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Abstract. Keyword spotting (KWS) is becoming a ubiquitous need
with the advancement in artificial intelligence and smart devices. Re-
cent work in this field have focused on several different architectures to
achieve good results on datasets with low to moderate noise. However,
the performance of these models deteriorates under high noise condi-
tions as shown by our experiments. In our paper, we present an exten-
sive comparison between state-of-the-art KWS networks under various
noisy conditions. We also suggest adaptive batch normalization as a tech-
nique to improve the performance of the networks when the noise files
are unknown during the training phase. The results of such high noise
characterization enable future work in developing models that perform
better in the aforementioned conditions.

Keywords: Keyword spotting - High noise conditions - Adaptive batch
normalization - Sinc convolution network - Temporal convolution ResNet.

1 Introduction

Automatic speech recognition is one of the fastest developing fields in artificial in-
telligence and machine learning. With the advent of smart assistants (e.g. Google
assistant, Siri, Cortana) in most of the latest devices, the ability of speech recog-
nition software to recognize certain wake words (e.g. “Ok Google”, “Hey Siri”)
from continuous speech filled with varying levels of background noise becomes
paramount in enhancing the user experience.

The networks used for KWS have evolved significantly from the initial Gaus-
sian Mixture Model-Universal Background Models (GMM-UBMs) and Hidden
Markov Models (HMMs) to Deep Neural Networks (DNNs) to the current use
of different variations of Convolutional Neural Networks (CNNs) [TJ3I7/T5]. Due
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to their inherent properties, CNNs can discover robust and invariant representa-
tions of the input waveforms provided to them, and have obtained state-of-the-
art performance on several speech recognition tasks carried out under moderate
noise conditions.

KWS networks have undergone several transformations in their architectures
and currently CNNs provide the best performance under moderate noise condi-
tions. Despite their impressive performance, as demonstrated in Fig. (1} the test
accuracy falls at a steep rate once the signal-to-noise ratio (SNR) in the dataset
crosses a certain threshold. Considering day-to-day situations like heavy traffic,
construction sites etc, the places where there is very high background noise, the
current architectures won'’t give the same performance as they will give in a
lower noise environment. This calls for an architecture which can perform the
task of KWS under such noisy conditions with a competitive accuracy.
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Fig. 1: Performance of networks under varying noise (trained on clean dataset).
Classification accuracy of all networks decreases significantly as the level of noise
increases beyond a certain threshold.

For our experiments, we use three models for comparison. The first one is the
TC-ResNet8 (TC: temporal convolutions) which uses pre-processed MFCC fea-
tures as inputs for classification. The second one is the SincConv Network (SCN)
which classifies on raw audio data and finally the last model is our variation of
the SCN but with optimal parameter tuning to reduce the memory footprint and
total computation cost without reducing the classification accuracy. We subject
the models to different noise conditions to obtain a detailed characterization of
the models’ performances.

The remainder of the paper is organized as follows. Sec.2 gives a brief de-
scription of other relevant work going on in this field. Sec.3 discusses the basic
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features of all the architectures used during evaluation. Sec.4 outlines the exper-
imental setup and the results respectively. Here we also propose the use of batch
normalization (BatchNorm) as a method to adapt the network to unknown noise
conditions. Finally, Sec.5 discusses our conclusions and scope for future work.

2 Related Works

Significant research has been done in the field of KWS in recent times, with
a focus on developing compact and accurate models that can be implemented
in hardware without consuming too much power. Zhang et al. [I8] provides a
comparison of performance and hardware requirement (memory and operation
count) of Deep Neural Network (DNN), CNN, Long short-term memory (LSTM),
and depthwise separable (DS) CNN models on MFCC feature data as input,
where the DS-CNN provides the best result. Choi et al. [4] proposed the TC-
ResNet which provides state-of-the-art 96.6% accuracy on MFCC input data,
as well as a speedup of 385x compared to previous architectures on the Google
Speech Commands Dataset [I7]. Since pre-processed data like MFCC features
won’t be always available, few CNN architectures have been developed to work
on raw audio data as input. One of the notable ones is the SCN architecture pro-
posed by Mittermaier et al. [IT], which uses SincNet [14] and DS convolutions [5]
to achieve comparable accuracy to the state-of-the-art TC-ResNet models.

There is very little documentation about the performance of popular KWS
networks under high noise, or in situations where the noise present during the
inference stage is much different from that during training. Liu et al. [I0] have
provided a brief noise characterization of the performance of their binary weight
network using different types of noise like white, pink and miscellaneous noise
in daily-life activities. Huang et al. [9], Raju et al. [I3] and Pervaiz et al. [12]
have provided detailed studies on the performance of their systems for the task
of KWS under noise, but the datasets and the metrics used in these works are
all different and cannot be used to draw a comparison with current state-of-the-
art models. To the best of our knowledge, we are the first to provide a detailed
characterization of popular KWS networks on a standard dataset under varying
high noise conditions and provide a simple and efficient solution to improve the
accuracy by quite a significant margin in the aforementioned conditions.

3 Model Architectures

In this paper we consider three representative neural networks. Table 1 sum-
marizes the multiply accumulate operations (MACs) and total weights in the
considered models and Fig. [2] shows the respective architectures.
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Table 1: Summary of Models
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TC-ResNet8 1.5M 66k
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Fig. 2: Architectures of the models. The hyperparameters ¢, k and s represent the
number of output channels, kernel size and stride respectively for all the models.
Architectures of TC-ResNet8 and SCN adopted from [4] and [I1] respectively.

3.1 TC-ResNet8 Architecture

TC-ResNet8 (Fig. [2) [4] is a CNN architecture which utilizes temporal convo-
lutions, 1-D convolutions along the temporal dimension, for KWS and classifies
on the MFCC data (pre-processed from raw audio signals) as input. This model
adopts ResNet [6], one of the most popular CNN architectures, but uses m x 1
kernels (m=3 for the first layer and m=9 for the other layers) in its layers. By
switching to temporal convolutions instead of 2D convolutions, there is a de-
crease in the output feature map of each layer which leads to a huge reduction
in the computational burden and memory footprint of the subsequent layers.

TC-ResNet8 model has shown good performance for KWS with only 66k
parameters. There is no bias in the convolution and fully connected layers. Each
batch normalization layer has trainable parameters for scaling and shifting. The
TC-ResNet8 model has 3 residual blocks and {16, 24, 36, 48} channels for each
layer including the first convolution layer.
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3.2 SCN Architecture

SCN network (Fig. [2) [II] uses rectangular band-pass filters (in the frequency
domains) in the first convolutional layer to classify on the input raw audio wave-
form. This is equivalent to convolving the input signal with parametrized sinc
functions (sinc(z) = “’mmﬂ) in the time domain. The filters can be represented
as:

H[f, f1, f2] = rect(fi) — rect(i) (1)
2 J1
hin, f1, fa] = 2fasinc(27 fan) — 2 f1sine(27 f1n) (2)

From (1), the frequency domain expression of the filters, we can see that
a single filter extracts only the information lying between the two frequency
levels, fi1 and fs. This extracted data acts as a feature set for the consequent
CNN layers. Since only two parameters, the upper and lower cut-off frequencies,
are required to define any sinc filter, this leads to a smaller memory footprint.
As suggested in [I1], a log-compression activation (y = log(abs(x) + 1)) is used
after the sinc convolutions.

In the subsequent layers we have five grouped DS convolutional blocks. DS
convolutions [B] are a great alternative to standard convolutions as they reduce
the computation power by a significant value without reducing the effectiveness
much. Grouping [§] is introduced to reduce the number of parameters introduced
by the pointwise convolutions after each depthwise convolution. Each convolu-
tion block is followed by layers for batch normalization, spatial dropout for reg-
ularization and an average pooling block. After these 5 blocks we have a global
average pooling block followed by a softmax layer to obtain the class posteriors
to classify into 12 classes.

3.3 Modified SCN Architecture

As can be seen from Table[l] though there is a decrease in the parameter count
when we go from the TC-ResNet8 to the SCN model as well as the added ben-
efit of not spending resources on pre-processing to obtain the MFCC data, the
number of MACs inside the latter model is almost 12 times more than the for-
mer model (excluding the MACs in pre-processing of raw audio in TC-ResNet8).
This huge level of disparity in the computation costs of the two models certainly
raises questions over the viability of the SCN network over the TC-ResNet8
while considering a hardware implementation.

Following several experiments, study of the properties of the SCN model
and extensive fine-tuning of the hyperparameters, we present the modified SCN
model (Fig.[2) which gives comparable accuracy to the original model but reduces
the computation cost and memory footprint by almost a factor of two. The subtle
changes can be seen in Fig. [2] and Table 1. We change the grouping in CNN
layers from alternate (2,3) grouping to alternate (4,8) grouping. This impacts
primarily the total number of parameters used in the model as can be seen in
Table 1. Almost 50% of the computations are carried out in the very first sinc
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convolution layer. To tackle this issue we double the stride in the sinc convolution
layers which leads to decrease in the MACs in the subsequent layers as well.

The primary motivation of the modified SCN architecture is to obtain the
best possible optimized version of the SCN architecture without sacrificing any
of the advantage the SCN network has over the TC-ResNet8 architecture. The
difference in performance due to the architecture changes in Fig. [2] won’t be
noticeable when running the networks on a modern GPU, but on moving the
networks to smaller embedded systems for a more practical setup, there will be a
significant change in the latency and power consumption due to the discrepancy
in the number of MACs and parameters compared to the SCN network. Based
on the optimizations that we have incorporated into the SCN architecture, the
modified SCN is able to compete with both the SCN and TC-ResNet8 networks
in terms of accuracy and efficiency respectively.

3.4 Batch Normalization Method

In standard neural networks problems, the statistics of batches during training
are learned in the BatchNorm layers and used without changing during the test
and validation phases. This works well in most cases because the test statistics
resemble closely to the training statistics. But when the test statistics vary signif-
icantly from the training statistics due to environmental noise, this assumption
fails and the model won’t perform well. In this case, a better training dataset
should be found, but that is not always possible. To tackle this fall in perfor-
mance and not having to resort to finding a new training set, we adapt a simple
modification from Schneider et al. [16] - we do not switch off the BatchNorm lay-
ers during the validation and test phases when the noise during test is unknown.
This way the network will learn and use the batch norm statistics during infer-
ence rather than the training statistics which might vary significantly from the
inference statistics, and provide us with better results as seen in Fig. [5| without
a significant computation overhead.

4 Experimental Evaluation

The networks mentioned in Sec.3 have been trained and evaluated on the Google’s
Speech Commands dataset [17]. The dataset consists of 105,829 one-second (or
less) long utterances of 35 different keywords spoken by 2,618 different speakers.
We choose the following 10 keywords: “yes”, “no”, “up”, “down”, “left”, “right”,
“on”, “off”, “stop”, “go”, along with classes for unknown and silence. The re-
maining 25 words are labeled as unknown. The utterances are then randomly
divided into training, validation and test sets in the ratio of 80:10:10 respectively.

For noise injection, one-second chunks are chosen randomly from three types
of noise present: white, pink and miscellaneous (consisting of samples from real
life activities like traffic noises, conversation, flowing water etc.). For the training
phase, these chunks are sampled randomly between the SNR range of [-5dB,
+10dB] and added to the clean dataset. For the validation and test phase, the
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SNR value is kept fixed at one of the following values: -5dB, 0dB, +5dB, +10dB.
To ensure that the final signal after mixing the noise with the dataset does not
get clipped at any instant, we introduce a small gain block to scale the signals
so that the SNR remains constant and no clipping takes place.

For the first experiment, all the noise files are available for the training,
validation and test phases. For the second experiment, white and pink noise is
injected into the training dataset and miscellaneous noise is added to validation
and test dataset. Our model is trained for 150 epochs with the Stochastic Gra-
dient Descent (SGD) optimizer with an initial learning rate of 0.1 and learning
rate decay of 0.75 after 10 epochs. The model with highest validation accuracy
after 150 epochs is saved to evaluate the accuracy on the test set.

4.1 Network performance when noise conditions are known

In this case, the noise files in miscellaneous category are available during training,
validation and test phase i.e. we can train the model to learn the nature of the
noise distribution used and give close to state-of-the-art performance. Random
chunks from the noise files are added to the keyword signals at a SNR value
chosen randomly between [-5dB, +10dB]. The classification accuracies of the
different networks are plotted against the noise spectrum in Fig.
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Fig. 3: Performance of networks under known test noise conditions. The network
accuracy steadily decreases as the amount of noise in the samples is increased.

As observed from the results of Fig. |3} even the state-of-the-art KWS net-
works are susceptible to high noise, evident from the ~ 10% fall in accuracy as
test noise level increases to -5dB.
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4.2 Network performance when noise conditions are unknown

In this case, the miscellaneous noise files are only available in the validation
and test phases i.e. while training the noise distribution used in the inference
stage is unknown. Hence to train the models under noisy conditions, we inject
the training dataset with a random mixture of white and pink noise sampled
randomly between [-5dB, +10dB].
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Fig. 4: Comparison of performance when noise conditions are known (solid) and
unknown (dotted). At 10dB there is a small discrepancy between the perfor-
mance in the two conditions, but at -5dB there is almost a 40% difference be-
tween the network performance in the two different conditions.

The contrast in the performance of the networks for the two different con-
ditions can be seen in Fig. [df Though the networks perform satisfactorily under
moderate noise (~10dB range), the performance deteriorates catastrophically
under severe noise conditions. To mitigate this, we enable the networks to learn
the batch normalized statistics of the validation and test datasets during the
corresponding phases rather than depend on the parameters learned during the
training phase. The change in the performances of the networks after implement-
ing this is encapsulated in Fig.

In Fig. [f] though the performance remains almost similar in moderate noise,
there is a steady improvement in the final accuracy as we move towards the
higher end of the noise spectrum. The SCN models record an improvement of
~10% and the TC-ResNet model shows a massive rise in accuracy of ~20% at
-5dB test SNR.
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Fig.5: Comparison of accuracy before and after implementing BatchNorm tech-
nique. The BatchNorm method is able to significantly boost the performance of
all the models under high unknown test noise conditions.

5 Conclusions and Future Work

We provide an extensive characterization of the performance of popular KWS
networks under heavy noise, and our results show how the existing architectures
fail to deliver satisfactory results under non-ideal conditions. We also observe
that if the noise in the test phase is not known, training the network by injecting
white/pink noise in the training phase performs satisfactorily under moderate
noise but fails catastrophically under severe noise conditions. To create networks
that perform better under such situations, new models may need to be created.

One solution might be to increase the number of weights and/or layers in the
networks and train them on much larger and varied datasets, which also contain
an appreciable amount of noise injection. But then this will be contrary to our
motive of building networks with small memory footprints. And even though we
train the networks using noisy signals, the performance is still sub-par at best.
Hence, to create networks that perform better under such situations, new models
and algorithms may need to be created. Our BatchNorm algorithm takes one
step in that direction by achieving significant enhancement in classification at
noisy conditions.

Further improvements to the BatchNorm technique and hardware support

for UltraTrail [2] of the aforementioned techniques and networks is left as future
work.
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