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Abstract
Adversarial robustness of machine learning models has attracted considerable attention over recent years.
Adversarial attacks undermine the reliability of and trust in machine learning models, but the construction
of more robust models hinges on a rigorous understanding of adversarial robustness as a property of a given
model. Point-wise measures for specific threat models are currently the most popular tool for comparing the
robustness of classifiers and are used in most recent publications on adversarial robustness. In this work, we use
recently proposed robustness curves to show that point-wise measures fail to capture important global properties
that are essential to reliably compare the robustness of different classifiers. We introduce new ways in which
robustness curves can be used to systematically uncover these properties and provide concrete recommendations
for researchers and practitioners when assessing and comparing the robustness of trained models. Furthermore,
we characterize scale as a way to distinguish small and large perturbations, and relate it to inherent properties of
data sets, demonstrating that robustness thresholds must be chosen accordingly. We release code to reproduce all
experiments presented in this paper, which includes a Python module to calculate robustness curves for arbitrary
data sets and classifiers, supporting a number of frameworks, including TensorFlow, PyTorch and JAX.

1 Introduction

Despite their astonishing success in a wide range of classifi-
cation tasks, deep neural networks can be lead to incorrectly
classify inputs altered with specially crafted adversarial pertur-
bations [35, 11]. These perturbations can be so small that they
remain almost imperceptible to human observers [13]. Adver-
sarial robustness describes a model’s ability to behave correctly
under such small perturbations crafted with the intent to mislead
the model. The study of adversarial robustness – with its defi-
nitions, their implications, attacks, and defenses – has attracted
considerable research interest. This is due to both the practical
importance of trustworthy models as well as the intellectual
interest in the differences between decisions of machine learning
models and our human perception. A crucial starting point for
any such analysis is the definition of what exactly a small input
perturbation is – requiring (a) the choice of a distance function
to measure perturbation size, and (b) the choice of a particular
scale to distinguish small and large perturbations. Together,
these two choices determine a threat model that defines exactly
under which perturbations a model is required to be robust.

The most popular choice of distance function is the class of dis-
tances induced by `p norms [35, 11, 6], in particular `1, `2 and
`∞, although other choices such as Wasserstein distance have
been explored as well [40]. Regarding scale, the current default
is to pick some perturbation threshold ε without providing con-
crete reasons for the exact choice. Analysis then focuses on the
robust error of the model, the proportion of test inputs for which
the model behaves incorrectly under some perturbation up to
size ε. This means that the scale is defined as a binary distinction
between small and large perturbations based on the perturbation
threshold. A set of canonical thresholds have emerged in the
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literature. For example, in the publications referenced in this
section, the MNIST data set is typically evaluated at a perturba-
tion threshold ε ∈ {0.1, 0.3} for the `∞ norm, while CIFAR-10
is evaluated at ε ∈ {2/255, 4/255, 8/255}, stemming from the
three 8-bit color channels used to represent images.

Based on these established threat models, researchers have de-
veloped specialized methods to minimize the robust error dur-
ing training, which results in more robust models. Popular
approaches include specific data augmentation, sometimes used
under the umbrella term adversarial training [14, 24, 7, 16],
training under regularization that encourages large margins and
smooth decision boundaries in the learned model [15, 38, 9, 10],
and post-hoc processing or randomized smoothing of predictions
in a learned model [20, 8].

In order to show the superiority of a new method, robust ac-
curacies of differently trained models are typically compared
for a handful of threat models and data sets, eg., `∞(ε = 0.1)
and `2(ε = 0.3) for MNIST. Out of 22 publications on adver-
sarial robustness published at NeurIPS 2019, ICLR 2020, and
ICML 2020, 12 publications contain results for only a single
perturbation threshold. In five publications, robust errors are cal-
culated for at least two different perturbation thresholds, but still,
only an arbitrary number of thresholds is considered. Only in
five out of the total 22 publications do we find extensive consid-
erations of different perturbation thresholds and the respective
robust errors. Out of these five, three are analyses of randomized
smoothing, which naturally gives rise to certification radii [22,
7, 29]. Najafi et al. [28] follow a learning-theoretical motivation,
which results in an error bound as a function of the perturbation
threshold. Only Maini et al. [26] do not rely on randomization
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and still provide a complete, empirical analysis of robust error
for varying perturbation thresholds1.

Our contributions: In this work, we demonstrate that point-
wise measures of `p robustness are not sufficient to reliably and
meaningfully compare the robustness of different classifiers. We
show that, both in theory and practice, results of model com-
parisons based on point-wise measures may fail to generalize
to threat models with even slightly larger or smaller ε and that
robustness curves avoid this pitfall by design. Furthermore, we
show that point-wise measures are insufficient to meaningfully
compare the efficacy of different defense techniques when dis-
tance functions are varied, and that robustness curves, again, are
able to reliably detect and visualize this property. Finally, we
analyze how scale depends on the underlying data space, choice
of distance function, and distribution. It is our belief that the
continued use of single perturbation thresholds in the adversarial
robustness literature is due to a lack of awareness of the short-
comings of these measures. Based on our findings we suggest
that robustness curves should become the standard tool when
comparing adversarial robustness of classifiers, and that the per-
turbation threshold of threat models should be selected carefully
in order to be meaningful, considering inherent characteristics
of the data set. We release code to reproduce all experiments
presented in this paper2, which includes a Python module with
an easily accessible interface (similar to Foolbox, Rauber et al.
[31]) to calculate robustness curves for arbitrary data sets and
classifiers. The module supports classifiers written in most of
the popular machine learning frameworks, such as TensorFlow,
PyTorch and JAX.

2 Methods

An adversarial perturbation for a classifier f and input-output
pair (x, y) is a small perturbation δ with f (x + δ) , y. Because
the perturbation δ is small, it is assumed that the label y would
still be the correct prediction for x + δ. The resulting point
x + δ is called an adversarial example. The points vulnerable to
adversarial perturbations are the points that are either already
misclassified when unperturbed, or those that lie close to a
decision boundary.

One tool to visualize and study the robustness behavior of a
classifier are robustness curves [12]. A robustness curve captures
the distribution of shortest distances between a set of points and
the decision boundaries of a classifier:

Definition 1. Given an input space X and label set Y, distance
function d on X × X, and classifier f : X → Y. Assume
(x, y) ∼i.i.d. P for some distribution P on X × Y. Then the
d-robustness curve for f is the graph of the function

R f
d (ε) := P

(
{(x, y) s.t. ∃ x′ : d(x, x′) 6 ε ∧ f (x′) , y}

)
Since a model’s robustness curve shows how data points are
distributed in relation to the decision boundaries of the model, it

1Single thresholds: [27, 36, 1, 4, 30, 37, 34, 10, 42, 32, 43, 33],
multiple thresholds: [21, 25, 16, 39, 3], full analysis: [29, 7, 22, 28,
26].

2The full code is available at https:
//github.com/niklasrisse/how-to-compare-adversarial-
robustness-of-classifiers-from-a-global-perspective.

allows us to take a step back from robustness regarding a specific
perturbation threshold, and instead allows us to compare global
robustness properties and their dependence on a given classifier,
distribution and distance function. To see why this is relevant,
consider Figure 1, which shows toy data along with two possible
classifiers that perfectly separate the data. For a perturbation
threshold of ε, the blue classifier has robust error 0.5, while the
orange classifier is perfectly robust. However, for a perturbation
threshold of 2ε, the orange classifier has robust error 1, while
the blue classifier remains at 0.5. By freely choosing a single
perturbation threshold for comparison, it is therefore possible to
make either classifier appear to be much better than the other,
and no single threshold can capture the whole picture. In fact,
for any two disjoint sets of perturbation thresholds, it is possible
to construct a data distribution and two classifiers f , f ′, such that
the robust error of f is lower than that of f ′ for all perturbation
thresholds in the first set, and that of f ′ is lower than that of f
for all perturbation thresholds in the second set. See Appendix A
for a constructive proof.

3 Experiments

In the following, we empirically evaluate the robustness of a
number of recently published models, and demonstrate that
the weaknesses of point-wise measures described above are
not limited to toy examples, but occur for real-world data and
models.

3.1 Experimental Setup

We evaluate and compare the robustness of models obtained
using the following training methods:

1. Standard training (ST), i. e., training without specific
robustness considerations.

2. Adversarial training (AT) [24].
3. Training with robust loss (KW) [38].
4. Maximum margin regularization for a single `p norm

together with adversarial training (MMR + AT) [9].
5. Maximum margin regularization simultaneously for `∞

and `1 margins (MMR-UNIV) [10].

Together with each training method, we state the threat model
the trained model is optimized to defend against, eg., `∞(ε = 0.1)
for perturbations in `∞ norm with perturbation threshold ε = 0.1,
if any. The trained models are those made publicly available
by Croce et al. [9]3 and Croce and Hein [10]4. The network
architecture is a convolutional network with two convolutional
layers, two fully connected layers and ReLU activation func-
tions. The evaluation is based on six real-world datasets: MNIST,
Fashion-MNIST (FMNIST) [41], German Traffic Signs (GTS) [17],
CIFAR-10 [19], Tiny-Imagenet-200 (TINY-IMG) [23], and Hu-
man Activity Recognition (HAR) [2]. For specifics on model
training (hyperparameters, architecture details), refer to Ap-
pendix C. Models are generally trained on the full training set

3The models trained with ST, KW, AT and MMR + AT are avaible at
www.github.com/max-andr/provable-robustness-max-
linear-regions.

4The models trained with MMR-UNIV are avaible at
www.github.com/fra31/mmr-universal.

https://github.com/niklasrisse/how-to-compare-adversarial-robustness-of-classifiers-from-a-global-perspective
https://github.com/niklasrisse/how-to-compare-adversarial-robustness-of-classifiers-from-a-global-perspective
https://github.com/niklasrisse/how-to-compare-adversarial-robustness-of-classifiers-from-a-global-perspective
www.github.com/max-andr/provable-robustness-max-linear-regions
www.github.com/max-andr/provable-robustness-max-linear-regions
www.github.com/fra31/mmr-universal
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Figure 1: Excerpt of a toy data set with two decision boundaries (left) and respective robustness curves (right). The data is
separated perfectly by one smooth boundary (blue robustness curve), and one squiggly boundary (orange robustness curve). We
indicate margins around the boundaries at distances ε and 2ε. Selecting a single perturbation threshold is not sufficient to decide
which classifier is more robust.

for the corresponding data set, and robustness curves evaluated
on the full test set, unless stated otherwise.

For complex models, calculating the exact distance of a point
to the closest decision boundary, and thus estimating the true
robustness curve, is computationally very intensive, if not in-
tractable. Therefore we bound the true robustness curve from
below using strong adversarial attacks, which is consistent with
the literature on empirical evaluation of adversarial robustness
and also applicable to many different types of classifiers. We
base our selection of attacks on the recommendations by Carlini
et al. [6]. Specifically, we use the `2-attack proposed by [5] for
`2 robustness curves and PGD [24] for `∞ robustness curves.
For both attacks, we use the implementations of Foolbox [31].
See Appendix C for information on adversarial attack hyper-
parameters. In the following, “robustness curve” refers to this
empirical approximation of the true robustness curve.

3.2 The weaknesses of point-wise measures

Point-wise measures are used to quantify robustness of classi-
fiers by measuring the robust test error for a specific distance
function and a perturbation threshold (eg., `∞(ε = 4/255)). In
Table 1 we show three point-wise measures to compare the
robustness of five different classifiers on CIFAR-10. If we com-
pare the robustness of the four robust training methods (latter
four columns of the table) based on the first point-wise threat
model `∞(ε = 1/255) (first row of the table), we can see that
the classifier trained with AT is the most robust, followed by
MMR + AT, followed by KW, and MMR-UNIV results in the least
robust classifier. However, if we increase the ε of our threat
model to ε = 4/255 (second row of the table), KW is more ro-
bust than AT. For a even larger ε (third row of the table), we
would conclude that MMR-UNIV is preferable over AT, and that
AT results in the least robust classifier. All three statements are
true for the particular perturbation threshold (ε), and the magni-
tude of all perturbation thresholds is reasonable: publications on
adversarial robustness typically evaluate CIFAR-10 on pertur-
bation thresholds 6 10/255 for `∞ perturbations. Meaningful
conclusions on the robustness of the classifiers relative to each
other can not be made without taking all possible ε into account.
In other words, a global perspective is needed.

3.2.1 A global perspective

Figure 2 shows the robustness of different classifiers for the `∞
(right plot) and `2 (left plot) distance functions from a global
perspective using robustness curves. The plot reveals why the
three point-wise measures (marked by vertical black dashed lines
in the left plot) lead to different results in the relative ranking of
robustness of the classifiers. Both for the classifiers trained to be
robust against attacks in `∞ distance (left plot) and `2 distance
(right plot), we can observe multiple intersections of robustness
curves, corresponding to changes in the relative ranking of the
robustness of the compared classifiers. The robustness curves
allow us to reliably compare the robustness of classifiers for
all possible perturbation thresholds. Furthermore, the curves
clearly show the perturbation threshold intervals with strong and
weak robustness for each classifier, and are not biased by an
arbitrarily chosen perturbation threshold.

3.2.2 Overfitting to specific perturbation thresholds

In addition to the problem of robustness curve intersection, rely-
ing on point-wise robustness measures to evaluate adversarial
robustness is prone to overfitting when designing training proce-
dures. Figure 3 shows `∞ robustness curves for MMR + AT with
`∞ threat model as provided by Croce et al. [9]. The models
trained on MNIST and FMNIST both show a change in slope,
which could be a sign of overfitting to the specific threat models
for which the classifiers were optimized for, since the change of
slope occurs approximately at the chosen perturbation threshold
ε. This showcases a potential problem with the use of point-
wise measures during training. The binary separation of “small”
and “large” perturbations based on the perturbation threshold
is not sufficient to capture the intricacies of human perception
under perturbations, but a simplification based on the idea that
perturbations below the perturbation threshold should almost
certainly not lead to a change in classification. If a training
procedure moves decision boundaries so that data points lie just
beyond this threshold, it may achieve a low robust error, without
furthering the actual goals of adversarial robustness research.
Using robustness curves for evaluation cannot prevent this effect,
but can be used to detect it.

3.2.3 Transfer of robustness across distance functions

In the following, we analyze to which extent properties of ro-
bustness curves transfer across different choices of distance
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Table 1: Three point-wise measures for different threat models. All threat models use the `∞ distance function, but differ in choice
of perturbation threshold (denoted by ε). Each row contains the robust test errors for one point-wise measure. Each column
contains the robust test errors for one model, trained with a specific training method (marked by column title). The lower the
number, the better the robustness for the specific threat model. Each point-wise measure results in a different relative ordering of
the classifiers based on the errors. The order is visualized by different tones of gray in the background of the cells.

ε ST AT KW MMR + AT MMR-UNIV

1/255 0.60 0.38 0.43 0.42 0.54
4/255 0.99 0.68 0.57 0.63 0.74
8/255 1.00 0.92 0.73 0.84 0.91
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Figure 2: `∞ robustness curves (left plot) and `2 robustness curves (right plot) resulting from different training methods (indicated
by label), optimized for different threat models (indicated by label). The dashed vertical lines visualize the three point-wise
measures from Table 1. The models are trained and evaluated on the full training-/test sets of CIFAR-10. The curves allow us to
reliably compare the robustness of the classifiers, unbiased by choice of perturbation threshold.

functions. If properties transfer, it may not be necessary to
individually analyze robustness for each distance function.

In Figure 4 we compare the robustness of different models for
the `∞ (left plot) and `2 (right plot) distance functions. The
difference to Figure 2 is that the models (indicated by colour)
are the same models in the left plot and in the right plot. We find
that for MMR + AT, the `∞ threat model leads to better robustness
than the `2 threat model both for `∞ and `2 robustness curves. In
fact, MMR + AT with the `∞ threat model even leads to better `∞
and `2 robustness curves than MMR-UNIV, which is specifically
designed to improve robustness for all `p norms. Overall, the
plots are visually similar. However, since both plots contain
multiple robustness curve intersections, the ranking of meth-
ods remains sensitive to the choice of perturbation threshold.
For example, a perturbation threshold of ε = 3/255 (vertical
black dashed line) for the `∞ distance function (left subplot)
shows that the classifier trained with MMR + AT (`2(ε = 0.1)) is
approximately as robust as the classifier trained with MMR-UNIV.
The same perturbation threshold for the `2 distance function
(right subplot) shows that the classifier trained with MMR + AT
is more robust than the classifier trained with MMR-UNIV for
`2 threat models. Using typical perturbation thresholds from
the literature for each distance function does not alleviate this
issue: At perturbation threshold ε = 2/255 for `∞ distance, the
classifier trained with MMR + AT (`2(ε = 0.1)) is more robust than
the one trained with MMR-UNIV, while at perturbation threshold
ε = 0.1 for `2 distance, the opposite is true. This shows that
even when robustness curves across various distance functions
are qualitatively similar, this may be obscured by the choice of
threat model(s) to compare on.

We also emphasize that in general, robustness curves across
various distance functions may be qualitatively dissimilar. In
particular:

1. For linear classifiers, the shape of a robustness curve is
identical for distances induced by different `p norms.
This follows from Theorem 2 in Appendix B, which
is an extension of a weaker result in Göpfert et al.
[12]. For non-linear classifiers, different `p norms may
induce different robustness curve shapes. See Göpfert
et al. [12] for an example.

2. Even for linear classifiers, robustness curve intersec-
tions do not transfer between distances induced by
different `p norms. That is, for two linear classifiers,
there may exist p, p′ such that the robustness curves for
the `p distance intersect, but not the robustness curves
for the `p′ distance. See Appendix A for an example.

3.3 On the relationship between scale and data

As the previous sections show, robustness curves can be used
to reveal properties of robust models that may be obscured by
point-wise measures. However, some concept of scale, that is,
some way to judge whether a perturbation is small or large,
remains necessary. Especially when robustness curves intersect,
it is crucial to be able to judge how critical it is for a model to be
stable under the given perturbations. For many pairs of distance
function and data set, canonical perturbation thresholds have
emerged in the literature, but to the best of our knowledge, no
reasons for these choices are given.

Since the assumption behind adversarial examples is that small
perturbations should not affect classification behavior, the ques-
tion of scale cannot be answered independently of the data
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Figure 3: `∞ robustness curves for multiple data sets. Each curve is calculated for a different model and a different test data set.
The data sets are indicated by the labels. The models are trained with MMR + AT, Threat Models: MNIST: `∞(ε = 0.1), FMNIST:
`∞(ε = 0.1), GTS: `∞(ε = 4/255), CIFAR-10: `∞(ε = 2/255). The curves for MNIST and FMNIST both show a change in slope,
which can not be captured with point-wise measures and could be a sign of overfitting to the specific threat models for which the
classifiers were optimized for.
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Figure 4: `∞ robustness curves (left plot) and `2 robustness curves (right plot) resulting from different training methods (indicated
by color and label), optimized for different threat models (indicated by label). The models are trained and evaluated on the full
training-/test sets of CIFAR-10. The curves allow us to reliably compare the transfer of robustness of the classifiers across distance
functions, unbiased by choice of threat model.

distribution. In order to understand how to interpret different
perturbation sizes, it can be helpful to understand how strongly
the data point would need to be perturbed to actually change
the correct classification. We call this the inter-class distance
and analyze the distribution of inter-class distances for several
popular data sets.

In Figure 5 we compare the inter-class distance distributions in
`∞, `2, and `1 norm for all data sets considered in this work. We
observe that for the `1 and `2 norms, the shape of the curves is
similar across data sets, but their extent is determined by the
dimensionality of the data space. In the `∞ norm, vastly different
curves emerge for the different data sets. We hypothesize that,
because the inter-class distance distributions vary more strongly
for `∞ distances than for `1 distances, the results of robustifying
a model w. r. t. `∞ distances may depend more strongly on the
underlying data distribution than the results of robustifying w. r. t.
`1 distances. This is an interesting avenue for future work.

When we look at the smallest inter-class distances in the `∞
norm (where all distances lie in the interval [0, 1]), we can
make several observations. Because the smallest inter-class
distance for MNIST in the `∞ norm is around 0.9, we can see that
transforming an input from one class to one from a different class
almost always requires completely flipping at least one pixel
from almost-black to almost-white or vice versa. For the other
datasets, the inter-class distance distributions are more spread
out than the inter-class distance distribution of MNIST. We
observe that for CIFAR-10 with `∞ perturbations of size > 0.25,

it becomes possible to transform samples from different classes
into each other, so starting from this threshold, any classifier
must necessarily trade off between accuracy and robustness. The
shapes of the curves and the threshold from which any classifier
must necessarily trade of between accuracy and robustness differ
strongly between data sets – refer to Table 2 for exact values for
the threshold.

In Table 2, we summarize the smallest and largest inter-class
distances in different norms together with additional information
about the size, number of classes, and dimensionality of the all
the data sets we consider in this work. The values correspond
directly to Figure 5, but even in this simplified view, we can
quickly make out key differences between the data sets. Com-
pare, for example, MNIST and GTS: While it appears reasonable
to expect `∞ robustness of 0.3 for MNIST, the same threshold for
GTS is not possible. Relating Table 2 and Figure 3, we find en-
tirely plausible the strong robustness results for MNIST, and the
small perturbation threshold for GTS. Based on inter-class dis-
tances we also expect less `∞ robustness for CIFAR-10 than for
FMNIST, but not as seen in Figure 3. In any case, it is safe to say
that, when judging the robustness of a model by a certain thresh-
old, that number must be set with respect to the distribution the
model operates on.

Overall, the strong dependence of robustness curves on the data
set and the chosen norm, emphasizes the necessity of informed
and conscious decisions regarding robustness thresholds. We
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Figure 5: Minimum inter-class distances of all data sets considered in this work, measured in `∞ (left), `2 (middle), and `1 (right)
norm. See Table 2 for size and dimensionality. The shapes of the curves and the threshold from which any classifier must
necessarily trade of between accuracy and robustness differ strongly between data sets.

Table 2: Smallest and largest inter-class distances for subsets of several data sets, measured in l∞, l2, and l1 norm, together with
basic contextual information about the data sets. All data has been been normalized to lie within the interval [0, 1], and duplicates
and corrupted data points have been removed. Apart from HAR, all data sets contain images – the dimensionality reported specifies
their sizes and number of channels.

Inter-class Distance
Smallest Largest

Dataset Samples Classes Dimensionality l∞ l2 l1 l∞ l2 l1
MNIST 10 000 10 28 × 28 × 1 0.88 3.03 19.16 1.00 10.18 132.38
TINY-IMG 98 139 200 64 × 64 × 3 0.27 5.24 369.29 0.71 47.49 4184.37
FMNIST 10 000 10 28 × 28 × 1 0.36 2.00 24.87 1.00 10.70 194.29
GTS 10 000 43 32 × 32 × 3 0.07 0.90 31.46 0.62 19.54 833.22
CIFAR-10 10 000 10 32 × 32 × 3 0.27 3.61 130.77 0.70 18.57 831.44
HAR 2947 6 561 0.26 1.26 12.95 0.87 4.29 73.19

provide an easily accessible reference in the form of Table 2,
that should prove useful while judging scales in a threat model.

4 D i scuss ion

We have demonstrated that comparisons of robustness of differ-
ent classifiers using point-wise measures can be heavily biased
by the choice of perturbation threshold and distance function
of the threat model, and that conclusions about rankings of
classifiers with regards to their robustness based on point-wise
measures therefore only provide a narrow view of the actual
robustness behavior of the classifiers. Further, we have demon-
strated different ways of using robustness curves to overcome the
shortcomings of point-wise measures, and therefore recommend
using them as the standard tool for comparing the robustness of
classifiers. Finally, we have demonstrated how suitable pertur-
bation thresholds necessarily depend on the data they pertain
to.

It is our hope that practitioners and researchers alike will use the
methodology proposed in this work, especially when developing
and comparing adversarial defenses, and carefully motivate any
concrete threat models they might choose, taking into account
all available context.

Limitations: Computing approximate robustness curves for state-
of-the-art classifiers and large data sets is computationally very
intensive, due to the need of computing approximate minimal
adversarial perturbations with strong adversarial attacks. De-
veloping adversarial attacks which are both strong and fast is

an ongoing challenge in the field of adversarial robustness. An-
other limitation of our work is the focus on a small group of
distance functions (mainly `∞ and `2 norms). Even though it
does intuitively make sense that models should at least be robust
against these types of perturbations, a more general evaluation
able to consider more distance functions simultaneously could
be advantageous.
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A Robustness curves with arbitrary
intersections

Theorem 1. Let T1,T2 ⊂ R>0 be two disjoint finite sets. Then
there exists a distribution P on R × {0, 1} and two classifiers
c1, c2 : R → {0, 1} such that Rc1

|·|
(t) < Rc2

|·|
(t) for all t ∈ T1 and

Rc1
|·|

(t) > Rc2
|·|

(t) for all t ∈ T2.

Proof. Without loss of generality, assume that T1 = {t1, . . . , tn}
and T2 = {t′1, . . . , t

′
n} with ti < t′i < ti+1 for i ∈ {1, . . . , n}. We

will construct c1, c2 such that the robustness curves Rc1
|·|

(·),Rc2
|·|

(·)
intersect at exactly the points (ti + t′i )/2 and (ti + t′i+1)/2 on the
interval (t1, t′n]. Let d = t′n and

P
(
−d −

ti + t′i+1

2
, 0

)
= P

(
d +

ti + t′i
2

, 1
)

=
2

4n + 1

and

P
(
−d −

t1
2
, 0

)
=

1
4n + 1

.

Let c1(x) = 1x>−d and c2(x) = 1x>d. Both classifiers have
perfect accuracy on P, meaning that Rci

|·|
(0) = 0. The closest

point to the decision boundary of c1 is −d − t1
2 with weight 1

4n+1 ,

so Rc1
|·|

( t1
2 ) = 1

4n+1 . The second-closest point is −d − t1+t′2
2 with

weight 2
4n+1 , so Rc1

|·|
( t1+t′2

2 ) = 3
4n+1 , and so on. Meanwhile, the

closest point to the decision boundary of c2 is d +
t1+t′1

2 with

weight 2
4n+1 , so Rc2

|·|
( t1+t′1

2 ) = 2
4n+1 , the second-closest point is

d t2+t′2
2 with weight 2

4n+1 , so Rc2
|·|

( t2+t′2
2 ) = 4

4n+1 , and so on.

Example 1. To see that robustness curve intersections do not
transfer between different `p norms, consider the example in
Figure 6. The blue and orange linear classifiers both perfectly
separate the displayed data. The `∞ robustness curves of the
classifiers do not intersect, meaning that the robust error of the
blue classifier is always better than that of the orange classifier.
In `2 distance, the robustness curves intersect, so that there is
a range of perturbation sizes where the orange classifier has
better robust error than the blue classifier.

B Robustness curve dependence of shape
on distance function

Theorem 2. Let f (x) = sgn(wT x + b) be a linear classifier.
Then the shape of the robustness curve for f regarding an `p
norm-induced distance does not depend on the choice of p. It
holds that

R f
`p1

(ε) = R f
`p2

(c · ε) ∀ ε for c =
‖w‖q1

‖w‖q2

, qi =
pi

pi − 1
. (1)

Lemma 1. Let x ∈ Rm with wT x + b , 0. Let p ∈ [1,∞] and q
such that 1

p + 1
q = 1, where we take 1

∞
= 0. Then

min{‖δ‖p : sgn(wT (x+δ)+b) , sgn(wT x+b)} =
|wT + b|
‖w‖q

(2)

and the minimum is attained by

δ =

−wT x−b
‖w‖∞

sgn(w j)e j, j = argmaxi |wi| p = 1
−wT x−b
‖w‖qq

(sgn(wi)|wi|
1

p−1 )d
i=1 p ∈ (1,∞] .

(3)

where x
1
∞−1 = x0 = 1 and e j is the j-th unit vector.

Proof of Theorem 2. By Hölder’s inequality, for any δ,
m∑

i=1

|wiδi| 6 ‖δ‖p‖w‖q . (4)

For δ such that sgn(wT (x + δ) + b) , sgn(wT x + b) it follows that

‖δ‖p >

∑m
i=1 |wiδi|

‖w‖q
>
|
∑m

i=1 wiδi|

‖w‖q
>
|wT x + b|
‖w‖q

. (5)

Using the identity q =
p

p−1 , it is easy to check that for every
p ∈ [1,∞], with δ as defined in Equation (3),

1. wTδ = −wT x − b, so that wT (x + δ) + b = 0, and

2. ‖δ‖p =
|wT x+b|
‖w‖q

.

Item 1 shows that δ is a feasible point, while Item 2 in combina-
tion with ?? shows that ‖δ‖p is minimal.

Using Lemma 1, we are ready to prove Theorem 2.

Proof. By definition,

R f
`p1

(ε) = P({(x, y) s.t. ∃ δ : ‖δ‖p1 6 ε ∧ f (x + δ) , y}︸                                                ︷︷                                                ︸
Rp1 (ε)

) . (6)

We can split Rp1 (ε) into the disjoint sets

{(x, y) : f (x) , y}︸               ︷︷               ︸
=M

(7)

∪̇ (8)
{(x, y) s.t. ∃ δ : ‖δ‖p1 6 ε ∧ y = f (x) , f (x + δ)}︸                                                           ︷︷                                                           ︸

=Bp1 (ε)

. (9)

https://arxiv.org/abs/1708.07747
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Figure 6: Example of a data distribution and two linear classifiers such that the `2 robustness curves intersect, but not the `∞
robustness curves.

Choose q1, q2 such that 1
pi

+ 1
qi

= 1. By Lemma 1, and using that
f (x) = sgn(wT x + b),

Bp1 (ε) = {(x, y) : sgn(wT x + b) = y ∧
|wT x + b|
‖w‖q1

6 ε} (10)

= {(x, y) : sgn(wT x + b) = y ∧
|wT x + b|
‖w‖q2

6
‖w‖q1

‖w‖q2

ε})

(11)

= Bp2

(
‖w‖q1

‖w‖q2

ε

)
. (12)

This shows that

R f
`p1

(ε) = P(M) + P(Bp1 (ε)) (13)

= P(M) + P
(
Bp2

(
‖w‖q1

‖w‖q2

ε

))
(14)

= R f
`p2

(
‖w‖q1

‖w‖q2

ε

)
. (15)

C Experimental details

C.1 Model training

We use the same model architecture as Croce et al. [9] and Wong
and Kolter [38]. Unless explicitly stated otherwise, the trained
models are taken from Croce et al. [9]. The exact architecture
of the model is: Convolutional layer (number of filters: 16, size:
4x4, stride: 2), ReLu activation function, convolutional layer
(number of filters: 32, size: 4x4, stride: 2), ReLu activation
function, fully connected layer (number of units: 100), ReLu
activation function, output layer (number of units depends on the
number of classes). All models are trained with Adam Optimizer
[18] for 100 epochs, with batch size 128 and a default learning
rate of 0.001. More information on the training can be found in
the experimental details section of the appendix of Croce et al.
[9]. The trained models are those made publicly available by
Croce et al. [9]5and Croce and Hein [10]6.

5The models trained with ST, KW, AT and MMR + AT are avaible at
www.github.com/max-andr/provable-robustness-max-
linear-regions.

6The models trained with MMR-UNIV are avaible at
www.github.com/fra31/mmr-universal.

C.2 Approximated robustness curves

We use state-of-the-art adversarial attacks to approximate the
true minimal distances of input datapoints to the decision bound-
ary of a classifier for our adversarial robustness curves (see
Definition 1). We base our selection of attacks on the recommen-
dations of Carlini et al. [6]. Specifically, we use the following
attacks: For `2 robustness curves we use the `2-attack proposed
by Carlini and Wagner [5] and for `∞ robustness curves we use
PGD [24]. For both attacks, we use the implementations of
Foolbox [31]. For the `∞ attack, we use the standard hyper-
parameters of the Foolbox implementation. For the `1 and `2
attacks we increase the number of binary search steps that are
used to find the optimal tradeoff-constant between distance and
confidence from 5 to 10, which we found empirically to improve
the results. For the rest of the hyperparameters, we again use
the standard values of the Foolbox implementation.

C.3 Computational architecture

We executed all programs on an architecture with 2 x Intel
Xeon(R) CPU E5-2640 v4 @ 2.4 GHz, 2 x Nvidia GeForce
GTX 1080 TI 12G and 128 GB RAM.

www.github.com/max-andr/provable-robustness-max-linear-regions
www.github.com/max-andr/provable-robustness-max-linear-regions
www.github.com/fra31/mmr-universal
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