Skip to main content

Attention-Based Multi-view Feature Fusion for Cross-Domain Recommendation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12891))

Included in the following conference series:

Abstract

Cross-domain recommendation can effectively alleviate the data sparsity problem in recommender systems. Existing methods for cross-domain recommendation can be roughly divided into two categories: specific-feature-based methods and sharing-feature-based methods. Specific-feature-based methods focus on learning users’ and items’ domain-specific features in each domain and transferring the same or similar features across domains for recommendation. Sharing-feature-based methods concentrate on obtaining latent transferable features cross domains and utilizing them for recommendation. However, both methods have defects: 1) specific-feature-based methods fail to capture latent transferable features cross domains, which greatly reduces the availability of source domain information; 2) sharing-feature-based methods ignore users’ and items’ domain-specific features so that the recommended items of different domains have high similarity. Since user preferences are distinct in different domains, the recommended items may be unsuitable for users. To overcome the above problems, we propose an Attention-based Multi-View Feature fusion model (AMVF). To improve the availability of source domain information and recommend suitable items, AMVF learns latent transferable features and domain-specific features simultaneously. Since various features make distinct contributions to recommendation, seamlessly fusing different features is a challenge. Therefore, an attention-based feature fusion algorithm is designed to learn different importance of various features. To demonstrate the effectiveness of AMVF, extensive experiments are conducted on two pairs cross-domain datasets. The results empirically verify the superior performance of AMVF.

Supported by XDC02050200, Z191100007119003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: AAAI, Atlanta, pp. 230–235. ACM (2010)

    Google Scholar 

  2. Zhu, F., Wang, Y., Chen, C., Liu, G., Orgun, M., Wu, J.: A deep framework for cross-domain and cross-system recommendations. In: IJCAI, Stockholm, pp. 3711–3717. ACM (2018)

    Google Scholar 

  3. Yuan, F., Yao, L., Benatallah, B.: DARec: deep domain adaptation for cross-domain recommendation via transferring rating patterns. In: IJCAI, Macao, pp. 4227–4233. ACM (2019). https://doi.org/10.24963/ijcai.2019/587

  4. Li, P., Tuzhilin, A.: DDTCDR: deep dual transfer cross domain recommendation. In: WSDM, Houston, pp. 331–339. ACM (2020). https://doi.org/10.1145/3336191.3371793

  5. Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and mapping approach. In: IJCAI, Melbourne, pp. 2464–2470. ACM (2017). https://doi.org/10.24963/ijcai.2017/343

  6. Hu, G., Zhang, Y., Yang, Q.: CoNet: collaborative cross networks for cross -domain recommendation. In: CIKM, Torino, pp. 667–676. ACM (2018). https://doi.org/10.1145/3269206.3271684

  7. Zhu, F., Wang, Y., Chen, C., Liu, G., Zheng, X.: A graphical and attentional framework for dual-target cross-domain recommendation. In: IJCAI-PRICAI, Yokohama, pp. 3001–3008. ACM (2020). https://doi.org/10.24963/ijcai.2020/415

  8. Liu, M., Li, J., Li, G., Pan, P.: Cross domain recommendation via bi-directional transfer graph collaborative filtering networks. In: CIKM, Virtual, pp. 885–894. ACM (2020). https://doi.org/10.1145/3340531.3412012

  9. Zhao, C., Li, C., Fu, C.: Cross-domain recommendation via preference propagation GraphNet. In: CIKM, Beijing, pp. 2165–2168. ACM (2019). https://doi.org/10.1145/3357384.3358166

  10. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: SIGKDD, Las Vegas, pp. 650–658. ACM (2008). https://doi.org/10.1145/1401890.1401969

  11. Zhang, X., Zhou, Q., He, T., Liang, B.: Con-CNAME: a contextual multi-armed bandit algorithm for personalized recommendations. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11140, pp. 326–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01421-6_32

    Chapter  Google Scholar 

  12. Florea, A.-C., Anvik, J., Andonie, R.: Parallel implementation of a bug report assignment recommender using deep learning. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 64–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_8

    Chapter  Google Scholar 

  13. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, Montreal, pp. 452–461 (2009)

    Google Scholar 

  14. He, X., Liao, L., Zhang, H., Nie, L., Chua, T.S.: Neural collaborative filtering. In: WWW, Perth, pp. 173–182. ACM (2017). https://doi.org/10.1145/3038912.3052569

  15. Wang, Q., Liu, X., Liu, W., Liu, A., Liu, W., Mei, T.: MetaSearch: incremental product search via deep meta-learning. IEEE Trans. Image Process. 29, 7549–7564 (2020). https://doi.org/10.1109/TIP.2020.3004249

    Article  Google Scholar 

  16. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, San Francisco, pp. 855–864. ACM (2016). https://doi.org/10.1145/2939672.2939754

  17. He, R., Mcauley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW, Montreal, pp. 507–517. ACM (2016). https://doi.org/10.1145/2872427.2883037

  18. Zhang, Z.: Improved Adam optimizer for deep neural networks. In: IWQoS, Banff, pp. 1–2. IEEE/ACM (2018). https://doi.org/10.1109/IWQoS.2018.8624183

  19. Liu, W., Bao, Q., Sun, Y., Mei, T.: Recent advances in monocular 2D and 3D human pose estimation: a deep learning perspective. CoRR abs/2104.11536 (2021)

    Google Scholar 

  20. Lenz, D., Schulze, C., Guckert, M.: Real-time session-based recommendations using LSTM with neural embeddings. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11140, pp. 337–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01421-6_33

    Chapter  Google Scholar 

  21. Wang, J., Gao, N., Peng, J., Mo, J.: DCAR: deep collaborative autoencoder for recommendation with implicit feedback. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 172–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_15

    Chapter  Google Scholar 

  22. Liu, X., Liu, W., Zheng, J., Yan, C., Mei, T.: Beyond the parts: learning multi-view cross-part correlation for vehicle re-identification. In: MM, Seattle, pp. 907–915. ACM (2020). https://doi.org/10.1145/3394171.3413578

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, F., Gu, X., Wang, Z., Li, B., Qian, M., Wang, W. (2021). Attention-Based Multi-view Feature Fusion for Cross-Domain Recommendation. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12891. Springer, Cham. https://doi.org/10.1007/978-3-030-86362-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86362-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86361-6

  • Online ISBN: 978-3-030-86362-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics