-

works. arXiv:1211.5063 [cs]. (2013)
7. Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Problems.

34, 014004 (2017). https://doi.org/10.1088/1361-6420/aa9a90
8. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In:

Proceedings of the 27th International Conference on International Conference on Machine
Learning. pp. 807–814. Omnipress, Madison, WI, USA (2010)

9. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient de-
scent is difficult. IEEE Transactions on Neural Networks. 5, 157–166 (1994).

10. Sergey Ioffe, Christian Szegedy: Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Con-
ference on Machine Learning. pp. 448–456. PMLR (2015)

11. Wei, J.: Forget the Learning Rate, Decay Loss. IJMLC. 9, 267–272 (2019).
12. Lezcano-Casado, M., Martínez-Rubio, D.: Cheap Orthogonal Constraints in Neural Net-

works: A Simple Parametrization of the Orthogonal and Unitary Group. In: Proceedings of
the 36th International Conference on Machine Learning. pp. 3794–3803. PMLR (2019)

13. Arjovsky, M., Shah, A., Bengio, Y.: Unitary Evolution Recurrent Neural Networks. In: In-
ternational Conference on Machine Learning. pp. 1120–1128. PMLR (2016)

14. Helfrich, K., Willmott, D., Ye, Q.: Orthogonal Recurrent Neural Networks with Scaled
Cayley Transform. In: International Conference on Machine Learning. pp. 1969–1978.
PMLR (2018)

12

15. Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić,
M.: Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs.
In: International Conference on Machine Learning. pp. 1733–1741. PMLR (2017)

16. Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient Orthogonal Parametrisation
of Recurrent Neural Networks Using Householder Reflections. In: International Confer-
ence on Machine Learning. pp. 2401–2409. PMLR (2017)

17. Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-Capacity Unitary Recur-
rent Neural Networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., and Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 29. pp. 4880–4888.
Curran Associates, Inc. (2016)

18. Huang, L., Liu, X., Lang, B., Yu, A.W., Wang, Y., Li, B.: Orthogonal Weight Normaliza-
tion: Solution to Optimization over Multiple Dependent Stiefel Manifolds in Deep Neural
Networks. Presented at the 32nd AAAI Conference on Artificial Intelligence (2018)

19. Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent
networks with long term dependencies. In: International Conference on Machine Learning.
pp. 3570–3578. PMLR (2017)

20. Wang, J., Chen, Y., Chakraborty, R., Yu, S.X.: Orthogonal Convolutional Neural Net-
works. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 11502–11512. IEEE, Seattle, WA, USA (2020)

21. Gilmore, R., Hermann, R.: Lie Groups, Lie Algebras, and Some of Their Applications.
John Wiley & Sons, New York (1974)

22. Gilmore, R.: Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engi-
neers and Chemists. Cambridge University Press, New York (2008)

23. Bader, P., Blanes, S., Casas, F.: Computing the Matrix Exponential with an Optimized
Taylor Polynomial Approximation. Mathematics. 7, 1174 (2019).

24. Torch Contributors: torch.matrix_exp — PyTorch 1.7.0 documentation,
https://pytorch.org/docs/stable/generated/torch.matrix_exp.html

25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521, 436–444 (2015).
26. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,

A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. NIPS 2017 Workshop Au-
todiff Submission. (2017). https://openreview.net/pdf?id=BJJsrmfCZ

27. Chen, Y., Xie, Y., Song, L., Chen, F., Tang, T.: A Survey of Accelerator Architectures for
Deep Neural Networks. Engineering. 6, 264–274 (2020).

28. Araujo, A., Negrevergne, B., Chevaleyre, Y., Atif, J.: On Lipschitz Regularization of Con-
volutional Layers using Toeplitz Matrix Theory. In: 35th AAAI Conference on Artificial
Intelligence. , Vancouver, Canada (2021)

29. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. University of
Toronto (2009)

30. Chiley, V., Sharapov, I., Kosson, A., Koster, U., Reece, R., Samaniego de la Fuente, S.,
Subbiah, V., James, M.: Online Normalization for Training Neural Networks. In: Advanc-
es in Neural Information Processing Systems 32. pp. 8433–8443. Curran Associates, Inc.
(2019)

31. Wu, Y., He, K.: Group Normalization. Int J Comput Vis. 128, 742–755 (2020).
32. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer Normalization. arXiv:1607.06450 [cs, stat].

(2016)
33. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing Ingredient

for Fast Stylization. arXiv:1607.08022 [cs]. (2017)

	1 Introduction
	1.1 Problem Statement
	1.2 Proposed Solution
	1.3 Literature Review

	2 Unitary Neural Networks with Lie Algebra
	2.1 Square Unitary Weight Matrices
	2.2 Unitary Weight Matrices of Any Shapes and Dimensions

	3 Experiments
	3.1 Network Architecture
	3.2 Dataset
	3.3 Training Details
	3.4 Caching of the Unitary Weights

	4 Results and Discussion
	5 Conclusion
	References

