Skip to main content

PNO: Personalized Network Optimization for Human Pose and Shape Reconstruction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12893))

Abstract

Most previous human pose and shape reconstruction methods focus on the generalization ability and learn a prior of the general pose and shape, however the personalized features are often ignored. We argue that the personalized features such as appearance and body shape are always consistent for the specific person and can further improve the accuracy. In this paper, we propose a Personalized Network Optimization (PNO) method to maintain both generalization and personality for human pose and shape reconstruction. The general trained network is adapted to the personalized network by optimizing with only a few unlabeled video frames of the target person. Moreover, we specially propose geometry-aware temporal constraints that help the network better exploit the geometry knowledge of the target person. In order to prove the effectiveness of PNO, we re-design the benchmark of pose and shape reconstruction to test on each person independently. Experiments show that our method achieve the state-of-the-art results in both 3DPW and MPI-INF-3DHP datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)

    Google Scholar 

  2. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM TOG (2019)

    Google Scholar 

  3. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR (2017)

    Google Scholar 

  5. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3D human pose estimation: motion to the rescue. In: NeurIPS (2019)

    Google Scholar 

  6. Huang, Y., et al.: Towards accurate marker-less human shape and pose estimation over time. In: 3DV (2017)

    Google Scholar 

  7. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. PAMI 36(7), 1325–1339 (2013)

    Google Scholar 

  8. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC (2010)

    Google Scholar 

  9. Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate annotation. In: CVPR (2011)

    Google Scholar 

  10. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR (2018)

    Google Scholar 

  11. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: CVPR (2019)

    Google Scholar 

  12. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: CVPR (2020)

    Google Scholar 

  13. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction (2019)

    Google Scholar 

  14. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: ICCV (2019)

    Google Scholar 

  15. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: CVPR (2017)

    Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM TOG 34(6), 1–16 (2015)

    Article  Google Scholar 

  18. von Marcard, T., Henschel, R., Black, M., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: ECCV (2018)

    Google Scholar 

  19. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 3DV (2017)

    Google Scholar 

  20. Park, E., Berg, A.C.: Meta-tracker: fast and robust online adaptation for visual object trackers. In: ECCV (2018)

    Google Scholar 

  21. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: CVPR (2018)

    Google Scholar 

  22. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: CVPR (2018)

    Google Scholar 

  23. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2019YFC1521104) and Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhuang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Z., Wang, M., Guan, S., Liu, W., Qian, C., Ma, L. (2021). PNO: Personalized Network Optimization for Human Pose and Shape Reconstruction. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics