Skip to main content

Sparse System Solution Methods for Complex Problems

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12942))

Included in the following conference series:

Abstract

Sparse system solution methods (S\({}^3\)M) is a collection of interoperable linear solvers and preconditioners organized into a C++ header-only library. The current set of methods in the collection span both rather traditional Krylov space acceleration methods and smoothers as well as advanced incomplete factorization methods and rescaling and reordering methods. The methods can be integrated into algebraic multigrid and multi-stage fashion to construct solution strategies for complex linear systems that originate from coupled multi-physics problems. Several examples are considered in this work, that includes Constrained Pressure Residual (CPR) multi-stage strategy for oil & gas problem and Schur complement method for the system obtained with mimetic finite difference discretization for anisotropic diffusion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003)

    Article  MathSciNet  Google Scholar 

  2. Cremon, M.A., Castelletto, N., White, J.A.: Multi-stage preconditioners for thermal-compositional-reactive flow in porous media. J. Comput. Phys. 418, 109607 (2020)

    Article  MathSciNet  Google Scholar 

  3. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015)

    Article  Google Scholar 

  4. PETSc - Portable, Extensible Toolkit for Scientific Computation. https://www.mcs.anl.gov/petsc. Accessed 25 March 2021

  5. HYPRE: Scalable Linear Solvers and Multigrid Methods. https://computing.llnl.gov/projects/hypre. Accessed 25 March 2021

  6. Trilinos - platform for the solution of large-scale, complex multi-physics engineering and scientific problems. http://trilinos.org/. Accessed 25 March 2021

  7. AMGCL - a header-only C++ library for solving with AMG method. https://amgcl.readthedocs.io/en/latest/index.html. Accessed 25 March 2021

  8. INMOST: a toolkit for distributed mathematical modelling. http://www.inmost.org. Accessed 25 March 2021

  9. Vassilevski, Y.V., Konshin, I.N., Kopytov, G.V., Terekhov, K.M.: INMOST - Programming Platform and Graphical Environment for Development of Parallel Numerical Models on General Grids. Moscow University Press, Moscow (2013). (in Russian)

    Google Scholar 

  10. Vassilevski, Y., Terekhov, K., Nikitin, K., Kapyrin, I.: Parallel Finite Volume Computation on General Meshes. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47232-0

  11. SAMG (Algebraic Multigrid Methods for Systems) - Efficiently solving large linear systems of equations. https://www.scai.fraunhofer.de/en/business-research-areas/fast-solvers/products/samg.html. Accessed 25 March 2021

  12. Stüben, K., Ruge, J.W., Clees, T., Gries, S.: Algebraic Multigrid: from Academia to Industry, pp. 83–119. Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62458-7_5

    Book  Google Scholar 

  13. Gries, S., Stüben, K., Brown, G.L., Chen, D., Collins, D.A.: Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations. In: Proceedings of SPE Reservoir Simulation Symposium 2013, Vol. 1. The Woodlands, Texas, USA, pp. 18–20 (2013)

    Google Scholar 

  14. Gries, S., Metsch, B., Terekhov, K.M., Tomin, P.: System-AMG for fully coupled reservoir simulation with geomechanics. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2019)

    Google Scholar 

  15. MUMPS - MUltifrontal Massively Parallel sparse direct Solver. http://mumps.enseeiht.fr/. Accessed 25 March 2021

  16. SuperLU - Supernodal LU solver for large, sparse, nonsymmetric linear systems. https://portal.nersc.gov/project/sparse/superlu/. Accessed 25 March 2021

  17. PARDISO - PARallel DIrect SOlver. https://www.pardiso-project.org/. Accessed 25 March 2021

  18. Terekhov, K.: Parallel multilevel linear solver within INMOST platform. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331, pp. 297–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_26

    Chapter  Google Scholar 

  19. Bollhöfer, M.: A robust ILU with pivoting based on monitoring the growth of the inverse factors. Linear Algebra Appl. 338(1–3), 201–218 (2001)

