
HAL Id: hal-03402267
https://hal.science/hal-03402267

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Growing Neural Networks Achieve Flatter Minima
Paul Caillon, Christophe Cerisara

To cite this version:
Paul Caillon, Christophe Cerisara. Growing Neural Networks Achieve Flatter Minima. ICANN 2021
- 30th International Conference on Artificial Neural Networks, Sep 2021, Bratislava, Slovakia. pp.222-
234, �10.1007/978-3-030-86340-1_18�. �hal-03402267�

https://hal.science/hal-03402267
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

article

Growing Neural Networks Achieve Flatter Minima

Paul Caillon and Christophe Cerisara

Universite de Lorraine, CNRS, LORIA
54500 Vandoeuvre-les-Nancy, France
{paul.caillon, cerisara}@loria.fr

Abstract. Deep neural networks of sizes commonly encountered in practice are
proven to converge towards a global minimum. The flatness of the surface of
the loss function in a neighborhood of such minima is often linked with better
generalization performances. In this paper, we present a new model of growing
neural network in which we incrementally add neurons throughout the learning
phase. We study the characteristics of the minima found by such a network
compared to those obtained with standard feedforward neural networks. The
results of this analysis show that a neural network grown with our procedure
converges towards a flatter minimum than a standard neural network with the same
number of parameters learned from scratch. Furthermore, our results confirm the
link between flatter minima and better generalization performances as the grown
models tend to outperform the standard ones. We validate this approach both with
small neural networks and with large deep learning models that are state-of-the-art
in Natural Language Processing tasks.

1 Introduction

Over the last few years, deep learning [20] has had empirical successes in multiple
research domains, such as computer vision, speech recognition, and machine translation
[11], [35], [28]. Along with its practical success, the theoretical properties of deep
learning have been a subject of active investigation, from the expressivity [21], [1] and
the generalization properties to the trainability [3], [15] of a network.

Some empirical works observe that generalization and flatness of the minima found
during training are related [2], [33]. However, [7] questions this assumption, by showing
that for deep neural networks with rectifier units, most Hessian-based measures of
the flatness of the loss minimum are sensible to rescaling, making it possible to build
equivalent models corresponding to arbitrarily sharper minima. To address this issue,
a recent work [32] introduced a particular measure invariant to rescaling to show that
flatter minima obtain better generalization performances than sharper ones. Sharper
minima are thus believed to be suboptimal and should be avoided during learning. A
recent work, [16] theoretically proves a related result, which is that adding one special
neuron by output unit eliminates all suboptimal local minima of any neural network.

In Natural Language Processing, the models used in practice consist in millions
of parameters. For example, BERT [6] is a well-known contextual word embeddings
model that is pre-trained with a Denoising Autoencoding objective and is at the basis
of most state-of-the-art results in many Natural Language Processing (NLP) tasks. We

study in this work, in the context of NLP and pattern recognition tasks, whether adding
neurons incrementally instead of learning them all from the beginning could achieve a
flatter minimum for the neural network. In the following, we propose to experimentally
investigate this hypothesis by comparing an incrementally growing network with one with
a fixed architecture learned from scratch, with both small and competitive models. The
results we present tend to confirm our hypothesis as flatter minima are indeed achieved
by growing networks, which also often leads to better generalization performances.

2 Related Work

Trainability of a Neural Network. Training neural networks can be seen as a non
convex optimization problem. However because of the absence of poor local minima,
the trainability of a Deep Neural Network is proven to be possible [15]. Recent results
theoretically prove that gradient descent can find a global minimum for nonlinear deep
neural networks of sizes commonly encountered in practice [17]. In fact a linear increase
of the number of trainable parameters as the size of the dataset increases is sufficient to
find a global minimum. Such a network generalizes well on unseen test samples.

Growing Neural Networks. The properties of growing networks, notably with
regard to training convergence, are more and more investigated. The authors of [16] for
example add a special neuron by output unit in order to eliminate all suboptimal local
minima of any deep neural network. This idea of a network adapting its architecture
to the dataset it is trained on is also found in automated Neural Architecture Search
(NAS, see [8]). Typical works in this field are [4] and [5], where the authors use a
grow-and-prune training paradigm to iteratively add and remove units in order to achieve
more compact networks with state of the art performances.

The idea of progressive growing of models has also been explored in the context
of Generative Adversarial Networks (GAN) [10] to increasingly add new details as
the training progresses. In [14], the authors start with low-resolution images, and then
progressively increase the resolution by adding layers to the networks. This allows
the model to learn increasingly finer scale detail, instead of having to learn all scales
simultaneously.

This kind of growing approach can be used in continual learning [30], where the goal
is to train models that must be capable of progressively learning knowledge over long
time spans. One of the main challenges in continual learning is catastrophic forgetting,
i.e., the fact that new information interferes with previously learned knowledge [26].
Recent works in this field showed that growing a small network both wider and deeper
allows to learn accurate and relatively small networks that can prevent catastrophic
forgetting, achieving state-of-the-art performances with methods such as Learn-to-Grow
[23], Compact-Pick-Grow [13] or recently Firefly Neural Architecture Descent [39].
However the question as to why those growing neural networks reach state of the art
performance while being smaller than most of the other competitive models (comparable
test accuracy as the full model with only 4% of the full model’s size in [39]) is still to be
investigated, one idea being that when a network grows, the parameter space becomes
larger and what was previously a local minima can become a saddle point and hence can
be escaped, which yields a monotonic decrease of the loss. [36]

Smooth and Sharp minima. On top of these considerations, the abilities to gener-
alize to unseen data is often linked to the flatness of the minima found during training
in empirical works [2], [33] sharp minima leading to poorer generalization. In a recent
work, [38] notably shows that smoothing out and eliminating sharp minima by perturbing
multiple copies of the DNN by noise injection and then averaging these copies lead to
an improvement of the generalization properties. Another equivalent idea is explored
in [34], which proposes to smooth activations instead of using noise or progressively
adding units during training. A very interesting idea recently developed to enhance the
performances of deep neural networks is to track the sharpness of the loss model and
to jointly optimize the loss and its sharpness [9]. In particular, this procedure, called
Sharpness-Aware Minimization (SAM), seeks parameters that lie in neighborhoods
having uniformly low loss and present empirical results showing model generalization
improvement across a variety of benchmark datasets.

In order to correctly evaluate the flatness of minima, measures invariant to the
rescaling issue pointed out in [7] now exist [31, 32] and can be used to evaluate the
difference of flatness in minima between models of the same size. The goal of our
work is to investigate whether growing a feedforward neural network (FNN) from
scratch throughout the learning phase yields better loss surface properties at minima
than learning a standard FNN, both having ultimately the same number of parameters,
using the measure developed in [32].

3 Model Description

3.1 Notations

The following notations are inspired by [18]. We consider the general case of neural
networks of any depth for k-class classification that can be topologically considered
as a directed acyclic graph (DAG) with non-linearity functions such as ReLU, tanh or
sigmoid. This includes any structure of feedforward neural network with or without fully
connected layers and with potentially skip-connections.

Let N = {1, . . . , n} be the set of neurons in a network. For two neurons (i, j) ∈ N2,
we note :

– wj,i the weight of the connection from j to i. If there is no connection, then wj,i = 0.
Note that the sparse n × n matrix W = [wj,i]1≤j,i≤n is constrained to define an
acyclic graph;

– σi the activation function at the output of neuron i;
– π(i) the set of parents of neuron i: π(i) = {j|wj,i 6= 0}1≤j≤n
– d(i) the depth of neuron i: it is the longest path to reach i from any input.

Every DAG has at least one topological ordering, which can be used to create a layered
structure with possible skip connections as shown for example in [12] and [29]. There is
thus an equivalence between the representation of a neural network either with depths
or with layers, as the layer l is composed of all the neurons at depth l. Given an input
vector x, we define the pre-activation of a neuron i at depth l recursively as

zi(x,W) =
∑
j∈π(i)

σj (zj(x,W))wj,i.

3.2 Model presentation

Recent works [24] and [17] propose to insert neurons in order to avoid bad minima.
We investigate next the impact on the loss surface when inserting neurons into the model
progressively throughout the learning process.

More precisely, our work’s main focus is to explore whether growing approaches in-
trinsically leads to flatter minima. We do not seek an increase in the model performances
per se. We rather try to understand why the growing approaches lead to better results
than the standard ones in the recent works. To the extent of our knowledge, no similar
work on the sharpness of the loss surface of growing networks exist. That is also why
our model does not rely on complex heuristics to decide how and when the model’s size
should be increased. We rather choose a simple approach, based on random picks as it
has been shown in previous works [22, 27] that advanced NAS techniques are often only
marginally superior to simple random search.

In our model, the neurons are inserted incrementally at a regular pace (i.e., with a
constant time interval) during the learning phase, starting with a minimum number of
parameters (just the input and output layers) in order to increase the number of learnable
parameters with the number of epochs. Intuitively, our growing procedure is a naive
insertion process: first, an existing neuron is randomly chosen and splitted to create a
new child neuron, which inherits most of its children. The new neuron also gets new
parent connections with existing neurons randomly chosen in the previous layers. More
formally, we have initially:

– The set of neurons is N = {1, . . . , nI , nI+1, . . . , n}: the first nI neurons are the
input neurons, while the last n− nI neurons are the output neurons;

– The weight matrix W is symmetrical and is initially strictly equivalent to a feed-
forward neural network with no hidden layer, with non-null transitions that are
initialized randomly, e.g., with Glorot or uniform initialization;

– The depth of the input neurons is 0, and the depth of the output neurons is 1.

Then, we randomly choose a neuron from the current network, called the primary
parent, as well as I − 1 other neurons on lower depths, which are just called the
parents. The primary parent is randomly sampled among all existing neurons, as previous
works [22, 27] found that advanced NAS techniques are often only marginally superior
to simple random search. With each neuron insertion, the total number of parameters
of the model is increased by I , as each link created between the new neuron and its
parents adds a parameter. This process is iterated until we reach the desired number of
parameters. Intuitively, insertion proceeds by splitting the primary parent, i.e., inserting a
new neuron after the primary parent that inherits its children, as detailed in Algorithm 1.

The connection between the primary parent and the neuron inserted is stored in
π0 which is the set containing all of the pairs (primary parent, neuron inserted). We
initialize π0 as the set containing all the connections between input and output neurons,
considering that all input neurons are ”primary parents” of all of the output neurons :
π0 = {(1, nI+1), . . . , (1, n), . . . , (nI , nI+1), . . . , (nI , n)}. In this way, we are able to
track the multiple insertions and to grow the hidden layers of the network both deeper
and wider. The insertion process is illustrated in Figure 1.

Fig. 1: Example of parents/children inheritance before and after insertion; the new weights are:
∀i ∈ [1, n], w′i,8 ∼ U(−0.5, 0.5), w′8,6 = wn,6.

Algorithm 1: Insertion Algorithm
Input: Weight matrix W ∈ IRn×n

Output: Weight matrix W ′ ∈ IR(n+1)×(n+1)

1 Save the initial set of primary parents π0

2 Create a new neuron n+ 1
3 Create W ′ by copying all weights from W and initializing the new dimension with null

weights.
4 Sample the primary parent: j ∼ U({j|d(j) < D}1≤j≤n) where U is the uniform

distribution, and D = max1≤i≤n d(i) is the depth of the network.
5 Save the new primary parent: π0 ← π0 ∪ {(j, n+ 1)}
6 Insert n+ 1 by setting w′j,n+1 ∼ U(−0.5, 0.5)
7 Connect children of j as children of n+ 1:
8 for i ∈ {1, . . . , n} so that wj,i 6= 0 do

– if d(i) > d(n+ 1):
• Set w′n+1,i = wj,i

• Set w′j,i = 0
– if d(i) = d(n+ 1) and (j, i) ∈ π0:
• Set w′n+1,i = wj,i

• Set w′j,i = 0
• π0 ←

(
π0 − {(j, i)}

)
∪ {(n+ 1, i)}

9 Add new parents for n+ 1:
10 for I-1 times do

– Sample a node k ∼ U({i|w′i,n+1 = 0) and d(i) ≤ d(j)}1≤i≤n).
– Add k as a parent of n+ 1: w′k,n+1 ∼ U(−0.5, 0.5)
– Iterate

Remark 1. Steps 1 and 8 of the algorithm ensure that all the output units and only them
are at maximum depth as when we insert a neuron n+1 on the maximal depth, n+1 is a
primary parent to every output unit which means the maximal depth is updated :

if d(n+ 1) = D,∀i ∈ {nI+1, . . . , n}, (n+ 1, i) ∈ π0

Remark 2. In Step 4 we sample the primary parents j|d(j) < D. The output neurons
are thus the only neurons to have multiple primary parents as they are considered as the
only neurons that cannot be primary parents themselves

Remark 3. Step 6 of the algorithm ensures that d(n + 1) = d(j) + 1 as ∀i ∈ π(n +
1), d(i) ≤ d(j).

Remark 4. The concept of primary parents in Step 8 allows us to balance between the
depth and width of the architecture of the network. When there are still only a small
number of units in the network, a primary parent can be picked multiple times. If this is
the case, Step 8 allows the network to grow deeper and not only wider.

4 Experimental Results

4.1 Experiments with Small Models

We implement our model in PyTorch and evaluate it on AGNews and MNIST [19].
AGNews : AG News (AG’s News Corpus) is a sub-dataset of A. Gulli’s corpus of

news articles constructed by assembling titles and description fields of articles from the
4 largest classes (”World”, ”Sports”, ”Business”, ”Sci/Tech”) of AG’s Corpus. The AG
News contains 30,000 training and 1,900 test samples per class.

MNIST : The handwritten digit benchmark MNIST is a large collection of handwrit-
ten digits. It has a training set of 60,000 examples, and a test set of 10,000 examples.

We compare our model with a fully connected network with the same number
of parameters as the final number of parameters of our model (after insertions). Our
objective is to study the properties of the final loss surface when adding neurons one by
one, all other hyper-parameters being equal (number of parameters, activation functions,
weight initialization, accuracy, batch size, SGD algorithm, ...).

In order to study the loss surface, we use the metric proposed in [32], and more
precisely the scale invariant measure to compare the flatness of the minima found by our
different models. This Hessian-based measure for flatness is invariant to rescaling as
the authors use a metric on a quotient manifold structure that captures the rescaling that
is natural to the space of parameters of neural networks with positively homogeneous
activations.

As done in [32], we train each network architecture and dataset up to 100% of
training accuracy with stochastic gradient descent (SGD). We test two different batch
sizes of 10 and 100 samples for MNIST, and 1 and 16 samples for AGNews. No pre-
trained word embeddings are used for AGNews. For both datasets we use the categorical
cross entropy loss. On AGNews, the learning rate is initially 10−4 and 10−3 on MNIST.

We further test two final model sizes, respectively with 10 and 500 hidden neurons
for MNIST, and 10 and 100 hidden neurons for AGNews. On both the AGNews and

MNIST corpora, we train the growing models for 100 epochs, reaching 100% of training
accuracy. We let the model learn the new inserted parameters for a few epochs before
inserting new neurons again. We used the following insertion scheme :

– (MNIST, 10 final hidden neurons) 1 new unit every 10 epochs from epoch 5
– (AGNews, 10 final hidden neurons) 1 new unit every 10 epochs from epoch 5
– (MNIST, 500 final hidden neurons) 50 new units every 10 epochs from epoch 10 to

60
– (AGNews, 100 final hidden neurons) 10 new units every 10 epochs from epoch 5

The initialization scheme for all the models follows a uniform distribution between
−0.5 and 0.5. The inserted neurons are thus initialized in the same way as those in
the standard feedforward neural networks we compare our network with. In this way,
the insertion process is the only difference between the two training methods, every
hyper-parameter being equal otherwise.

Furthermore, we train different feedforward neural network architectures with a
various number of hidden layers:

– (MNIST, 10 final hidden neurons) :
• 1 hidden layer of 10 neurons

– (AGNews, 10 final hidden neurons)
• 1 hidden layer of 10 neurons

– (MNIST, 500 final hidden neurons)
• architecture a : 1 hidden layer of 500 neurons
• architecture b : 2 hidden layers of 400 then 100 neurons
• architecture c : 3 hidden layers of 300 then 150 then 50 neurons

– (AGNews, 100 final hidden neurons)
• architecture a : 1 hidden layer of 100 neurons
• architecture b : 2 hidden layers of 80 then 20 neurons
• architecture c : 3 hidden layers of 60 then 30 then 10 neurons

Testing multiple architectures with the same number of neurons allows us to verify
whether the results presented in Table 1 are due to the insertion process or are influenced
by the possible difference in terms of depth between the standard feedforward networks
and the layered structure obtained through our growing process.

4.2 Growing RoBERTa’s classification head

BERT [6] is a well-known and reference contextual word embeddings model that is
pre-trained with a Denoising Autoencoding objective and is at the basis of most state
of the art results in many Natural Language Processing (NLP) tasks. RoBERTa ([25])
builds on BERT’s language masking strategy, but fine-tunes the original BERT model
with a different choice of tasks and conditions.

As most of today’s state of the art NLP models, RoBERTa is a complex and large
neural network, which thus faces the issue of over-parametrization. It is composed of 355
million parameters stored in 24 layers of self-attention, with a classification head on top
to output the desired number of classes. In our experiments, we strictly keep the same

Corpus : MNIST
Model Batch Size Test Accuracy Spectral Norm

10 hidden neurons

Growing 10 84% 2.23
100 77.91% 24.29

Fully Connected 10 84.03% 38.01
100 77.74% 68.39

500 hidden neurons

Growing 10 96.98% 4.45
100 94.84% 179.01

Fully Connected a 10 87.27% 1030.07
100 66.86% 12111.28

Fully Connected b 10 84.57% 820.54
100 64.17% 21517.66

Fully Connected c 10 84.26% 1253.72
100 74.01% 12893.59

(a) Results on MNIST corpus

Corpus : AGNews
Model Batch Size Test Accuracy Spectral Norm

10 hidden neurons

Growing 1 90.2% 9.83 · 10−5

16 88.2% 3.22

Fully Connected 1 90.1% 7.91 · 10−4

16 88.3% 20.83

100 hidden neurons

Growing 1 90.7% 0.57
16 89.2% 31.31

Fully Connected a 1 90.5% 3.43
16 89.0% 69.53

Fully Connected b 1 90.4% 7.02
16 89.0% 60.89

Fully Connected c 1 90.5% 3.25
16 88.9% 73.28

(b) Results on AGNews

Table 1: Test Accuracy and Spectral Norm of Hessian at Minima for different trained networks.

number of parameters, without adding more complexity to the model. The classification
head is classically composed of a two-layers feed-forward network with 1024 hidden
neurons. We thus propose next to replace this classification head with a bare one-layer
feed-forward network, and to grow it until it reaches the same number of parameters as
the reference classification layer. The rest of the pre-trained Roberta large model, i.e.,
the self-attention layers, stays the same. We use the standard CoLA benchmark [37] to
train and evaluate our growing model against RoBERTa. The CoLA dataset is composed

of 9594 training and 1063 test sentences. The objective is to classify each sentence into
two classes: grammatically correct and incorrect English sentences.

In order to study the impact of growing the network, we insert neurons progressively
throughout the whole learning process, which consists in 10 epochs in the original
RoBERTa experiment. To do so, a total of 1024 hidden neurons are inserted through
three different phases: after the second, fifth and seventh epoch. We also compute the
sharpness of both the original RoBERTA model and of our grown model, and compare
the models performances and loss characteristics. The batch size used is 16. The results
are compiled in Table 2.

Model Test Accuracy Spectral Norm
Growing 68.2% 1.8945 · 105

Fully Connected 68% 6.7778 · 105
Table 2: Test Accuracy and Spectral Norm of Hessian at Minima on COLA

5 Discussion

The results obtained with our small models experiments first confirm what was
shown in [32], i.e., that by increasing the batch size, we increase the sharpness of the
minima. But these experiments further show that inserting neurons during the training
phase of the model allows to decrease the sharpness of the minima. These results are
obtained with shallow networks and standard but relatively simple classification tasks.

Another interesting observation is that our method not only decreases the spectral
norm and thus improves the flatness of the minima of a shallow network, but we can
also observe in Table 1, that a lower spectral norm seems to correlate with higher
generalization performances, as the test accuracies are better for the growing networks
when the number of parameters is larger.

Another interesting conclusion that can be drawn from Table 2 is that these good
results translate to complex and state-of-the-art neural networks. Indeed, we can observe
that growing the final classification head of such a model leads to an optimum solution
that is flatter by an order of magnitude, according to the flatness metric, without any
negative impact in terms of accuracy. We note that the classification head represents
approximately only 0.6% of the total number of parameters of the model, which may
explain why the models performances in terms of accuracy are similar. Despite the fact
that only a small proportion of the total number of parameters is grown, it is interesting
to note that the growing process leads to spectral norm of the optimum that is much
lower, which means that we reach a flatter minimum.

Our results tend to show that the growing paradigm, more and more used in the
Neural Architecture Search field, is an important asset to reach flatter minima. However,
there is no theoretical guarantee for now that a flatter minimum will systematically
translate into better generalization performances, although several related works results
tend to exhibit such a correlation.

With regard to this question, we can observe in our experiments that with very small
neural networks (the case with only 10 hidden neurons in Table 1), the performances are
similar although the growing method achieves a minimum that is at least 2.5 (up to more
than 10) times flatter than the standard method. We believe that this is due to the small
capacity of the neural network, which can not learn more because of its limited size.

Second, when inserting a greater amount of neurons, we can observe two different
behaviors. On the one hand, when comparing on MNIST, the growing method leads
to flatter minima and better Test Accuracy, as it was also shown in [32]. On the other
hand, the flatter minima given by the growing approach do not correlate with better
performances on AG News: models with 10 and 100 hidden neurons have roughly
the same performances. Similarly, when trained on CoLA with a complex structure,
the growing method still leads to a flatter minimum but no significant improvement in
accuracy is observed. Our hypothesis is that, in these two cases, the number of parameters
of the growing model is too small when compared to the total number of parameters of
the model to have a real impact on accuracy, as most of the information is learned in the
embeddings.

6 Conclusion and Future Work

Our main contribution is the proposal of a growing neural network approach, which
we experimentally validate in several conditions on three tasks and with small and
large deep learning models. The results show that the resulting loss function has flatter
minima than with the traditional training procedure on the full network. We further show
that such flatter minima improves the generalization capability of the trained models
when they do not rely on complex embeddings. These results tend to show that the
paradigm of growing neural networks during the learning phase intrisically leads to
flatter minima, which is an interesting observation, although these results have to be
confirmed on different datasets, potentially with transfer learning experiments in order
to better assess the generalization performances across related tasks. Furthermore, in
the case of Natural Language Processing tasks, a potentially interesting extension could
be to adapt the approach to further grow the embeddings in order to have a greater
impact on both the loss surface characteristics and model’s performances. As this work
focuses on feedforward neural networks, an extension to more complex structures, such
as convolutions and recurrent networks is also envisaged.

References

1. Andrew R. Barron. Approximation and estimation bounds for artificial neural networks.
Mach. Learn., 14(1):115–133, January 1994.

2. Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing
Gradient Descent Into Wide Valleys. arXiv e-prints, page arXiv:1611.01838, November 2016.

3. Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The Loss Surfaces of Multilayer Networks. arXiv e-prints, page arXiv:1412.0233, November
2014.

4. Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. NeST: A Neural Network Synthesis Tool Based
on a Grow-and-Prune Paradigm. arXiv e-prints, page arXiv:1711.02017, November 2017.

5. Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. Grow and Prune Compact, Fast, and Accurate
LSTMs. arXiv e-prints, page arXiv:1805.11797, May 2018.

6. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. arXiv e-prints, page
arXiv:1810.04805, October 2018.

7. Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp Minima Can
Generalize For Deep Nets. arXiv e-prints, page arXiv:1703.04933, March 2017.

8. Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A
Survey. arXiv e-prints, page arXiv:1808.05377, August 2018.

9. Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-Aware Min-
imization for Efficiently Improving Generalization. arXiv e-prints, page arXiv:2010.01412,
October 2020.

10. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv e-prints,
page arXiv:1406.2661, June 2014.

11. Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech Recognition with Deep
Recurrent Neural Networks. arXiv e-prints, page arXiv:1303.5778, March 2013.

12. P. Healy and Nikola S. Nikolov. How to layer a directed acyclic graph. In Graph Drawing,
2001.

13. Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and
Chu-Song Chen. Compacting, Picking and Growing for Unforgetting Continual Learning.
arXiv e-prints, page arXiv:1910.06562, October 2019.

14. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs
for Improved Quality, Stability, and Variation. arXiv e-prints, page arXiv:1710.10196, October
2017.

15. Kenji Kawaguchi. Deep Learning without Poor Local Minima. arXiv e-prints, page
arXiv:1605.07110, May 2016.

16. Kenji Kawaguchi and Leslie Pack Kaelbling. Elimination of All Bad Local Minima in Deep
Learning. arXiv e-prints, page arXiv:1901.00279, January 2019.

17. Kenji Kawaguchi and Leslie Pack Kaelbling. Elimination of All Bad Local Minima in Deep
Learning. arXiv e-prints, page arXiv:1901.00279, January 2019.

18. Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in Deep
Learning. arXiv e-prints, page arXiv:1710.05468, October 2017.

19. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

20. Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature Cell Biology,
521(7553):436–444, May 2015.

21. Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feed-
forward networks with a nonpolynomial activation function can approximate any function,
1993.

22. Liam Li and Ameet Talwalkar. Random Search and Reproducibility for Neural Architecture
Search. arXiv e-prints, page arXiv:1902.07638, February 2019.

23. Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to Grow: A
Continual Structure Learning Framework for Overcoming Catastrophic Forgetting. arXiv
e-prints, page arXiv:1904.00310, March 2019.

24. Shiyu Liang, Ruoyu Sun, Jason D. Lee, and R. Srikant. Adding One Neuron Can Eliminate
All Bad Local Minima. arXiv e-prints, page arXiv:1805.08671, May 2018.

25. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized
BERT Pretraining Approach. arXiv e-prints, page arXiv:1907.11692, July 2019.

26. Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of Learning and Motivation - Advances in
Research and Theory, 24(C):109–165, January 1989. Funding Information: The research
reported in this chapter was supported by NIH grant NS21047 to Michael McCloskey, and
by a grant from the Sloan Foundation to Neal Cohen. We thank Sean Purcell and Andrew
Olson for assistance in generating the figures, and Alfonso Caramazza, Walter Harley, Paul
Macaruso, Jay McClelland, Andrew Olson, Brenda Rapp, Roger Rat-cliff, David Rumelhart,
and Terry Sejnowski for helpful discussions.

27. Renato Negrinho, Darshan Patil, Nghia Le, Daniel Ferreira, Matthew Gormley, and Geoffrey
Gordon. Towards modular and programmable architecture search. arXiv e-prints, page
arXiv:1909.13404, September 2019.

28. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

29. Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-Based Capacity Control in
Neural Networks. arXiv e-prints, page arXiv:1503.00036, February 2015.

30. German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual Lifelong Learning with Neural Networks: A Review. arXiv e-prints, page
arXiv:1802.07569, February 2018.

31. Henning Petzka, Linara Adilova, Michael Kamp, and Cristian Sminchisescu. A
Reparameterization-Invariant Flatness Measure for Deep Neural Networks. arXiv e-prints,
page arXiv:1912.00058, November 2019.

32. Akshay Rangamani, Nam H. Nguyen, Abhishek Kumar, Dzung Phan, Sang H. Chin, and
Trac D. Tran. A Scale Invariant Flatness Measure for Deep Network Minima. arXiv e-prints,
page arXiv:1902.02434, February 2019.

33. Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. arXiv e-prints, page arXiv:1609.04836, September 2016.

34. Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum By Smoothing. arXiv
e-prints, page arXiv:2003.01367, March 2020.

35. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural
Networks. arXiv e-prints, page arXiv:1409.3215, September 2014.

36. Dilin Wang, Meng Li, Lemeng Wu, Vikas Chandra, and Qiang Liu. Energy-Aware Neu-
ral Architecture Optimization with Fast Splitting Steepest Descent. arXiv e-prints, page
arXiv:1910.03103, October 2019.

37. Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural Network Acceptability
Judgments. arXiv e-prints, page arXiv:1805.12471, May 2018.

38. Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li.
SmoothOut: Smoothing Out Sharp Minima to Improve Generalization in Deep Learning.
arXiv e-prints, page arXiv:1805.07898, May 2018.

39. Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly Neural Architecture Descent: a
General Approach for Growing Neural Networks. arXiv e-prints, page arXiv:2102.08574,
February 2021.

	Growing Neural Networks Achieve Flatter Minima

