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Abstract. Fourier phase retrieval is the problem of reconstructing a sig-
nal given only the magnitude of its Fourier transformation. Optimization-
based approaches, like the well-established Gerchberg-Saxton or the hy-
brid input output algorithm, struggle at reconstructing images from
magnitudes that are not oversampled. This motivates the application
of learned methods, which allow reconstruction from non-oversampled
magnitude measurements after a learning phase. In this paper, we want
to push the limits of these learned methods by means of a deep neural
network cascade that reconstructs the image successively on different res-
olutions from its non-oversampled Fourier magnitude. We evaluate our
method on four different datasets (MNIST, EMNIST, Fashion-MNIST,
and KMNIST) and demonstrate that it yields improved performance
over other non-iterative methods and optimization-based methods.

Keywords: Phase Retrieval · Neural Network Cascade · Deep Learning.

1 Introduction

The two-dimensional discrete Fourier transform F(x) of an image x ∈ Rn×n can
be represented by the magnitude ω and the phase ϕ, more precisely

ω = |F(x)| ∈ Rn×n, (1)

ϕ = argF(x) ∈ [−π, π]n×n, (2)

where arg denotes the argument of a complex number (that is applied element-
wise). Fourier phase retrieval is the problem of reconstructing the original image
only from its magnitude ω.

While zero-padding is often assumed, it is a strong assumption on the support
of x which facilitates the phase retrieval problem. Concretely, it assumes that
we are reconstructing an m×m image

xpadded =

[
x 0n,m−n

0m−n,n 0m−n,m−n

]
∈ Rm×m, (3)

where the 0a,b denotes the a× b matrix with zeros. The oversampled magnitude
can then be written as

ωoversampled = |F(xpadded)| ∈ Rm×m. (4)
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For example, given m = 2n, the magnitude is oversampled by a factor of four
when considering the two-dimensional case. There exist algorithms, e.g., the
Gerchberg-Saxton algorithm [6] or Fienup’s hybrid input-output algorithm [5],
that are able to reconstruct the image from the magnitude that is oversampled
by a factor of four. However, in practice the true images to be recovered are not
zero-padded and the magnitude is almost never oversampled. So the assumption
of zero-padding does not hold in general, as many applications measure the non-
oversampled magnitude (i.e., m = n) posing a great challenge for existing phase
retrievals methods. In this paper, we try to solve the more difficult problem,
where we reconstruct the image from the non-oversampled magnitude ω.

1.1 The Phase Contains the Relevant Information

It is well known, that the phase contains most of the information of the image.
This can be observed by comparing an image with a random phase to an image
with a random magnitude. To create these images we exchange (i) the phase of
an image by a random phase ϕ̃ which has entries that were uniformly sampled
from [−π, π] while respecting the symmetries of the phase (to ensure a real-
valued image), and (ii) the magnitude with a random magnitude ω̃ that has been
sampled from a truncated normal distribution with appropriate parameters. To
create an image given the random phase ϕ̃ and the correct magnitude ω, we
apply the relationship

xϕ̃ = F−1 (ω � exp(iϕ̃)) , (5)

where F−1 is the inverse Fourier transform, i =
√
−1 is the imaginary unit and

� is the elementwise multiplication. Analogously, we construct the image with
the original phase ϕ and a random magnitude ω̃ as

xω̃ = F−1 (ω̃ � exp(iϕ)) . (6)

Fig. 1 shows that the image with the random phase is completely destroyed
whereas the image with the random magnitude only exhibits some cloud-like
artifacts.

1.2 Non-Iterative Phase Retrieval

To tackle the non-oversampled phase retrieval problem we formulate phase re-
trieval as a learning problem. Concretely, non-iterative phase retrieval directly
recovers the image from the magnitude only using a mapping that has been
learned to solve the problem in a particular problem domain. The mapping is
parameterized by a neural network G that is trained to invert the measurement
process, i.e.,

x̂ ≈ G(ω). (7)

Since the measurement process is known, training pairs can be generated on-the-
fly from sample images of a given dataset. The weights of G can then be learned
using stochastic gradient descent by minimizing a loss function. The benefit
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Fig. 1. Most information about the image is contained in the phase, which can be
demonstrated by exchanging the phase with a random phase. For comparison we also
exchange the magnitude with a random magnitude. Original image x, original magni-
tude ω, random phase ϕ̃, image obtained by combining the original magnitude and the
random phase xϕ̃, original phase ϕ, random magnitude ω̃, image obtained by combining
the original phase and the random magnitude xω̃.

of non-iterative methods is the fast computation of the reconstruction because
only a single forward-pass through the neural network is used to calculate the
reconstruction.

1.3 Contributions

This paper addresses the challenge of improving the performance of non-iterative
phase retrieval methods based on neural networks. We show that a multi-scale
approach based on cascading neural networks is able to improve previous non-
iterative phase retrieval methods.

1.4 Related Work

Cascades of neural networks have been proposed previously by Schlemper et
al. [19] but in the context of compressed sensing which is a related but dif-
ferent problem than phase retrieval. Phase retrieval has applications in many
areas of research, e.g., in X-ray crystallography [15], astronomical imaging [5]
or microscopy [25]. We distinguish between three classes of methods for phase
retrieval:

1. Iterative methods without a learned component: Gerchberg and Saxton [6]
proposed a simple algorithm that is based on alternating reflections. The
idea behind this algorithm is to iteratively enforce the constraints in the
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Fourier space and the image space. Later Fienup modified the Gerchberg-
Saxton algorithm in different ways which led to the input-output, the output-
output and the hybrid-input-output (HIO) algorithm [4], where the HIO
algorithm is most commonly used for phase retrieval. Luke [12] analyzed the
relaxed averaged alternating reflection (RAAR) algorithm. In general, these
iterative methods without a learning component work well when the signal
is oversampled.

2. Iterative methods with a learned component: For non-oversampled phase
retrieval Işıl et al. [9] extend the HIO algorithm by a neural network that
removes artifacts. Metzler et al. [14] and Wu et al. [23] use the regularization-
by-denoising framework [18] to solve oversampled phase retrieval problems.
Another class of learned methods rely on the optimization of a latent vari-
able of a learned generative model [7,21] and produce high quality results.
However, these methods require a training phase and an optimization phase
during application and are therefore very costly.

3. Non-iterative methods with a learned component: Non-iterative phase re-
trieval with a deep convolutional neural network that is trained end-to-end
is proposed by Nishizaki et al. [16]. Recently, Tayal et al. [13] use symmetry
breaking to solve the oversampled phase retrieval problem with neural net-
works. The benefit of non-iterative learned methods is the highly efficient
reconstruction of images using only a single forward-pass through the model
while also producing good results in the non-oversampled case.

2 Proposed Method

In this paper, we propose to use a cascaded neural network architecture for
Fourier phase retrieval. Throughout the paper we refer to it as cascaded phase
retrieval (CPR) network. The CPR network consists of multiple sub-networks
G(1), . . . , G(q) which are updated successively to reconstruct the different down-
sampled instances of the original image, where G(2), . . . , G(q) are fed with the
intermediate reconstruction produced by the previous network. In that way, each
of these sub-networks can iteratively refine the reconstruction. In addition to
that, each of the sub-networks is provided with the measurement ω as an input.
The first few sub-networks are trained to reconstruct a down-sampled version of
the image, where we denote the resolutions by np×np for p = 1, . . . , q. The last
sub-networks predict the image at full-resolution nq × nq. The nearest-neighbor
interpolation scheme is used for down-sampling the training images. Fig. 2 shows
an overview of the CPR network architecture.

2.1 Loss Functions

A common choice for reconstruction tasks is the mean squared error (MSE)
which can be defined for a batch X = (x1, . . . , xb) of original images and a
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G(1) G(2) G(3) G(q). . .

. . .

L(1) L(2) L(q)

ω ∈ Rm×m

x̂(q) ∈ Rnq×nqx̂(1) ∈ Rn1×n1 x̂(2) ∈ Rn2×n2

Fig. 2. An overview of the network architecture of the CPR approach. The magnitude
image is fed to each of the networks. The sub-networks are updated stage-wise, i.e., we
use L1 to update G(1), then the output of G(1) is passed as additional input to G(2)

and so on. The first few networks focus on reconstructing a sub-sampled instance of
the image, whereas the last sub-network predict the image at full-resolution.

corresponding batch of reconstructions X̂ = (x̂1, . . . , x̂b) as

L(p)
MSE(X, X̂) =

1

b

1

n2p

b∑
k=1

np∑
u=1

np∑
v=1

(xk[u, v]− x̂k[u, v])
2
. (8)

Although, it seems to work well in practice and provides good gradients for train-
ing, the reconstructions tend to be blurry. This phenomenon has been discussed
in [17]. Hence, we also implement the mean absolute error (MAE), i.e.,

L(p)
MAE(X, X̂) =

1

b

1

n2p

b∑
k=1

np∑
u=1

np∑
v=1

|xk[u, v]− x̂k[u, v]| (9)

for measuring the reconstruction error.

2.2 Training

During training, each sub-network G(p) is trained using an individual loss L(p).
Each sub-network is updated one after another, where the loss L(p) influences
only G(p) and does not impact the parameters of the previous sub-networks.
Alternatively, the CPR network could be trained in an end-to-end fashion, how-
ever, since the intermediate reconstructions have different resolutions, we would
need to carefully choose weights to balance the influence of each loss function
L(1), . . . ,L(q). The training procedure is shown in more detail in Alg. 1.
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Algorithm 1: Training algorithm for CPR network

Input: Dataset X, downsampling functions g2, . . . , gq, networks

G1, . . . , Gq, loss functions L(1), . . . ,L(q)

1 for e = 1, . . . , N do

2 for batch (x1, . . . , xb) in X do

3 Calculate magnitudes Ω = (ω1, . . . , ωb) with ωk = |F(xk)|, for

k = 1, . . . , b

4 for p = 1, . . . , q do

5 Calculate X̃(p) = (x̃1, x̃2, . . . , x̃b), where x̃k = gp(xk) for

k = 1, . . . , b

6 if p == 1 then

7 X̂(p) = Gp(Ω)

8 else

9 X̂(p) = Gp(Ω, X̂(p−1))

10 Update network parameters using ∇L(p)
(
X̂(p), X̃(p)

)
11 end

12 end

13 end

3 Experimental Evaluation

In this section, we empirically evaluate the performance of our model. In order to
do this, we report the results of the fully-convolutional residual network (ResNet)
employed by Nishizaki et al. [16], the multi-layer-perceptron (MLP) used in [21]
and the PRCGAN [21]. In addition to these learned networks we include the
results of the well-established HIO algorithm [4] and the RAAR algorithm [12]
as a baseline.

3.1 Datasets

For the experimental evaluation we use the MNIST [11], the EMNIST [3], the
Fashion-MNIST [24] and the KMNIST [2] datasets. All datasets consist of 28×
28 grayscale images, i.e., n = 28. MNIST contains images of digits, EMNIST
contains images of letters and digits, Fashion-MNIST contains images of clothing
and KMNIST contains images of cursive Japanese characters. Although these
datasets are considered to be toy datasets when it comes to classification tasks,
they provide quite challenging data for two-dimensional Fourier phase retrieval.
For the EMNIST dataset we use the balanced version of the dataset.
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3.2 Experimental Setup

We compare our CPR approach with the MLP and the ResNet that are trained
to minimize LMSE for the MNIST, the EMNIST and the KMNIST dataset.
The LMAE is used for the Fashion-MNIST dataset. Furthermore, we report the
results of an MLP trained with an adversarial loss in combination with LMAE

(PRCGAN) as proposed in [21]. For our proposed CPR network we consider a
cascade of five MLPs with three hidden layers where we increased the scales of
the (intermediate) reconstructions according to Tab. 1. The number of hidden
units for each sub-network is also shown in Tab. 1. Furthermore, we compare the
results with a CPR network that produces intermediate reconstructions at full
scale. We refer to this variant as CPR-FS. All sub-networks are trained using
dropout [20], batch-normalization [8] and ReLU activation functions. For the
last layer we use a Sigmoid function to ensure that the predicted pixels are in
[0, 1]. To optimize the weights we used Adam [10] with learning rate 10−4. We
train all versions of the CPR network for 100 epochs with the LMSE, except
for the Fashion-MNIST dataset where we use LMAE for the final layer. These
choices gave the best results on the validation dataset.

We ran the HIO algorithm and the RAAR algorithm for 1000 steps each and
allowed three random restarts, where we selected the reconstruction x̂ with the
lowest magnitude error |||F(x̂)| −ω||Fro. For HIO we set β = 0.8 and for RAAR
we set β = 0.87.

Table 1. Scales used for the (intermediate) reconstructions and number of hidden units
used for each network of the cascade.

G(1) G(2) G(3) G(4) G(5)

Scale
CPR 7× 7 12× 12 17× 17 22× 22 28× 28
CPR-FS 28× 28 28× 28 28× 28 28× 28 28× 28

Hidden layer size
CPR 1136 1336 1536 1736 1936
CPR-FS 1936 1936 1936 1936 1936

3.3 Metrics

For a quantitative evaluation we compare the MSE and the MAE as defined
in Eq. 8 and Eq. 9. Moreover, we report the structural similarity index (SSIM)
that was introduced by Wang et al. [22]. The SSIM measures perceived quality
of an reconstruction on various windows of an image and takes values between
0 (worst quality) and 1 (perfect reconstruction).

Because translating signals by a constant shift or rotating them by 180◦ does
not change their Fourier magnitude, we considered these reconstructions equally
correct. Thus, we register the predictions (and their rotated variants) using cross-
correlation as described by Brown [1] before calculating the evaluation metrics.
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3.4 Results

Fig. 3 compares six reconstructions by the different methods on the MNIST and
the Fashion-MNIST test dataset. We observe that the HIO algorithm and the
RAAR algorithm fail to recover the image in most of the cases. From all learned
methods, the Resnet produced the worst reconstructions. The estimated images
are very blurry and in some cases the reconstruction exhibit deformations (e.g.,
the last two images from the Fashion-MNIST dataset that are shown in Fig. 3).
The PRCGAN produces reconstructions that are sharp and overall the visual
quality is similar to the reconstructions of the MLP. Most of the learned methods
struggle to recover the first image of the MNIST dataset (depicting the ”5”) .
We suppose that this sample is very different from the samples that were used
to train the networks. Only, the CPR and the CPR-FS network are capable of
recovering this image.

MNIST Fashion-MNIST

HIO [4]

RAAR [12]

ResNet [16]

MLP [21]

PRCGAN [21]

CPR (ours)

CPR-FS (ours)

Original

Fig. 3. Reconstructions from the Fourier magnitudes of samples from the MNIST and
the Fashion-MNIST test dataset.

Tab. 2 shows the MSE, the MAE and the SSIM of the reconstructions and
Fig. 4 visualizes the MSE for the five different learned methods. Overall, the
learned methods outperform RAAR and HIO by a large margin. For MNIST,
EMNIST and KMNIST we see that the CPR network greatly improves the
reconstruction quality compared to the other learned methods. We hypothesize
that our proposed CPR network yields better results when the signals of interest
have a small support (e.g., MNIST, EMNIST, KMNIST). However, for signals
with a large support (e.g., Fashion MNIST) we only observe a small improvement
compared to the other learned methods.
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Table 2. Quantitative comparison of the reconstructions produced by the different
methods. We report MSE, MAE and SSIM between the reconstructions and the original
images of the test dataset. MSE, MAE: lower is better. SSIM: larger is better. The best
result is printed bold.

MNIST EMNIST
MSE MAE SSIM MSE MAE SSIM

HIO [4] 0.0441 0.1016 0.5708 0.0653 0.1379 0.5241
RAAR [12] 0.0489 0.1150 0.5232 0.0686 0.1456 0.4973
ResNet [16] 0.0269 0.0794 0.6937 0.0418 0.1170 0.5741
MLP [21] 0.0183 0.0411 0.8345 0.0229 0.0657 0.7849
PRCGAN [21] 0.0168 0.0399 0.8449 0.0239 0.0601 0.8082
CPR (ours) 0.0123 0.0370 0.8756 0.0153 0.0525 0.8590
CPR-FS (ours) 0.0126 0.0373 0.8729 0.0144 0.0501 0.8700

Fashion-MNIST KMNIST
MSE MAE SSIM MSE MAE SSIM

HIO [4] 0.0646 0.1604 0.4404 0.0835 0.1533 0.3414
RAAR [12] 0.0669 0.1673 0.4314 0.0856 0.1559 0.3208
ResNet [16] 0.0233 0.0820 0.6634 0.0715 0.1711 0.3783
MLP [21] 0.0128 0.0526 0.7940 0.0496 0.1168 0.5991
PRCGAN [21] 0.0151 0.0572 0.7749 0.0651 0.1166 0.5711
CPR (ours) 0.0115 0.0503 0.8077 0.0447 0.1068 0.6488
CPR-FS (ours) 0.0113 0.0497 0.8092 0.0433 0.1034 0.6626

MNIST EMNIST Fashion-MNIST KMNIST
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ResNet
MLP
PRCGAN
CascPR
CascPR-FS

Fig. 4. Comparison of the MSE for the results of the learned methods.
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3.5 Intermediate Prediction at Full-Scale

We briefly study the effect of predicting down-sampled versions of the image.
Therefore, we evaluate the CPR-FS network which produces full-scale interme-
diate reconstructions. Tab. 2 also shows that the CPR-FS network performs
similarly in terms of the overall reconstruction quality. For the EMNIST, the
Fashion-MNIST and the KMNIST dataset the full-scale variant is slightly better.
However, due to the larger input, the sub-networks need to have more parameters
and thus training is more expensive.

3.6 Ablation Study

In this section, we demonstrate that increasing the number of sub-networks
has a beneficial effect on the overall reconstruction quality. To do so, we train
five network cascades exemplarily on the EMNIST dataset where we increase
the number of sub-networks from one to five. We report the MSE on the test
dataset after 50 epochs. Fig. 5 shows that the MSE for the EMNIST dataset
decreases with an increasing number of sub-networks used for the CPR-FS ap-
proach. Furthermore the gain in terms of MSE saturates after q = 5, such that
additional sub-networks do not bring any further improvements. We expect the
same relative behavior on the other datasets when increasing q.

1 2 3 4 5
Number of sub-networks

0.015

0.016

0.017

0.018

0.019

0.020

0.021

M
ea

n 
sq

ua
re

d 
er

ro
r

Fig. 5. Test MSE on the EMNIST test dataset for different number of sub-networks.
Error bars indicate the 95% confidence interval.

4 Conclusion and Future Work

In this paper, we use a cascade of neural networks for non-oversampled Fourier
phase retrieval. Our approach successively reconstructs images from their Fourier
magnitudes and outperforms other existing non-iterative networks noticeably in
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terms of the reconstruction quality. However, non-iterative methods do not yet
reach the reconstruction quality of iterative methods with a learning component
which require high computational cost at test time.

Future work could also evaluate different strategies for training the neural
network cascade. For example, greedy sub-network-wise training could be imple-
mented and compared with our training procedure. Moreover, the CPR network
architecture can easily be adapted to solve inverse problems other than Fourier
phase retrieval.
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