    Article  MathSciNet  Google Scholar 

  20. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

    Article  MathSciNet  Google Scholar 

  21. Deveci, M., Trott, C., Rajamanickam, S.: Multithreaded sparse matrix-matrix multiplication for many-core and GPU architectures. Parallel Comput. 78, 33–46 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its \(U^TU+U^TR+R^TU\)-decomposition. Numer. Lin. Alg. Applic. 5(6), 483–509 (1998)

    Article  Google Scholar 

  23. Li, N., Saad, Y., Chow, E.: Crout versions of ILU for general sparse matrices. SIAM J. Sci. Comput. 25(2), 716–728 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kaporin, I.E.: Scaling, reordering, and diagonal pivoting in ILU preconditionings. Russ. J. Numer. Anal. Math. Model. 22(4), 341–375 (2007)

    Article  MathSciNet  Google Scholar 

  25. Olschowka, M., Neumaier, A.: A new pivoting strategy for Gaussian elimination. Linear Algebra its Appl. 240, 131–151 (1996)

    Article  MathSciNet  Google Scholar 

  26. Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. II. Proc. Amer. Math. Soc. 45, 195–198 (1974)

    Article  MathSciNet  Google Scholar 

  27. Duff, I.S., Kaya, K, Ucar, B.: Design, implementation and analysis of maximum transversal algorithms. Technical Report TR/PA/10/76 (2010)

    Google Scholar 

  28. Stüben, K.: A review of algebraic multigrid. In: Numerical Analysis: Historical Developments in the 20th Century. Elsevier, pp. 331–359 (2001)

    Google Scholar 

  29. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid Methods. Society for Industrial and Applied Mathematics, pp. 73–130 (1987)

    Google Scholar 

  30. Cusini, M., Lukyanov, A., Natvig, J.R., Hajibeygi, H.: A constrained pressure residual multiscale (CPR-MS) compositional solver. In: Proceedings of ECMOR XIV-14th European Conference on the Mathematics of Oil Recovery. Catania, Sicily, Italy (2014)

    Google Scholar 

  31. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Lin. Alg. with Appl. 8(8), 537–549 (2001)

    Article  MathSciNet  Google Scholar 

  32. Gries, S.: System-AMG approaches for industrial fully and adaptive implicit oil reservoir simulations. Ph.D Thesis. Der Universität zu Köln, Köln (2016)

    Google Scholar 

  33. Kayum, S., Cancellierei, M., Rogowski, M., Al-Zawawi, A.A.: Application of algebraic multigrid in fully implicit massive reservoir simulations. In: Proceedings of SPE Europec featured at 81st EAGE Conference and Exhibition. SPE-195472-MS (2019)

    Google Scholar 

  34. De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 1019–1039 (2006)

    Article  MathSciNet  Google Scholar 

  35. Supplimentary material for MIPT course Practical methods for system solutions. https://github.com/kirill-terekhov/mipt-solvers.git. Accessed 25 March 2021

  36. Open datasets from open porous media initiative. https://opm-project.org/?page_id=559. Accessed 25 March 2021

  37. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MathSciNet  Google Scholar 

  38. Abushaikha, A.S., Terekhov, K.M.: A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability. J. Comput. Phys. 406, 109194 (2020)

    Article  MathSciNet  Google Scholar 

  39. Terekhov, K.M., Vassilevski, Y.V.: Finite volume method for coupled subsurface flow problems, i: Darcy problem. J. Comput. Phys. 395, 298–306 (2019)

    Article  MathSciNet  Google Scholar 

  40. INM RAS cluster. http://cluster2.inm.ras.ru/en. Accessed 25 March 2021

  41. SPE10 dataset. https://www.spe.org/web/csp/datasets/set01.htm

  42. Nikitin, K., Terekhov, K., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations and multiphase flows. Comput. Geosci. 18(3–4), 311–324 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by Russian Science Foundation grant 21-71-20024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Konshin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konshin, I., Terekhov, K. (2021). Sparse System Solution Methods for Complex Problems. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86359-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86358-6

  • Online ISBN: 978-3-030-86359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics