
Bayesian optimization for backpropagation in Monte-Carlo tree

search

Yueqin Li
yueqin li@mymail.sutd.edu.sg

Nengli Lim
nengli lim@sutd.edu.sg

January 28, 2020

Abstract

In large domains, Monte-Carlo tree search (MCTS) is re-
quired to estimate the values of the states as efficiently
and accurately as possible. However, the standard up-
date rule in backpropagation assumes a stationary dis-
tribution for the returns, and particularly in min-max
trees, convergence to the true value can be slow be-
cause of averaging. We present two methods, Softmax
MCTS and Monotone MCTS, which generalize previous
attempts to improve upon the backpropagation strat-
egy. We demonstrate that both methods reduce to
finding optimal monotone functions, which we do so
by performing Bayesian optimization with a Gaussian
process (GP) prior. We conduct experiments on com-
puter Go, where the returns are given by a deep value
neural network, and show that our proposed framework
outperforms previous methods.

1 Introduction

Monte-Carlo tree search (MCTS) (Coulom, 2006;
Browne et al., 2012), or more specifically its most com-
mon variant UCT (Upper Confidence Trees; see Section
2) (Kocsis and Svepesvári, 2006), has seen great suc-
cesses recently and has propelled, especially in combi-
nation with deep neural networks, the performance of
computer Go past professional levels (Silver et al., 2016,
2017). The robust nature of MCTS, versus a traditional
approach like depth-first search in alpha-beta pruning,
has not only enabled a leap-frog in performance in com-

puter Go, but has also led to its utilization in other
games where it is difficult to evaluate states, as well as
in other domains (Browne et al., 2012).

However, MCTS is known to suffer from slow conver-
gence in certain situations (Coquelin and Munos, 2007),
in particular when the precise calculation of a narrow
tactical sequence is critical for success. For example in
boardgames, (Ramanujan et al., 2010) defines a level-k
search trap for player p after a move m as a state of the
game where the opponent of p has a guaranteed k-move
winning strategy. More relevantly, they show through a
series of experiments that MCTS performs poorly even
in shallow traps, in contrast to regular minimax search;
see also (Ramanujan et al., 2011; Ramanujan and Sel-
man, 2011).

To better understand this phenomenon, we take a closer
look at the update rule

Qn ← Qn−1 +
Rn−1 −Qn−1

n
(1)

which is performed during the backpropagation phase of
MCTS. Here, the current estimate of the value of a state
is taken to be the simple average of all previous returns
accrued upon visiting that state. Proceeding, we discuss
various methods which seek to improve backpropagation
by challenging the basic assumptions implied by (1):

(i) Value estimation by averaging returns:
Instead of updating a parent node’s value with
that of its MAX (MIN) child as in minimax search,
backpropagation in MCTS averages all returns to
obtain a good signal in noisy environments (this is

1

ar
X

iv
:2

00
1.

09
32

5v
1

 [
cs

.L
G

]
 2

5
Ja

n
20

20

equivalent to setting the value of the parent node
to be the weighted average (by visits) of its chil-
dren’s values).

(ii) Stationarity:
The returns are assumed to follow a stationary dis-
tribution.

With regard to the first point, one of the first published
works on MCTS (Coulom, 2006) posits that taking the
value of the best child leads to an overestimation (cf.
(Blumenthal and Cohen, 1968)) of the value of a MAX
node, whereas taking the weighted average (by num-
ber of visits) of the children’s values leads to an under-
estimation. The paper proposes using an interpolated
value, with weights dependent on the current number
of visits of the best child:

Qparent = (Nbest
Nbest +M

)Qbest + (1 − Nbest
Nbest +M

)Qmean.
(2)

Here, Nbest and Qbest respectively denote the number of
visits and backed-up value of the best child, and M is a
variable which slowly increases after some fixed thresh-
old to dampen the increasing weight.

Similarly in (Khandelwal et al., 2016), a backup strategy
MaxMCTS(λ) is proposed where an eligibility parameter
λ can be adjusted to strike a balance between taking the
weighted average of the children’s values (λ = 1) and
taking the value of the best child (λ = 0). In addition,
they show that the optimal value for λ depends on the
context; e.g. in Grid World experiments, it is demon-
strated that the more obstacles that are present in the
grid, the more λ has to be lowered in order to maintain
good performance. This corresponds with the findings
in (Ramanujan et al., 2010; Ramanujan and Selman,
2011; Ramanujan et al., 2011), in that standard MCTS
may perform well in environments, for example in the
opening stages of Go, where global strategy is more im-
portant, but its performance tends to degrade in highly
tactical situations; see also (Baier and Winnands, 2018).

Moving on to the second premise, while stationarity
may be a viable assumption in multi-armed bandit prob-
lems, and although MCTS can be viewed as a sequential
multi-armed bandit problem, it is evident that the later

simulations explore a larger tree than the earlier simula-
tions. This implies that the sequence of rewards follows
a non-stationary distribution, where the returns from
later simulations are more informative than the earlier
ones, and hence it would be natural to weight them
more heavily.

One way of doing this is to simply employ the exponen-
tial recency-weighted average update (ERWA) (Sutton
and Barto, 2018) where (1) is replaced by

Qn ← Qn−1 + α (r(n) −Qn−1) , α ∈ (0,1]; (3)

see also (Hashimoto et al., 2011) where they employ a
similar backup strategy.

A more sophisticated method called feedback adjust-
ment policy is explored in (Xie and Liu, 2009), where
here they test four different weight profiles of vary-
ing shapes. The following figure provides an illustration.

Figure 1: Graph depicting the weight increase of four
profiles in feedback adjustment policy; GAX: linear
increase on a uniform partition; GAY : exponential in-
crease on a uniform partition; GBX: linear increase on
a partition with exponentially increasing widths; GBY :
exponential increase on a partition with exponentially
increasing widths.

Experiments on 9x9 Go show that GBY gives the high-
est winning rate over original MCTS. Just as impor-
tantly, they show that in spite of the fact that the func-
tions all monotonically weight the later simulations more
heavily, the differences in their particular shapes have a

2

big impact on performance; GBX was found to provide
no significant advantage over standard MCTS, in con-
trast to a 26.6% boost when using GBY (Xie and Liu,
2009).

Despite differences in these various methods, we can
summarize the overarching principles they have in com-
mon as follows:

(i) the best child should be weighted more heavily as
the number of simulations increase;

(ii) later simulations should be weighted more strongly
than earlier ones.

Taking this into account, in this paper we propose
Monotone MCTS and Softmax MCTS, two backpropa-
gation strategies which aim to generalize and improve
upon the previous methods. We first represent the
weights as a function of the number of visits of the node
in question, and naturally constrain it to be a monotone
function. We then propose to use black-box Bayesian
optimization to find these optimal monotone functions.

The rest of the paper is structured as follows. In Sec-
tion 2, we give a brief review of MCTS and Bayesian
optimization using a Gaussian process prior. In Sec-
tion 3, we go into the details of Monontone MCTS and
Softmax MCTS. We show the effectiveness of our ap-
proach in experiments on 9x9 and 19x19 Go in Section
4. Finally, we conclude in the last section with some
direction on future work.

2 Preliminaries

2.1 Monte-Carlo tree search

In comparison to depth-first search in alpha-beta prun-
ing, MCTS uses best-first search to gather information
for planning the next action. This is important par-
ticularly in computer Go where the branching factor is
large, and the tree is best explored asymmetrically to
strike a balance between searching deep sequences in
tactical situations and searching wide options in factor-
ing in strategic considerations. This also allows it to

be an anytime algorithm, in that terminating the search
prematurely can still yield acceptable results.

MCTS consists of the following four steps:

(i) Selection: Starting from the root node, the search
process descends down the tree by successively se-
lecting child nodes according to the tree policy. In
particular, if Upper Confidence Bound 1 (UCB1)

arg max
a

Qa +C
√

lnNparent

Na + 1
(4)

is used as the tree policy, then this variant of
MCTS is called UCT (Kocsis and Svepesvári,
2006). More recently, PUCT (Silver et al., 2016;
Auger et al., 2013)

arg max
a

Qa +C
√
Nparent

Na + 1
(5)

has been gaining popularity. Here, Qa and Na
denote the mean and visits respectively of child a,
and C is a constant that can be tuned to balance
exploration vs exploitation.

(ii) Expansion: When the simulation phase reaches a
leaf node, children of the leaf node are added to
the tree, and one of them is selected by the tree
policy.

(iii) Simulation: One (or multiple) random playout is
performed until a terminal node is reached. More
recently, simulation can be augmented or even re-
placed by a suitable evaluation function such as a
neural network.

(iv) Back-propagation: The result of the playout is
computed and (1) is used to update each node
visited in the selection phase.

Averaging the results in each node is essential in noisy
environments and when it is critical not to back up val-
ues in a manner such that outliers affect the algorithm
adversely. However, it can be slow to converge to the
optimal value in min-max trees, particularly in nodes
where the siblings of an optimal child node are all lower
in value (Fu, 2017).

3

2.2 Bayesian optimization with a Gaus-
sian process prior

Given an index set T , {Xt; t ∈ T} is a Gaussian pro-
cess if for any finite set of indices {t1, ..., tn} of T ,
(Xt1 , ...,Xtn) is a multivariate normal random vari-
able. By specifying a mean function µ ∶ Rd → R
and a symmetric, positive semi-definite kernel function
k ∶ Rd × Rd → R, one can uniquely define a Gaussian
process by setting

(Xt1 , ...,Xtn) ∼ N([µ(x1), . . . , µ(xn)]T ,K)

for any finite subset {t1, ..., tn} of T . Here, the covari-
ance function K refers to

K =
⎡⎢⎢⎢⎢⎢⎣

k(x1, x1) ⋯ k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn)

⎤⎥⎥⎥⎥⎥⎦
.

In addition, we assume that the model f is perturbed
with noise,

y = f(x) + ε,

where ε ∼ N(0, τ2), and is assumed to be independent
between samples.

In many machine learning problems, the objective func-
tion f to optimize is a black-box function which does
not have an analytic expression, or may have one that is
too costly to compute. Hence, a Gaussian processes are
used as surrogate models to approximate the true func-
tion as they yield closed-form solutions. For example, if
we stipulate that f(⋅) ∼ N(0, k), then given a history
of input-observation pairs (x(1), t(1)) , . . . , (x(n), t(n)),

and a new input point x(n+1), we can predict y(n+1) by
computing the posterior distribution

p (y(n+1) ∣ y(1) = t(1), . . . , y(n) = t(n)) ,

which is Gaussian with mean µ and variance σ2 given
by the formulas

µ = rT (Kn)−1tn, (6)

σ2 = c − rT (Kn)−1r. (7)

Here, we denote

r = [k (x(1), x(n+1)) , . . . , k (x(n), x(n+1))]T ,
c = k (x(n+1), x(n+1)) + τ2,

tn = [t(1), . . . , t(n)]
T
,

and Kn is the covariance matrix corresponding the first
n inputs. For more information on Gaussian processes
for machine learning, we refer the reader to (Williams
and Rasmussen, 2006).

Another reason for Bayesian optimization becomes ap-
parent when finding the optimal value of f is costly, for
example in high-dimensional problems where performing
a grid search to find the optimal value is prohibitive, eg.
hyper-parameter tuning in deep learning models.

In such cases, an acquisition function is selected to guide
sampling to areas where one will have an increased prob-
ability of finding the optimum. Two common examples
are Expected Improvement(EI)

A(x, f∗) = E [max{fx − f∗,0}]
= σx [γxΦ(γx) + φ(γx)] ,

γx =
µx − f∗
σX

, fx ∼ N(µx, σ2
x),

where f∗ denotes the maximum value of f found so far,
and Upper Confidence Bound (UCB)

A(x) = µx + κσx.

In both examples, µx and σx are obtained from (6), and
there is a trade-off between exploration and exploitation
in the selection of the next point.

For greater efficiency, we use Spearmint (Snoek et al.,
2012), which allows the optimization procedure to be
run in parallel on multiple cores. Spearmint adopts the
Matérn 5

2
kernel

KM52(x, y)

= c(1 +
√

5 ∥x − y∥2 + 5

3
∥x − y∥2) e−

√

5∥x−y∥2

for the Gaussian process prior, and chooses the next
point based on the expected acquisition function under

4

all possible outcomes of the pending evaluations. It
was shown to be effective for many algorithms including
latent Dirichlet allocation and hyper-parameter tuning
in convolutional neural networks (Snoek et al., 2012).

In the context of computer Go, Bayesian optimization
with a Gaussian process prior has also previously been
used in (Chen et al., 2018). With regard to MCTS,
they perform optimization over the UCT exploration
constant and the mixing ratio between fast rollouts and
neural network evaluations.

3 Methods

To find optimal backpropagation strategies, we first pa-
rameterize a family of smooth monotone functions, then
perform Bayesian optimization with a Gaussian process
prior as reviewed in the previous section. To describe
this family of functions, we invoke the following lemma.

Lemma 3.1. w ∶ [a, b] → R is continuously differen-
tiable and strictly monotonic if and only if there exists
a continuous function p ∶ [a, b] → R such that

w(t) = w(a) + ∫
t

a
ep(s) ds. (8)

Proof. By the mean-value theorem, w′(t) > 0 for all
t ∈ (a, b). Thus we have

w(t) = w(a) + ∫
t

a
w′(s)ds

= w(a) + ∫
t

a
elogw′(s) ds.

∎

Finding the optimal monotone function, even when re-
stricted to continuously differentiable ones, is a func-
tional Bayesian optimization (Vien et al., 2018) prob-
lem as the optimization is taking place over an infinite
dimensional Hilbert space of functions. However, for
practical reasons, we instead restrict the class of func-
tions we are optimizing over to be

W = {w ∣ w(t) = w(0) + ∫
t

0
ep(s) ds, p ∈ P} ,

where

P = {p ∣ p(s) =
m−1

∑
i=0

1[i∆,(i+1)∆)(s)p̃i(s)} ,

p̃i(s) ∶= p (i∆) + (s
∆
− i) (p ((i + 1)∆) − p (i∆)) ,

is the m-dimensional space of functions obtained
from linearly interpolating between the m points
(p(0), p (∆) , . . . , p(N)) which are uniformly separated
by an interval ∆ = N

m−1
, and N denotes the number of

simulations.

3.1 Monotone MCTS

The first backpropagation strategy we propose is Mono-
tone MCTS. We first run the optimization proce-
dure, with respect to win-rate, over m parameters
{p(0), p (∆) , . . . , p(N)}. Each set of parameters yields
a continuous function p ∈ P by interpolation and a
monotone weight function w using (8) with w(0) set
to 1. Upon choosing the optimal set of parameters, the
update rule is then modified to be

Qn ←
w(0)
S(n)r(0) +

w(1)
S(n)r(1) +⋯ + w(n)

S(n) r(n), (9)

where we denote S(n) ∶= ∑nt=0w(t).

Despite being a subset of all possible monotone func-
tions, we considerW to be sufficiently rich as it contains
all increasing linear functions (starting at 1)

(c, c, . . . , c) Ô⇒ w(t) = 1 + ect,

all exponential functions

(log(ra), log(ra) + r∆, log(ra) + 2r∆, . . .)
Ô⇒ w(t) = (1 − a) + aert,

as well as their linear combinations and other monotone
functions such as those in (Xie and Liu, 2009). As an
example, the following simple Proposition shows how
to convert between ERWA with parameter α and our
formulation.

Proposition 3.2. ERWA with parameter α < 1 can
be obtained by setting p(s) = (logλ)s + log (α logλ),
where λ ∶= 1

1−α
.

5

Proof. We can expand (3) to obtain

Qn = (1 − α)n r(0) + α(1 − α)n−1 r(1) + ⋯ + αr(n).

To obtain the weights w, we now simply compare coef-
ficients with (9) to derive

w(t) = α(1 − α)−t

= α + ∫
t

0
e(logλ)s+log(α logλ) ds.

∎
3.2 Softmax MCTS

For our second backpropagation strategy, we draw in-
spiration from the softmax distribution

p(x1, . . . , xd)i =
ewxi

∑dj=1 ewxj

,

which converges as w →∞ to ek = (0, . . . ,1, . . .0), with
1 in the kth position, when xk is the maximum of {xi}.
We develop a new robust method, Softmax MCTS, for
interpolating between the theoretical minimax value of
the node and the original averaged value in standard
MCTS as follows.

Let Qj and Nj respectively denote the mean and num-
ber of visits of the jth child. In Softmax MCTS, we
define the backpropagation update after every simula-
tion for every parent node as

Qparent ←
∑dj=1 αjQj
∑dj=1 αj

,

where

αj = Nj eQjw(Nparent).

Here, w is a monotonically increasing function of the
number of visits of the parent node, which will be op-
timized in the same manner as given in the previous
subsection, with the difference that now w(0) is set to
0. In early stages when w is close to 0, wj is approxi-
mately Nj , which means that

Qparent ≈
∑dj=1NjQj
∑dj=1Nj

.

This is equivalent to the weighted-average update rule
of standard MCTS. As w increases with the number of
visits, the weights will gradually favour the child with
the maximum mean (minimum if the parent is a MIN
node).

We believe that this is more robust than the method
given in (Coulom, 2006) as at any given time the in-
terpolation is taken between the soft maximum and the
averaged value, rather than between the averaged value
and the hard maximum which is volatile to outliers in
the returns.

Another noteworthy point is that in our method, as
well as in (Coulom, 2006) and (Khandelwal et al.,
2016), the best performance comes from an update
rule which invariably underestimates the max function,
which leads us to hypothesize that the main trade-off
between weighting the best child more or less heavily
may not be so much a question of overestimation or
underestimation, but rather one of robustness. The
experiments in the next section will demonstrate that
Softmax MCTS outperforms the method in (Coulom,
2006) over a number of different parameters.

4 Experiments

In this section, we use 9x9 and 19x19 Go as a testbed
to run Monotone MCTS and Softmax MCTS against
several methods in the literature. We first establish
a baseline by running these methods against standard
MCTS. The table below records the win-rates (%).

Table 1: Win-rates (%) of the various methods versus
standard MCTS on 9x9 and 19x19 Go.

9 x 9 Go 19 x 19 Go
Coulom (2, 16) 44.9 53.3
Coulom (4, 32) 45.8 51.2
Coulom (8, 64) 48.3 50.2

GAY 50.2 56.1
GBY 51.8 54.5

ERWA, α = 0.00001 51.2 53.9
ERWA, α = 0.0001 50.3 56.9
ERWA, α = 0.001 52.9 55.1

6

Coulom(x, y) refers to the method in (Coulom, 2006),
where x is proportional to the mean-weight parameter
in (2) and y controls when it begins increasing. GAY
and GBY are the best feedback adjustment policies in
(Xie and Liu, 2009) (see Figure 1), and we also test
ERWA at various parameters of α.

All experiments are run with 5000 moves per simulation
for 9x9 Go, and 1600 moves per simulation for 19x19
Go. For this and all subsequent tests, the win-rates are
computed based on 1000 games.

We follow the architecture in (Silver et al., 2017) for
the neural nets. This consists of an input convolu-
tional layer, followed by several layers of residual blocks
with batch normalization (4 layers for 9x9, 10 layers for
19x19), followed by two ”heads”, one which outputs
the policy vector and the other the value of the posi-
tion. Both heads start with a convolutional layer, and
is followed by a fully-connected layer before the output.
The input layer has 10 (18 for 19x19) channels encod-
ing the current position and the previous 4 (8 for 19x19)
positions. In each residual block, we used 64 filters for
19x19 in the convolutional layers and 32 filters for 9x9.

The neural net for 9x9 was trained tabula rasa using re-
inforcement learning (Silver et al., 2017) over 600,000
training steps, with each step processing a minibatch
of 16 inputs. We trained the 19x19 neural net by su-
pervised learning over the GoGod database of approxi-
mately 15 million datapoints from 80,000 games.

In all tests, we use PUCT (5) with the exploration con-
stant set to 0.5, and weight the exploration term by
the distribution given by the policy vector output of the
neural networks (Silver et al., 2016, 2017).

4.1 Monotone MCTS

We run Spearmint with m = 6 parameters to opti-
mize the win-rate of Monotone MCTS against standard
MCTS. For every set of parameters, 400 games were
run to determine the win-rate during the optimization
phase (we run 1000 games for testing). The tables be-
low record the results for 9x9 Go of Monotone MCTS
versus standard MCTS, ERWA and the feedback adjust-
ment policies in (Xie and Liu, 2009) for the two best

sets of parameters found.

Table 2: Win-rates (%) for Monotone MCTS with the
1st set of parameters (-10.0, -10.0, -4.0, -4.0, -4.0, -
10.0) versus various methods (left column) in 9x9 Go.

Standard MCTS 53.1
ERWA, α = 0.00001 50.3
ERWA, α = 0.0001 52.8
ERWA, α = 0.001 52.8

GAY 51.5
GBY 51.0

Table 3: Win-rates (%) for Monotone MCTS with the
2nd set of parameters (-4.0, -4.0, -4.0, -10.0, -4.0, -4.0)
versus various methods (left column) in 9x9 Go.

Standard MCTS 54.5
ERWA, α = 0.00001 52.3
ERWA, α = 0.0001 50.5
ERWA, α = 0.001 53.1

GAY 52.3
GBY 51.1

We also test Monotone MCTS against standard MCTS
in 19x19 Go and find that the first set of parameters
achieves a win-rate of 56.0%, whereas the second set of
parameters achieves a win-rate of 54.3%.

The figure below shows a graph of the weight profiles.

Figure 2: Weight profiles of Monotone MCTS for both
sets of parameters.

7

4.2 Softmax MCTS

As in the previous section, Spearmint was run with
m = 6 parameters to optimize the win-rate of Softmax
MCTS versus standard MCTS. We present the results
of the two best sets of parameters in the tables below.

Table 4: Win-rates (%) for Softmax MCTS with the
1st set of parameters (-4.0, -10.0, -4.0, -4.0, -10.0, -
4.0) versus various methods (left column) in 9x9 Go.

Standard MCTS 56.3
Coulom(2,16) 59.3
Coulom(4, 32) 55.5
Coulom(8, 64) 55.1

Table 5: Win-rates (%) for Softmax MCTS with the
2nd set of parameters (-4.0, -10.0, -7.9, -10.0, -10.0,
-7.8) versus various methods (left column) in 9x9 Go.

Standard MCTS 57.8
Coulom(2,16) 57.6
Coulom(4,32) 59.5
Coulom(8,64) 51.9

We also test Softmax MCTS against standard MCTS
in 19x19 Go and find that the first set of parameters
achieves a win-rate of 53.2%, whereas the second set of
parameters achieves a win-rate of 55.9%.

Figure 3: Weight profiles of Softmax MCTS for both
sets of parameters.

5 Conclusion and Future Work

In this paper, we present a unifying framework for back-
propagation strategies in MCTS for min-max trees. Our
proposed method allows one to perform optimization
in two orthogonal directions. The first algorithm Soft-
max MCTS allows one to find the optimal schedule
that weights the best child more gradually as the tree
grows, and the second method Monotone MCTS gen-
eralizes previous work in adapting the update rule to
get the most accurate estimate of a node’s value in a
non-stationary setting.

Doing so requires optimization over the space of mono-
tone functions, a high-dimensional problem we over-
come efficiently by using parallelized Bayesian optimiza-
tion over a Gaussian process prior. Once the param-
eters that define the optimal monotone function are
found, they can be incorporated into MCTS with neg-
ligible overhead. Our experiments show that this new
approach is superior to previous methods in the litera-
ture.

To conclude, we would like to note also that it is pos-
sible, indeed advisable, to perform the optimization in
conjunction with the exploration constant in the selec-
tion phase, but we have decided in this paper to focus
solely on the backpropagation phase and to elucidate
the effects of different monotone weight profiles on the
win-rate. Combining these optimal backup strategies
with other phases of MCTS will be the topic of future
work.

References

Auger, D., Couetoux, A., and Teytaud, O. (2013).
Continuous upper confidence trees with polynomial
exploration–consistency. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery
in Databases, pages 194–209. Springer.

Baier, H. and Winnands, M. H. M. (2018). MCTS-
minimax hybrids with state evaluations. Journal of
Artificial Intelligence Research, 62:193–231.

Blumenthal, S. and Cohen, A. (1968). Estimation of the

8

larger of two normal means. Journal of the American
Statistical Association, 63(323):861–876.

Browne, C. B., Powley, E., Whitehouse, D., Lucas,
S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S.,
Perez, D., Samothrakis, S., and Colton, S. (2012).
A survey of Monte-Carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in
games, 4(1):1–43.

Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrit-
twieser, J., Silver, D., and de Freitas, N. (2018).
Bayesian optimization in AlphaGo. arXiv preprint
1812.06855v1.

Coquelin, P.-A. and Munos, R. (2007). Bandit algo-
rithms for tree search. In Proceedings of the Twenty-
Third Conference on Uncertainty in Artificial Intelli-
gence, pages 67–74.

Coulom, R. (2006). Efficient selectivity and backup op-
erators in Monte-Carlo tree search. In International
conference on computers and games, pages 72–83.
Springer.

Fu, M. (2017). Monte-Carlo tree search and minimax
combination, MSc thesis. University of Maryland at
College Park.

Hashimoto, J., Kishimoto, A., Yoshizoe, K., and Ikeda,
K. (2011). Accelerated UCT and its application to
two-player games. In Advances in computer games,
pages 1–12. Springer.

Khandelwal, P., Liebman, E., Niekum, S., and Stone, P.
(2016). On the analysis of complex backup strategies
in Monte-Carlo tree search. In International Confer-
ence on Machine Learning, pages 1319–1328.

Kocsis, L. and Svepesvári, C. (2006). Bandit based
Monte-Carlo planning. In Proceedings of the 17th Eu-
ropean Conference on Machine Learning, pages 282–
293.

Ramanujan, R., Sabharwal, A., and Selman, B. (2010).
On adversarial search spaces and sampling-based
planning. In Twentieth International Conference on
Automated Planning and Scheduling.

Ramanujan, R., Sabharwal, A., and Selman, B. (2011).
On the behavior of UCT in synthetic search spaces.
In Proc. 21st Int. Conf. Automat. Plan. Sched.,
Freiburg, Germany.

Ramanujan, R. and Selman, B. (2011). Trade-offs in
sampling-based adversarial planning. In Twenty-First
International Conference on Automated Planning and
Scheduling.

Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.,
et al. (2016). Mastering the game of Go with deep
neural networks and tree search. Nature, 529:484–
489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai,
M., Bolton, A., et al. (2017). Mastering the game of
Go without human knowledge. Nature, 550:354–359.

Snoek, J., Larochelle, H., and Adams, R. P. (2012).
Practical Bayesian optimization of machine learning
algorithms. In Advances in neural information pro-
cessing systems, pages 2951–2959.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Vien, N. A., Zimmermann, H., and Toussaint, M.
(2018). Bayesian functional optimization. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian
processes for machine learning, volume 2. MIT press
Cambridge, MA.

Xie, F. and Liu, Z. (2009). Backpropagation modifica-
tion in Monte-Carlo game tree search. In 2009 Third
International Symposium on Intelligent Information
Technology Application, volume 2, pages 125–128.
IEEE.

9

	1 Introduction
	2 Preliminaries
	2.1 Monte-Carlo tree search
	2.2 Bayesian optimization with a Gaussian process prior

	3 Methods
	3.1 Monotone MCTS
	3.2 Softmax MCTS

	4 Experiments
	4.1 Monotone MCTS
	4.2 Softmax MCTS

	5 Conclusion and Future Work
	References

