Skip to main content

Efficient Cluster Parallelization Technology for Aerothermodynamics Problems

  • Conference paper
  • First Online:
Book cover Parallel Computing Technologies (PaCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12942))

Included in the following conference series:

  • 831 Accesses

Abstract

HPC modeling of gas dynamic and aerodynamic problems is very important for the development of aircrafts, missiles and space vehicles and requires a lot of processor time. For this reason, the numerical codes for such simulations must be efficiently parallelized. This paper presents a technological approach that greatly simplifies the parallelization of problems with unstructured grids. The paper introduces the principle of a unified mathematical address space of the problem for all used cluster nodes. This technology also simplifies grid partitioning. Parallelization of the code is carried out with minimal effort, without changing the main parts of the program. As a result, a single computational code is produced for all regimes – sequential, multi-threaded, and cluster. Performance measurements confirm the good scalability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shang, J.S., Surzhikov, S.T.: Simulating nonequilibrium flow for ablative Earth reentry. J. Spacecr. Rockets 47, 806–815 (2010). https://doi.org/10.2514/1.49923

    Article  Google Scholar 

  2. Zheleznyakova, A.L., Surzhikov, S.T.: Application of the method of splitting by physical processes for the computation of a hypersonic flow over an aircraft model of complex configuration. High Temp. 51(6), 816–829 (2013). https://doi.org/10.1134/S0018151X13050234

    Article  Google Scholar 

  3. Afzal, A., Ansari, Z., Faizabadi, A.R., Ramis, M.K.: Parallelization strategies for computational fluid dynamics software: state of the art review. Arch. Comput. Methods Eng. 24(2), 337–363 (2016). https://doi.org/10.1007/s11831-016-9165-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Probst, A., Knopp, T., Grabe, C., Jägersküpper, J.: HPC requirements of high-fidelity flow simulations for aerodynamic applications. In: Schwardmann, U., et al. (eds.) Euro-Par 2019. LNCS, vol. 11997, pp. 375–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48340-1_29

    Chapter  Google Scholar 

  5. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, Harlow (2007)

    Google Scholar 

  6. Jost, G., Robins, B.: Experiences using hybrid MPI/OpenMP in the real world: parallelization of a 3D CFD solver for multi-core node clusters. Sci. Program. 18, 127–138 (2010). https://doi.org/10.3233/SPR-2010-0308

    Article  Google Scholar 

  7. Wang, B., Hu, Z., Zha, G.-C.: General subdomain boundary mapping procedure for structured grid implicit CFD parallel computation. J. Aerosp. Comput. Inf. Commun. 5, 425–447 (2008). https://doi.org/10.2514/1.35498

    Article  Google Scholar 

  8. Gourdain, N., et al.: High performance parallel computing of flows in complex geometries: I. Methods. Comput. Sci. Discov. 2, 015003 (2009). https://doi.org/10.1088/1749-4699/2/1/015003

    Article  Google Scholar 

  9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/10.1137/S1064827595287997

    Article  MathSciNet  MATH  Google Scholar 

  10. Karypis, G., Kumar, V.: Multilevel \(\kappa \)-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48, 96–129 (1998). https://doi.org/10.1006/jpdc.1997.1404

    Article  Google Scholar 

  11. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: ACM’69: Proceedings of 24th National Conference, pp. 157–172 (1969). https://doi.org/10.1145/800195.805928

  12. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.1109/99.660313

    Article  Google Scholar 

  13. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of The Message-Passing Interface. The MIT Press, Cambridge (1999). https://doi.org/10.7551/mitpress/7055.001.0001

    Book  Google Scholar 

  14. Shang, Z.: High performance computing for flood simulation using Telemac based on hybrid MPI/OpenMP parallel programming. Int. J. Model. Simul. Sci. Comput. 5(04), 1472001 (2014). https://doi.org/10.1142/S1793962314720015

    Article  Google Scholar 

  15. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Task-parallel programming on NUMA architectures. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 638–649. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32820-6_63

    Chapter  Google Scholar 

  16. Bessonov, O.: Technological aspects of the hybrid parallelization with OpenMP and MPI. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 101–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_9

    Chapter  Google Scholar 

  17. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991). https://doi.org/10.1016/0021-9991(91)90211-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Godunov, S.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. sbornik 47(89) (3), 271–306 (1959). (in Russian)

    Google Scholar 

  19. Kharchenko, N., Kryukov, I.: Aerothermodynamics calculation of the EXPERT reentry flight vehicle. J. Phys.: Conf. Ser. 1009, 012004 (2018). https://doi.org/10.1088/1742-6596/1009/1/012004

    Article  Google Scholar 

  20. Kharchenko, N., Kotov, M.: Aerothermodynamics of the Apollo-4 spacecraft at earth atmosphere conditions with speed more than 10 km/s. J. Phys.: Conf. Ser. 1250, 012012 (2019). https://doi.org/10.1088/1742-6596/1250/1/012012

    Article  Google Scholar 

  21. Ermakov, M., Kryukov, I.: Supercomputer modeling of flow past hypersonic flight vehicles. J. Phys.: Conf. Ser. 815, 012016 (2017). https://doi.org/10.1088/1742-6596/815/1/012016

    Article  Google Scholar 

  22. Zheleznyakova, A.L.: Effective domain decomposition methods for adaptive unstructured grids applied to high performance computing for problems in computational aerodynamics. Phys.-Chem. Kinet. Gas Dyn. 18(1) (2017). (in Russian). http://chemphys.edu.ru/issues/2017-18-1/articles/673/

Download references

Acknowledgements

This work was partially supported by the Russian State Assignment under contract No. AAAA-A20-120011690131-7. The author thanks Dr. N. Kharchenko for his help and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Bessonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bessonov, O. (2021). Efficient Cluster Parallelization Technology for Aerothermodynamics Problems. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86359-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86358-6

  • Online ISBN: 978-3-030-86359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics