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Abstract. The strong relation between face and voice can aid active
speaker detection systems when faces are visible, even in difficult set-
tings, when the face of a speaker is not clear or when there are several
people in the same scene. By being capable of estimating the frontal fa-
cial representation of a person from his/her speech, it becomes easier to
determine whether he/she is a potential candidate for being classified as
an active speaker, even in challenging cases in which no mouth move-
ment is detected from any person in that same scene. By incorporating
a face-voice association neural network into an existing state-of-the-art
active speaker detection model, we introduce FaVoA (Face-Voice As-
sociation Ambiguous Speaker Detector), a neural network model that
can correctly classify particularly ambiguous scenarios. FaVoA not only
finds positive associations, but helps to rule out non-matching face-voice
associations, where a face does not match a voice. Its use of a gated-
bimodal-unit architecture for the fusion of those models offers a way
to quantitatively determine how much each modality contributes to the
classification.

Keywords: active speaker detection · face-voice association · cross-
modal · audiovisual · deep learning

1 Introduction

The task of active speaker detection (ASD) consists of determining from which
individuals in an audiovisual footage a given speaking activity originates. The
combined use of auditory and visual modalities is fairly common in multimodal
learning, including tasks like speech enhancement [9], speaker diarisation [7],
speech reconstruction [14], and active speaker detection [1]. ASD is closely re-
lated to other audiovisual multimodal learning tasks, and a high-performing ASD
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model might help in paving the way for better models for those tasks to emerge.
Related tasks include speech enhancement [9] and speech separation [7, 15].

Recent solutions to the problem of detecting speaking activity in the wild
involve the use of 3D convolutions [6, 17], information from other individuals
in the same scene [1] and the optical flow of facial movements [10]. Although
being very powerful, those models still face some difficulties depending on the
resolution or the inclination of a person’s face [1, 10, 16]. Most of them also
struggle when working with medium- to long-term time spans [6, 10, 16, 17].

In cases where faces are not clear enough, ASD must rely mainly on the au-
ditory modality. However, in scenes where there are two people talking to each
other and their faces are not clear enough – due to a low resolution or to a high
yaw inclination of their faces –, neither the visual nor the auditory modalities
can provide enough information on their own. The existence of a module ca-
pable of retrieving a frontal face representation from the speaker’s voice might
provide information useful for speaker disambiguation in such challenging sce-
narios. Face-voice association applications show that it is actually possible to
retrieve a frontal face representation from a speaker’s speech signal [11, 13]. The
retrieved frontal face can be useful in cases in which the voice of the person
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Fig. 1. Active Speakers in Context (ASC) uses feature representations of face crops and
audio provided by short-term encoders (STE). Through a pairwise analysis of feature
representations of different speakers at distinct time steps made by a self-attention
module (SAT) and the subsequent temporal refinement made by a long short-term
memory (LSTM), ASC classifies an active speaker. By adding a face-voice associa-
tion module (FV), FaVoA supports the classification of active speakers in challenging
scenarios where the context does not provide enough information. The face-voice asso-
ciation module is combined with the output of ASC via a gated bimodal unit (GBU).
Modules and layers in yellow are pretrained and fixed, those in violet are pretrained
but are also updated during fine-tuning, and the ones in blue are trained from scratch.
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speaking does not match the face of the person being classified for any of several
reasons, e.g., difference in gender, ethnicity, age and so on. Additional infor-
mation obtained via the crossmodal aspect of face-voice association, where one
can relate one speech signal with a person’s face, can help determining some
clear cases that can be challenging for other models. For instance, if the mouth
of the actual speaker in the scene is not seen for some reason, and no mouth
movement is detected from any other participant in the scene. A non-speaking
person whose face does not match the actual speaker’s voice would be classified
as not speaking. The actual speaker can also be properly classified if the face of
no other scene participant matches the voice.

The contributions of this paper include the creation of FaVoA (Face-Voice
Association Ambiguous Speaker Detector), a model (depicted in Figure 1) ca-
pable of detecting speaking activities in scenarios in which the context does not
provide enough information, e.g., several people speaking simultaneously. We
furthermore provide a quantitative evaluation on how much face-voice associa-
tion actually contributes to the detection of speaking activity.

The remainder of the paper is structured as follows. Section 2 presents the
approaches that have been proposed to tackle the active speaker detection task,
as well as applications of face-voice association. Section 3 introduces the model
used in this research to address the task of active speaker detection. The model
performance was assessed and compared with state-of-the-art architectures. The
details on the experimental setup as well as its results are presented in Section 4.
That section also offers a discussion on those results, as well as an analysis on
how much importance face-voice association plays in ASD. Finally, Section 5
summarises the findings of this research and offers possibilities for future works.

2 Related Works

2.1 In-the-wild active speaker detection

AVA-ActiveSpeaker [16] was the first dataset built for in-the-wild active speaker
detection. It was composed of videos in different resolutions with actors speaking
in various distinct languages. Labels were provided for some speakers in selected
frames of those videos depending on their speaking activity. The labels could
be “not speaking”, “speaking audible” and “speaking not audible”. The dataset
was built as part of a task at the 2019 ActivityNet Challenge. The task used
mean average precision (mAP) as its evaluation metric and the audibly speaking
activity as the positive class for that matter. Two competitors [6, 17] achieved
a higher mAP than the baseline provided by Roth et al. [16]. Both models
depended on a lip synchronisation preprocessing step, and could only achieve
a high performance when working with short-term time spans and usually in
scenarios in which there was only one person speaking [1, 6, 17].

To address the shortcoming of previous models, Alcázar et al. [1] propose
Active Speakers in Context (ASC), a model whose main intuition is to leverage
active speaker context from long-term inter-speaker relations. It differs from
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previous approaches by using not only the information of the face of the target
individual and of the audio input, but also that of the faces of other individuals
detected at the same timestamp [1]. The addition of the information from the
context in which a speaking activity happens grants ASC an mAP higher than
that of Zhang et al. [17], but still lower than that of the ensemble models of
Chung [6]. Even though the context aids in some challenging scenarios, it may
not prove useful in scenarios in which the mouth of the speaker is not seen due
to low resolution or for the speaker not facing the camera, and when there are
several people speaking simultaneously.

Dense optical flow is also used for ASD, as a means to strengthen facial
motion visual representation and this way avoid confusions that happen to au-
diovisual fusion-based models due to factors such as non-speaking facial motion,
varied lighting and low-resolution footage [10]. The inclusion of the dense op-
tical flow grants the model a performance higher than the baseline model of
Roth et al. [16] in two distinct metrics [10], yet no mAP comparison is offered.
No comparison with any other architecture is provided either. Similar to other
models, the performance of that approach degrades when dealing with faces in
low resolution or that are highly tilted.

2.2 Learning of face-voice association

Learning of face-voice relations results from continuous and extensive exposure
to audiovisual stimuli [8]. Psychology studies with infants indicate that the abil-
ity to make arbitrary face-voice associations emerge in humans between two and
four months of age [3]. In the area of active speaker detection, the advantage
of matching visual and auditory representations was shown via the use of con-
trastive loss by some models [10, 17]. Those implementations, however, do not
explicitly make use of the advantages face-voice associations can provide.

Applications of face-voice association in audiovisual crossmodal representa-
tion learning include the assembling of models capable of generating human
faces from speech inputs [5, 13], as well as of models that can retrieve or match
inputs from one modality given inputs of the other modality [11, 12]. The per-
formance of active speaker detection models degrades in cases where faces have
a very small resolution or a large yaw angle [10]. The ability to retrieve frontal
facial embeddings from speech embeddings might provide additional information
capable of helping with those challenging cases.

2.3 Gated bimodal unit

To determine if face-voice association presents an actual contribution to the
task of ASD and in which cases it contributes the most, one should be able
to evaluate its contribution quantitatively. Gated multimodal units (GMUs) [2]
are modality fusion mechanisms capable of providing quantitative values on the
contribution of a given modality to the classification of a dataset entry. The
gated bimodal unit (GBU) is a special case of the GMU oriented for the case
where there are only two modalities to be fused. GMUs incorporate ideas from
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Fig. 2. GBU inner structure

feature and decision fusion [2]. The model architecture is based on the flow
control of gated neural networks, e.g., gated recurrent units (GRUs) [4]. Given
embeddings e1, e2 ∈ Rd from different modalities, the GBU outputs a fused
embedding z ∈ Rd. As indicated in Figure 2, the GBU architecture is similar to
the update gate of a GRU. In that sense, the GBU fused modality z is given by

z = p� h1 + (1− p)� h2, (1)

p = σ (Wp (e1 ‖ e2) + bp) , (2)

hi = tanh (Wihi + bi) , (3)

where � denotes the Hadamard product, σ the sigmoid function, ‖ vector con-
catenation and 1 ∈ Rd an all-one vector. It is worth noticing from Equations 1
and 2 that p can be interpreted as a vector of probabilities p1, p2, . . . , pd that
indicate the relevance of each modality in every element zi ∈ z. In other words,
zi ∈ z is composed of a linear combination of h1,i ∈ h1 and h2,i ∈ h2. The contri-
bution of h1,i in zi is given by pi and that of h2,i is given by the complement of pi,
i.e., 1− pi. Besides the case in which pi = 0.5, one of the modalities will provide
a major contribution to zi while the other will deliver a minor contribution.

3 Model Architecture and Training Method

3.1 Input data, Active Speakers in Context, and FaceVoice

FaVoA incorporates the context information of Active Speakers in Context (ASC)
[1] and the face-voice association provided by FaceVoice [11]. And as such, the
proposed model requires input data that can be fed to both models. Figure 1
shows the architecture of the model, how it receives the input data and how it
processes it. For the part imported from ASC, given a frame and a person in
that frame, the model receives that person’s face as a 144 × 144 image, as well
as the audio input from that particular part of the video, which is converted to
a MFCC spectrogram. Both inputs are sent to a short-term encoder, denoted as
STE in Figure 1, which outputs a vector u ∈ R1024. The STE is composed of two
ResNet-18 CNNs [1], one for each modality, which output vectors of 512 dimen-
sions, which are then concatenated to produce u [1]. The STE was pretrained
with the weights provided by Alcázar et al. [1] and kept fixed during training.
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From FaceVoice, only its voice subnetwork was used, which is denoted as FV in
Figure 1. It requires 10 seconds of continuous speaking activity as input. How-
ever, it is not common for datasets built for active speaker detection to have the
same person speaking for such a long time. To work around this restriction, the
same audio input sent to STE was replicated until the repeated input had the
length of 10 seconds. This approach was taken because the semantics of what
is being said was irrelevant for this task and only the speaking activity was of
interest. Given a 10-second audio input, FV then outputs a vector representation
a ∈ R128. FV was pretrained with the weights provided by Kim et al. [11], but
unlike STE its weights were not kept fixed.

In order to make use of the context in which a given speaking activity takes
place, the vector representations u provided by the STE are combined and or-
ganised in a tensor C. Tensor C is built in such a way that it may contain
information from the time steps before and after the given speaking activity as
well as from other speakers in the same scene. C has dimensions L× S × 1024,
where L is the number of frames used for the context and S is the number of
speakers. Those L frames are defined according to a specific time step t, in which
the speaking activity to be classified happens. The frames must be selected in
a way that time step t lies at the centre of the frame sequence. A sequence of
L frames should contain every frame from time step t − bL/2cτ to t + bL/2cτ
with hops of τ units of time between each selected frame. It is worth noticing
that the sequence of frames does not need to be contiguous. Given the frame
of interest at time step t, a set of S speakers in that frame is selected. If there
are only S′ < S speakers on the frame of interest, then information of some of
those S′ may be used more than once when working with that frame of inter-
est. In a similar fashion, if some selected speaker appears only in a part of the
frame sequence, its foremost activity is replicated all the way until the first frame
of the sequence, and analogously its last activity is also replicated all the way
until the last frame of the sequence. A more detailed explanation on the selec-
tion of frames and speakers can be found in the ASC original paper [1]. Tensor
C is then subjected to a self-attention unit (SAT in Figure 1) and a single-
layer LSTM for the sake of context refinement. The LSTM produces outputs
c′i ∈ R128, 1 ≤ i ≤ L × S, which are concatenated into a vector representation
s ∈ RL×S×128. SAT and LSTM were pretrained with the weights provided by
Alcázar et al. [1] and were subjected to updates during training.

3.2 Fusing speaking context and face-voice association

By combining the embedding a, provided by FaceVoice, with s, provided by
ASC, it is expected that the benefits of face-voice association might aid the ac-
tive speaker detection model even in cases in which the context is not enough,
e.g., when there are several people speaking simultaneously, or when the faces
of the speakers are either in low resolution or very tilted. The fusion of those
embeddings is made by a GBU unit, but since it requires both modality embed-
dings to have the same dimension, embedding a is presented to a ReLU and a
linear layer, which outputs a vector representation a′ ∈ RL×S×128. Both a′ and
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s are then fused by the GBU unit, which produces a fused vector representa-
tion z ∈ RL×S×128. The probability q(x) of a given input x being classified as
“speaking audible” is obtained by projection from z with a linear layer and then
the application of a softmax operation over the two classes.

FaVoA was trained on a single NVIDIA GeForce RTX 2080 Ti GPU with 11
GB GDDR6 memory. A single cross-entropy loss L was used to train it using
PyTorch. The loss is given by

L = −y log(q(x))− (1− y) log(1− q(x)) , (4)

where y represents the expected label, which should be 1 if there is audible
speaking activity, and 0 otherwise. The model weights were updated through a
backpropagation algorithm, by trying to minimise the cumulative loss in every
training mini-batch. Data was sent to the model via mini-batches of size 16.
Similar to ASC, the model optimisation was done with the ADAM optimiser
with an initial learning rate γ = 3× 10−6 and learning rate decay η = 0.1 every
10 epochs.

4 Experiments

4.1 Dataset

The AVA-ActiveSpeaker dataset is the first dataset intended for the task of
active speaker detection that can be considered to be “in the wild”. Prior to
its publication, datasets crafted for this task were mainly composed of high
resolution videos with the speakers facing the camera [16]. AVA-ActiveSpeaker
contains videos spoken in very distinct languages, with some of them with low
resolution and with video and audio not well synchronised. Speakers may also
appear in different video depths, which may cause facial information to be less
clear for a learning system, and usually they are not looking at the camera.

The AVA-ActiveSpeaker dataset contains 153 videos, split into 120 for train-
ing and 33 for validation. The training dataset is composed of 29,723 speaking/
non-speaking streams, ranging from 23 to 304 annotated entries, performed by a
total of 10,156 distinct actors, some of them appearing in up to 2,165 dataset en-
tries. The validation dataset has 8,015 streams of speaking/non-speaking activity
that range from 14 to 305 dataset annotated entries. Those streams are captured
from the performance of 2,515 distinct actors, with some of them having up to
2,143 entries of activity stored in the validation dataset. Table 1 displays the
label distribution among those datasets.

4.2 Experimental results

To evaluate FaVoA, its performance was compared with AV-GRU-f2, the base-
line model provided by Roth et al. [16], ASC (Active Speaker in Context) [1],
Chung’s TC-LSTM Ensemble + Wiener smoothing [6] and Zhang et al.’s Multi-
Task Learning model [17]. Following the indications on the 2019 ActivityNet
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Table 1. Label distribution of training and validation splits of the AVA-ActiveSpeaker
dataset.

Not Speaking Speaking Audible Speaking Not Audible

Training 1, 969, 134 682, 404 24, 776

Validation 567, 815 192, 748 7, 744

challenge, mAP is employed as the metric for this comparison. Table 2 presents
the achieved performance of state-of-the-art models and compares them with
that of the model described in Section 3.

Comparisons were also made with Huang and Koishida’s F+O+A VCE-CL
(Facial Image, Optical Flow and Audio Signal Visual-Coupled Embedding with
Contrastive Loss) [10]. It, however, does not offer performance values using the
mAP metric. Because of this, a comparison is here provided using other metrics
instead, namely the area under the ROC curve (AUC) and the balanced accuracy.
Those metrics were also published for AV-GRU-f2 [16]. Performance results of
those models, as well as FaVoA’s, are also offered by Table 2. Table 2 shows that
not only FaVoA outperformed AV-GRU-f2 in every metric, but it also presents
an mAP considerably higher than that of the multi-task learning approach [17],
which was the runner-up in the 2019 ActivityNet challenge. Its AUC is also close
to that obtained by V+O+A VCE-CL [10].

4.3 Contribution of face-voice association to active speaker
detection

Ablation studies are performed to determine whether a given addition to a model
makes an actual difference in its performance. However, they do not offer quan-
titative measures of how much that addition contributes to the classification.
For multimodal classification, this is an important issue if one wants to better
understand whether some modality contributes more than another to a given
task. The use of GBU for crossmodal integration allows to determine if a given

Table 2. Comparison with state-of-the-art models on the validation subset.

mAP ↑ AUC ↑ Balanced accuracy ↑

ASC [1] 0.871 N/A N/A

TC-LSTM Ensemble + Wiener [6] 0.878 N/A N/A

Multi-Task Learning [17] 0.840 N/A N/A

V+O+A VCE-CL [10] N/A 0.932 0.869

AV-GRU-f2 [16] 0.821 0.910 0.814

FaVoA 0.847 0.928 0.846
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classification favours one modality or another. In the case of this study, the inter-
est lies in determining if the classification is mostly due to context information
(from ASC) or to face-voice association (from FaceVoice).

In order to quantify the contribution of each modality, one can use the vector
p produced by the GBU sigmoid unit (see Figure 2 and Equation 2). For every
entry of the dataset, a vector p can be extracted. This vector contains elements
pi, whose values range from 0 to 1. Each element pi represents a degree of
contribution of modality input e1 (see Figure 2) to element zi ∈ z. In turn, the
degree of contribution of modality input e2 to element zi ∈ z is 1−pi. By taking
the fraction of elements of p whose value is greater than 0.5, one can determine
the fraction of elements of z that favours modality input e1 rather than e2. This
way, one can get a quantitative measure of the contribution of modality input
e1 to the classification and consequently, the contribution of e2 is simply one
minus the contribution of e1. In our case modalities e1 and e2 correspond to the
resulting vector representation of the FaceVoice module and the one of ASC.

The graph of Figure 3a presents a histogram of the degree of contribution
of face-voice association to the detection of speaking activity in entries of the
validation set. The horizontal axis of the graph represents the degree of contri-
bution of face-voice association, ranging from 0 to 1. The vertical axis represents
the number of entries in the dataset for which the face-voice association had a
particular degree of contribution. It can be noticed in the graph that context has
a greater contribution to the classification than face-voice association in the en-
tries of the validation set. Nevertheless, context is never favoured by all elements
of the GBU output. Besides, face-voice association has a degree of contribution
greater than 0.15 for nearly 40% of the entries, and for 303 entries this degree
of contribution can get higher than 0.3.

(a) Number of entries per degree of contribution. (b) Face-voice association has a
much higher degree of contribution
for the man marked in green than
for the other actors.

Fig. 3. Degree of contribution of face-voice association in entries of the validation set.
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The contribution graph has three modes. The highest peak and its surround-
ing values correspond mostly to active speakers whose faces are clearly visible,
or to silence. The region surrounding the leftmost peak corresponds to dataset
records where there is some sound activity and the face of the active speaker
is not entirely clear or the face being analysed is clearly not from the active
speaker. The rightmost part of the graph, with degrees of contribution greater
than 0.275, corresponds to entries in which there are very loud sounds. Figure 3b
depicts a scene in which the GBU assigns a reasonably higher degree of contri-
bution of face-voice association for the man in the foreground (0.198) than for
the other actors (0.098 for the woman in the foreground, and 0.129 and 0.132 for
the actors in the background). This happens due to the presence of a male voice
in the scene and the higher resolution of the face of the man in the foreground.

4.4 Comparison with Active Speakers in Context

The integration of FaceVoice into FaVoA offers the capability of classifying some
instances of speech activity in which ASC failed. Figure 4 presents three cases
in which the context information may be ambiguous and face-voice association
proves useful. This may happen when actors are facing sideways and a facial
feature may be mistaken for an open mouth. In Figure 4a, ASC wrongly classifies
the facial hair for an open mouth, and classifies the man as speaking and the
woman as not speaking. Face-voice association prevents this misclassification by
recognising the female voice and associating it to the woman.

ASC can also mistakenly classify speaking people as not speaking if the mouth
of every person in the scene cannot be clearly seen due to low resolution (Fig-
ure 4b) or if people are speaking simultaneously (Figure 4c). ASC classifies every
person in both figures as not speaking. Face-voice association can aid with cor-
rectly classifying the speaker of Figure 4b due to the age difference. Regarding
the scene depicted in Figure 4c, ASC tends to classify a person as not speaking
if someone in the same scene context seems to be already speaking. Thus ASC
classifies both speaking women as not speaking, since the speaking activity of
one of them triggers ASC to classify the other as not speaking and vice versa.
Given the presence of female voices, FaVoA presents a less hesitant behaviour
in classifying both women whose faces are not partially hidden as speaking.

FaVoA presents some difficulties in comparison to ASC in scenes where the
person is not speaking, but his/her voice can be heard narrating something. It
also makes some mistakes in case there is some chanting and the voice of the
person who is chanting somehow resembles that of the person being classified.
Finally, ASC tends to more precisely classify some speaking activities (model
outputs are mostly either close to 0 or to 1), whereas the outputs of FaVoA vary
reasonably in the range between 0 and 1.

5 Conclusion

This paper offers a study on the role of face-voice association in the task of ac-
tive speaker detection. FaVoA provides a better classification in some challenging
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(a) Wrong gender. (b) Low resolution. (c) Multiple speakers.

Fig. 4. Examples of cases in which the context does not provide enough information
and face-voice association is required for a correct active speaker detection. In the
subfigures, people who are not speaking are marked with a red bounding box and
those speaking with a green bounding box.

scenarios, such as low-resolution faces and several simultaneous speakers. Cross-
modal learning models integrate the information from different modalities as a
means to better tackle tasks in which one or more of those modalities do not
provide enough useful information for some reason. By considering a person’s
characteristics by his/her voice, FaVoA makes use of the benefits of crossmodal-
ity in order to better determine the active speakers in a scene even in cases where
the mouth of a speaker cannot be seen. The use of GBU for modality fusion al-
lowed for determining quantitatively the contribution of face-voice association in
ASD. By analysing that contribution, some cases of non-speaking activity can be
immediately identified, which can help preventing the misclassification of some
person as actively speaking. Cases in which there are several speakers can also be
identified based on the degree of contribution of face-voice association. In future
work, face-voice association may be used to support tackling other crossmodal
tasks that involve conversational datasets in which speaker faces may not be
clear. Additional directions for improvement in active speaker detection include
the addition of other modalities, e.g., gaze and face keypoints.
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