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Abstract. Two-dimensional array-based datasets are pervasive in a variety of do-
mains. Current approaches for generative modeling have typically been limited
to conventional image datasets and performed in the pixel domain which does not
explicitly capture the correlation between pixels. Additionally, these approaches
do not extend to scientific and other applications where each element value is
continuous and is not limited to a fixed range. In this paper, we propose a novel
approach for generating two-dimensional datasets by moving the computations
to the space of representation bases and show its usefulness for two different
datasets, one from imaging and another from scientific computing. The proposed
approach is general and can be applied to any dataset, representation basis, or
generative model. We provide a comprehensive performance comparison of var-
ious combinations of generative models and representation basis spaces. We also
propose a new evaluation metric which captures the deficiency of generating im-
ages in pixel space.

Keywords: Generative Models, Image Representation Bases, Normalizing Flows,
Independent Component Analysis, Generative Adversarial Networks

1 Introduction

The high volume and unique requirements of scientific image datasets necessitate the
development of novel approaches for data modeling. The bedrock assumption of all
modeling methodologies is the existence of spatiotemporal homogeneities in the data
which can be exploited. However, in contrast to two-dimensional image modeling, sci-
entific data are underpinned by unusual geometries and topologies. This “exotic setting”
has to be leveraged and addressed by machine learning methods in their quest to find
homogeneities which in turn can be efficiently exploited using representation bases.
Additionally, unlike image datasets where pixel values are discrete and within a cer-
tain range, the elements of scientific datasets are continuous and can vary for each data
point. In this paper, we propose a novel approach for modeling the probability distri-
bution of two-dimensional datasets while developing a new measure for evaluating the
models. The proposed approach can be applied to image and scientific datasets, with
elements that are either discrete or continuous valued. Generative models in machine
learning have drawn significant attention with many applications in different fields, in-
cluding, but not limited to, computer vision, and physics-based simulations for scientific
datasets. The importance of generative modeling and approximating data distributions
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stems from the fact that unlabeled data are relatively abundant compared to labeled
data, and this has applications in density estimation, outlier detection, and reinforce-
ment learning. Deep generative modeling also has emerged during the bloom of deep
learning and takes advantage of advances in computational power [16,18]. However,
these models have not leveraged classical methods of data representation. These mod-
els usually learn the probability distribution of the images directly in pixel space, which
is costly and inefficient while ignoring 50 years of image representation bases used in
the compression literature. Furthermore, learning the distribution of the data in pixel
space does not leverage the correlation information among pixels.

Representation basis techniques aim to transform data in such a way that useful as-
pects of data, for example statistical properties, are captured in the transformed space.
Principal Component Analysis (PCA), Independent Component Analysis (ICA), and
tensor decompositions using the higher order SVD (which we henceforth encapsulate
as the Tucker decomposition for the sake of convenience) are among the widely used
methods in this area. The other utility of representation bases is dimensionality reduc-
tion, which can be considered as a kind of lossy compression, i.e., it is possible to
represent the data with a subset of coefficients with desired accuracy. Therefore, di-
mensionality reduction also brings a compression aspect into our approach.

We propose an approach to integrate image representation basis techniques in gen-
erative image modeling and perform a comparison among three generative models—
generative adversarial networks (GANs), normalizing flows (NFs), and Gaussian mix-
ture modeling (GMM)—and analyze their performance. The results suggest that this is
a promising direction to pursue for efficient two-dimensional dataset generative mod-
eling, in particular for applications where resources are scarce and speed of training
matters. We summarize the contributions of our work below:

– We propose an approach for two-dimensional datasets which exploits representa-
tion bases to capture the correlation among elements explicitly and therefore makes
the generation process fast and efficient. This approach is general and can be ap-
plied to image and scientific datasets where the underlying data are respectively
discrete with a fixed range and continuous with a free range.

– We propose a new quantitative metric to compare the performance of our approach
for different choices of generative models and representation bases. This metric
seems to capture the quality of the learned probability distribution better than con-
ventional metrics, especially for scientific data.

The rest of the paper is outlined as follows. In section 2, we cover previous work on
generative models utilizing representation bases or compression concepts. In section 3,
we provide an overview of representation basis approaches used in this work. In sec-
tion 4, our methodology for hybrid generative modeling is outlined. Implementation
details and experiments are discussed in section 5. Section 6 concludes the paper.

2 Previous Work

Learning the probability distribution of datasets is a long-standing problem, and gen-
erative models in machine learning constitute an important class of models with a rich
literature. The Gaussian mixture model (GMM) is one of the important and classical
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models for generative modeling [21] while deep generative models rely on multilayer
perceptrons (with deep architectures) for learning the data distribution.

Despite the importance of image representation bases and their abundant application
in the compression literature, there are very few approaches which learn image proba-
bility distributions by marrying image representation bases (thereby moving away from
pixel space) and deep learning-based generative models. Our proposed work therefore
bridges the gap between image representation and deep learning-based image genera-
tion. As we will demonstrate in section 4, our approach combines parametric and non-
parametric modules where the parametric component is based on representation bases,
while the nonparametric module is based on machine learning methods.

Generative Latent Optimization (GLO) [3] was proposed as a deep generative model
which learns a deep CNN generator to map latent vectors to data by a Laplacian pyramid
loss function while forcing latent representations to lie on a unit sphere. In this model,
however, it is not possible for the generator to randomly sample from a known distri-
bution. Implicit Maximum Likelihood Estimation (IMLE) [20] uses a non-adversarial
approach for discovering the mapping between two densities. In this model, latent vari-
ables are mapped into image space via a generator and for each training image, the near-
est generated image is found such that the `2 distance between the image and mapping is
minimized and the generator is repeatedly optimized via a nearest neighbor-based loss.
IMLE optimization is costly and the generated images are typically blurry. The work in
[12] proposed the idea of combining GLO and IMLE to learn a mapping for projecting
images into a spherical latent space and learning a network for mapping sampled points
from latent space to pixel image space in a non-adversarial fashion. Generative Latent
Flow [25] learns the latent space of data via an autoencoder and then maps the distribu-
tion of latent variables to i.i.d. noise distributions. In the wavelet domain, SWAGAN [8]
proposed a wavelet-based progressive GAN for image generation which improves vi-
sual quality by enforcing a frequency-aware latent representation. Our proposed method
is different from the aforementioned approaches because it can be incorporated into any
generative model and therefore allows for sampling from a known distribution when-
ever necessary. Furthermore, it has a parametric module and when used within a GAN
architecture, it is trained via an adversarial loss.

At the intersection of compression and deep generative models, Agustsson et al.
[2] proposed a framework based on GANs for generating images at lower bitrates.
The model learns an encoder which includes a quantization module which is trained
in combination with a multiscale discriminator. Kang et al. [16] proposed a framework
for generating JPEG images via GANs. They proposed a generator with different lay-
ers for chroma sampling and residual blocks. Our approach is also different from these
approaches because image compression concepts are directly used in the form of repre-
sentation bases (like Tucker etc.) coupled with dimensionality reduction.

The Tucker decomposition [23], PCA [15], and ICA [14] are among the widely-used
approaches which linearly transform data into a new space where data can be presented
in a more structured way and more efficiently represented. Dimensionality reduction is
an important byproduct of representation bases. Choosing a subset of coefficients corre-
sponding to the representation can result in data compression and has been extensively
used in the literature. As discussed earlier, our use of these methods is for the purpose
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of converting from the original data to a new space that captures the correlation between
elements as well as providing an efficient representation for further processing. Therein
lies the novelty of our work. As far as we know, this is the first work that conducts a
comprehensive comparison at the intersection of generative models and representation
bases while leveraging recent advances in adversarial learning.

3 Representation Bases

Finding a proper representation of random multivariate data is a key to many domains
[14]. Linear transformations have specifically been of interest due to their conceptual
and computational simplicity. The following techniques have been used in our work:

1. Principal Component Analysis (PCA): PCA linearly transforms the data by dis-
covering orthogonal projections of high variance. Given a set of vectors {xi}N

i=1, xi ∈
RD, a correlation matrix is computed as C = Σ N

i=1xixT
i , which has the following

eigen decomposition: C = EΛET = EΛ
1
2 Λ

1
2 T ET = EΛ

1
2 (EΛ

1
2 )T , where Λ is a

diagonal matrix of eigenvalues, and their corresponding eigenvectors constitute
the columns of E. Dimensionality reduction is performed by projecting data onto
eigenvectors corresponding to the first d maximum eigenvalues, which captures
the maximum variance and is scaled with corresponding eigenvalues, i.e., yi = Fxi,
where F is the top-left block of (EΛ

1
2 )T with dimension D×d. Data reconstruction

is performed via the operation of F−1 on the obtained coefficients.
2. Independent Component Analysis (ICA): ICA attempts to decompose multi-

variate data into maximally independent non-Gaussian components. Such a rep-
resentation seems to be able to capture the essential structure of the data and pro-
vide a suitable representation which can be taken advantage of in neural networks
[14]. FastICA, used here, introduced a different measure for maximizing the non-
Gaussianity of rotated components [13].

3. Tucker Decomposition: The Tucker decomposition decomposes a tensor T of or-
der N into a core tensor with the same order and N unitary matrices. It is viewed
as a higher order singular value decomposition (HOSVD). If we consider an im-
age dataset as a tensor T ∈ Rd1×d2×d3 of order 3, its Tucker decomposition is
T = T ×1 U (1)×2 U (2)×3 U (3), where T ∈ Rd1×d2×d3 is the core tensor which,
as a lower rank approximation of T , gives a representation basis for it. Unitary
or factor matrices are two-dimensional matrices which help in projecting T into
bases T . The Tucker decomposition is widely used in compression by consider-
ing a subset of coefficients which carry most of the information in the dataset and
eliminating lower rank coefficients, which typically has no adverse affect on tensor
reconstruction.

We also utilize the Discrete Wavelet Transform (DWT) as a representation basis
for a “held out” model. We use the DWT to set up a probabilistic model which can
act as a basis for comparison for all generative approaches. The DWT offers a suitable
and general basis for image representation which captures both frequency and location
information. Therefore, it is highly viable as a benchmark model. We calculated DWT
coefficients of datasets with a symmetric and biorthogonal 1.3 scaling function. We
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trained a Gaussian mixture model on all DWT coefficients (DWT-GMM) except the
block of high frequency coefficients. The DWT-GMM is used as a benchmark for all
generative models and is not used as a separate generative approach (but we plan to
explore this possibility in future work).

4 Methodology
Our two stage approach comprising representation basis projection and deep learning
is applicable to general 2D datasets. Below, we set up a cross-product of approaches
wherein representation bases are paired with deep generative models. While we have
elected not to explore variational autoencoders (VAEs) in the present work, this can be
easily accommodated in the future.

1. Data Projection: We begin by projecting images and two-dimensional datasets into
a representation basis space introduced in the previous section. Depending on the
nature of the dataset, generative model, or representation basis approach, data pre-
processing steps and some model customization are required to improve the results.
In section 5, we explain the preprocessing steps or model specifications adopted for
the datasets used in this study.

2. Generative Modeling: Generative models are applied to learn the distribution of a
subset of transformed coefficients obtained via one of the dimensionality reduction
procedures detailed in section 3. This is an efficient use of the compression aspect
of the representation basis which makes the generative process fast and efficient.
This way, the focus of generative modeling shifts from learning the distribution of
data in pixel space to that of the distribution of coefficients in a more informative
and structured space.

The generative models used in this work for structured image generation are GANs,
NFs, and GMMs. The reason for this choice of models is the different approaches they
take towards learning the data distribution. These models are briefly outlined below. For
detailed explanation of generative models and their variants, please see [9,19].

GANs are deep generative models which have shown promising results in generating
high-resolution images [9]. GANs are composed of two building blocks: generator (G)
and discriminator (D) networks which are trained in an adversarial fashion to defeat
each other. A GAN is formulated as a minimax zero-sum game in which the generator
and discriminator try to optimize the value function V from their own perspective:

min
G

max
D

V (G,D) = Ey∼py [logD(y)]+Ez∼pz [log(1−D(G(z)))], (1)

where pz is a predefined prior for the input noise variable z, and py is the true distribu-
tion of the data. Despite their impressive results on learning complex data distributions
and generating natural-looking images, GANs cannot perform inference and evalua-
tion of the probability density of new images and datasets—especially important in the
domain of scientific datasets.
NFs were proposed as a generative model based on random variable transformations
to approximate a tractable probability distribution such that sampling and inference is
exact and efficient [22]. The basic idea of NFs is to transform a simple probability distri-
bution (typically Gaussian) into a complex one via learning a sequence of invertible and
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differentiable mappings (bijectors). This is the generative direction. Applying a chain
of mappings (bijectors) fk, k = 1,2, . . . ,K on the random variable z0 ∼ p0(z0) results in
a random variable zK = fK ◦ fK−1 ◦ . . .◦ f1(z0) with probability distribution pK :

pK(zK) = p0(z0)
K

∏
k=0

∣∣∣∣det
∂ fk

∂zk−1

∣∣∣∣−1

. (2)

In order for these transformations to be practical, determinants of their Jacobians
should be easy to compute. Some of the suggested approaches are RealNVP [7], Glow
[17], and FFJORD [10]. To implement NFs, we used the probability library of Ten-
sorFlow [1] and its distributions module. Bijectors were also trained by the FFJORD
module in TensorFlow.

The GMM is a parametric method for probability density function estimation. The
density function is represented as a weighted sum of Gaussian components [21]. The
Gaussian mixture model represents data as normally distributed subpopulations with
a hidden, unknown digital membership. The density of X is formulated as a weighted
sum of K Gaussian distribution N(µk,Σk) as follows:

p(x|π,µ,Σ) =
K

∑
k=1

πkN(x; µk,Σk); with
K

∑
k=1

πk = 1. (3)

The parameters of the GMM model are estimated by maximum likelihood estimation
(MLE). Typically, an iterative Expectation-Maximization (EM) algorithm [6] is applied
which turns out to be reasonably efficient for this MLE problem.

5 Experimental Results
In this section, we detail the experimental evaluation of the two-step process described
in the previous section on two different datasets, one from image processing and the
other from scientific computing. To compare the performance of generative models in
representation bases, we executed a set of experiments on the cross product of models
and representation bases for these datasets.

With most image datasets, the pixel intensities range from 0 to 255 and are fre-
quently normalized to a different range like [0,1] for training. Unlike image datasets,
scientific datasets are not visually meaningful to human perception. Hence, measures
like FID [11] developed for image quality of GANs based on the Inception v3 model are
not immediately applicable to scientific datasets like XGC, where each two-dimensional
slice has a different range, so there is no unified range in this dataset like there is in typ-
ical image datasets. Based on this observation, we propose a likelihood-based metric
that we believe will be more suitable for this and other similar scientific datasets.

Datasets. We experimented with two datasets: Fashion MNIST [24] and XGC [5].
Fashion MNIST is a standard, curated and widely used dataset consisting of ten classes
of clothing items. XGC consists of 16 planes corresponding to a doughnut’s cross-
sections. Each plane consists of 12,458 nodes with each node representing a histogram
of perpendicular and parallel velocities of photons at specific checkpoints (please see
Figure 1). The histograms are not necessarily normalized. The velocity histogram of one
of these nodes is depicted on the left in Figure 1. The goal is to derive a generative model
to simulate the two-dimensional velocity histograms of particles which are represented
as images in a compressed and efficient way.
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Fig. 1. Depiction of a node in the XGC dataset (left). The x and y axes of the histogram represent
the perpendicular and parallel velocities of photons, respectively. Samples from dataset (right).

Preprocessing. Slightly differing approaches were taken for the two datasets for pro-
jection to the PCA/ICA basis. Since the ICA bases generate an unconstrained range
of pixel values, for the Fashion dataset, we first project the image intensities from a
discrete range of [0,255] to the continuous range [0,1] and then project these intensity
values to a wider range using an inverse sigmoid function y(x) = log x

β (1−x) , where β is
a gradient slope factor. PCA/ICA is then applied to this new range of values. Since the
inverse sigmoid is not defined at 0 and 1, we map all intensities to the interval [ε,1−ε]
for some value of ε and then apply the inverse sigmoid before applying PCA and ICA.
In our experiments, ε is set to 0.001. The inverse sigmoid is used because the last non-
linear activation function in the generator of the GAN architecture for this dataset is
sigmoidal, and therefore, we can match the intensities to the training data.

For the XGC dataset, the values are normalized numbers of particles in simulation
which have a specific perpendicular and parallel velocity at a checkpoint. These values
are normalized by the mean and standard deviation of each image separately (essentially
a per image Z score). Because each image has a different range, it impacts the choice
of architecture and activation function in generative models.
Generative Models Architecture. Figure 3 depicts the architecture of a GAN for the
XGC dataset. We used upsampling (conv2DTranspose) layers in the generator with a
linear activation function in the last layer to allow for the range of generated images to
be chosen freely for each image. This way, the generator is constrained to learn coeffi-
cients such that, after image reconstruction (via the transformation matrix), the values
follow an acceptable range that is similar to the training set. The GAN architecture for
Fashion is very similar to XGC, except for the number of filters and the use of sigmoidal
activation instead of linear activation at the last layer of the generator.

The advantage of representation bases and dimensionality reduction is more tan-
gible in NFs because these models are computationally expensive: when input/output
dimensions are increased, the number of training parameters grows rapidly. We consid-
ered four layer of bijectors and 50 additional nodes in the hidden layers of bijectors.
Dimensionality Reduction. Our goal is to learn the distribution of a subset of coeffi-
cients as an efficient approach to data generation. The number of top eigenvalues and
corresponding eigenvectors for each dataset was determined based on the `2 distance
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Fig. 2. Fashion generated images via ICA-GAN (left) and pixel-GAN (right) at epoch 10 (upper
row) and epoch 50 (lower row). Image samples are randomly drawn and not cherry-picked. ICA-
GAN generates plausible images close to the dataset from early iterations, with much fewer
artifacts in terms of shape and texture. Pixel-GAN takes many more iterations to converge, with
some images having artifacts.

between the training dataset and reconstructed images. For Fashion MNIST, more co-
efficients were needed to meet a certain error threshold: 324 and 400 coefficients were
chosen respectively for XGC and Fashion datasets. We compare the performance of
generative models in learning the distribution of a subset of coefficients for each method
via different measures. We observed that for XGC, PCA, and ICA have similar perfor-
mance across the board. For Fashion however, ICA had better performance than PCA,
and therefore, we only focused on the performance of ICA-GAN for this dataset.

Metrics. Many qualitative and quantitative measures have been proposed to evalu-
ate generated images and learned probability distributions of generative models [4].
We consider two conventional and widely-used quantitative metrics—Frechet inception
distance (FID) and average log-likelihood (entropy) of samples in kernel density esti-
mation (KDE) [9] for evaluating the learned distributions and generated samples from
different models. FID was proposed as a statistical metric to measure the similarity be-
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tween two distributions. First, by running the Inception v3 net on real and generated
images, high level features (pool3 layer) are extracted as an embedding for images, and
then a separate multivariate Gaussian distribution is fitted to real and generated embed-
dings. FID does not seem to be a suitable metric for evaluating scientific dataset genera-
tion. The features extracted from a deep learning network trained on real images which
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Input
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matrix

1024*324
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layer Matrix
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to Image

32*32

Conv2D
64@16*16
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64@8*8

 Input Image
32*32

Output

FC 
layer

Flatten

Output

Fig. 3. The GAN architecture for the XGC dataset; gener-
ator upper row and discriminator lower row. A subset of
representation bases is chosen.

are perceptually meaningful to
human vision are not neces-
sarily appropriate for scientific
data (where perceptual quality
is not used). Furthermore, FID
only provides a single scalar
measure for the entire dataset
and does not take the actual like-
lihood of the training set or gen-
erated images into account. For
these reasons, we resort to met-
rics based on probability dis-
tributions and the likelihood of
generated samples with respect
to a reference model. KDE di-
rectly fits a probability density
model to the generated images. We calculated the average of the negative log-likelihood
(NLL) i.e. entropy of images sampled from learned distributions with respect to this ref-
erence density model (Table 1). However, as mentioned above, it is much more efficient
to learn probability distributions in the space of a representation basis than in pixel
space. These considerations affect our choice as described below. As mentioned in sec-
tion 3, we consider a reference model which is essentially a GMM on DWT coefficients.
This model serves as a benchmark and is not used for generation or sampling. The
number of coefficients used is 3× 256 and 3× 324 coefficients for Fashion and XGC
datasets, respectively. To assess the learned density distributions via different models,
we use the average of NLL values of sampled images from learned distributions via
GANs, GMM, and NFs in the DWT-GMM space—essentially the DWT entropy. Fur-
thermore, we compute the `1 distance between the density curves obtained via KDE of
the NLL values of generated images in the DWT-GMM model (see Figures 4 and 5).
Essentially, this distance is computed between the density curve of each model and the
density curve of the real dataset on the interval that contains most of its density volume.

Results and Discussion Experimental results for different combinations of modeling
and generative bases are provided in Table 1 for the two datasets. These results show
that ICA-GANs preserve the statistical properties of each dataset despite higher FID
scores compared to equivalent pixel-GANs. The very high entropy of pixel-GAN for the
XGC dataset shows that the learned distribution of data via pixel-GAN is far from the
true distribution despite generating images which are visually similar to the training set.
This indicates that generating a scientific dataset in pixel space may not be a reasonable
approach. ICA-GAN (at epoch 50) had the best performance on the Fashion dataset
which is a curated dataset with images being approximately registered within classes.
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Table 1. Image generative models using representation bases with dimensionality reduction (324
and 400 coefficients: PCA, ICA, Tucker for XGC and Fashion datasets respectively). Numbers
10 and 50 in the 4th column denote the learned distribution at that epoch number. Metrics: DWT
and KDE entropies (DWT-E and KDE-E respectively), FID and the `1 distance (scaled by 10−2).
For all metrics, lower is better.

Dataset Model Loss Target Dist. DWT-E KDE-E FID `1

XGC

GAN ADV

ICA −2,239 −82 5.6 4.0
PCA −2,261 −76 5.6 4.0

Tucker 25,745 −33 13.9 5.0
Pixel 311,895 207 2.8 5.0

NF MLE ICA 3,241 477 6.0 4.8
Tucker 1,682 1,105 26 -

GMM MLE ICA −1,096 39 5.5 4.3
Tucker −2,474 −455 2.4 3.0

Fashion

GAN ADV

ICA 10 −2,451 −453 4.9 2.7
ICA 50 −2,550 −450 2.2 2.2
Pixel 10 −1,576 −307 5.0 3.5
Pixel 50 −1,841 −346 1.3 2.6
Tucker −1,146 −333 2.2 4.4

NF MLE ICA −1,078 −329 2.9 8.9

GMM MLE ICA −1,033 −361 2.3 5.7
Tucker −2,660 −480 21 2.6

Note that we cannot expect scientific data to be pre-registered. The better performance
of the pixel-GAN on Fashion compared to XGC is partly because of the unified range of
pixel intensities for Fashion allowing for the use of a single sigmoid activation function
which confines the generated pixel values within [0,1]. Overall, the results also show
that GMMs with a representation basis (after preprocessing) are powerful generative
models for two dimensional datasets, regardless of whether the data arise from standard
imagery or from scientific simulation.

Figure 2 shows that with a reasonable and simple architecture of GANs for learn-
ing the distribution of ICA coefficients of the Fashion dataset, it is possible to generate
plausible looking images which are mostly texture and shape artifact-free from early
iterations. Furthermore, Figure 4 (and the `1 distance in Table 1) also indicate that the
generated images by ICA-GAN has the closest entropy to the Fashion dataset in both
DWT-GMM and KDE benchmark models among deep generative models and repre-
sentation bases. The pixel-GAN on the other hand does not produce close-to-dataset
images until later iterations (with an identical discriminator) while many of the images
have artifacts in terms of shape and texture. From Figure 5, it might seem that the GMM
has a better performance compared to the ICA-GAN for XGC data. However, it is im-
portant to note that less than 2

3 of the ICA-GMM samples fall in the negative range of
NLL while ICA-GAN shows a more homogeneous behaviour and hence lower entropy.
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Fig. 4. Fashion negative log-likelihood (NLL) density distributions in the DWT-GMM bench-
mark model. For better demonstration, only samples with negative NLL are plotted (data density
concentration). ICA-GAN samples depict NLL values near NLL of Fashion dataset.
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Fig. 5. XGC negative log-likelihood (NLL) density distributions in the DWT-GMM benchmark
model. ICA-GMM seems to have better NLLs (lower entropy) however, GANs perform better on
average since ICA-GMM has only part of samples (7K out of 12K) in negative range.

6 Conclusions
We proposed a framework for fast and efficient image generation that combines a repre-
sentation basis approach with deep generative modeling. Our rationale was that learning
a basis for data which preserves the statistical structure and correlation among image
pixels can be a useful preprocessing step for the development of generative models.
Furthermore, representation bases can be deployed for data compression during gener-
ation which is a boon for computationally intensive generative modeling frameworks.
Immediate future work will focus on using over-complete dictionaries and coefficient
compression within generative modeling.
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