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Abstract. Hierarchical classification is significant for complex tasks by
providing multi-granular predictions and encouraging better mistakes.
As the label structure decides its performance, many existing approaches
attempt to construct an excellent label structure for promoting the clas-
sification results. In this paper, we consider that different label structures
provide a variety of prior knowledge for category recognition, thus fusing
them is helpful to achieve better hierarchical classification results. Fur-
thermore, we propose a multi-task multi-structure fusion model to inte-
grate different label structures. It contains two kinds of branches: one is
the traditional classification branch to classify the common subclasses,
the other is responsible for identifying the heterogeneous superclasses
defined by different label structures. Besides the effect of multiple label
structures, we also explore the architecture of the deep model for better
hierachical classification and adjust the hierarchical evaluation metrics
for multiple label structures. Experimental results on CIFAR100 and
Car196 show that our method obtains significantly better results than
using a flat classifier or a hierarchical classifier with any single label
structure.

Keywords: Hierarchical classification · Multi-task learning · Multiple
label structures.

1 Introduction

Although deep learning in text spotting [27,28,6,5,26,25], object detection [37],
self-supervised learning [40,39,23,38,22] and image classification [10,15] has achieved
dramatic performance with the increase of annotated data, the unclassifiable cat-
egories are growing and inevitable in the ear of big data. Moreover, the conven-
tional one-hot coding in flat classifiers suggests a strict error evaluation: as long
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Fig. 1. The benefit of combining multiple label structures. (a) shows two samples
for palm tree and porcupine, as these two categories are similar, they are easy to
be misclassified. (b) and (c) are two label structures, each for the visual sturcture
based on the affinity matrix and the semantic structure. The second layers in (b) and
(c) are the superclasses, the third layers are the shared subclasses. The green dashed
paths are the ground truth in both label structures when a “porcupine” is needed
to identify. When “s1”and “medium mammals”are recognized in each label structure,
“porcupine”is promoted as it belongs to both “s1”and “medium mammals”.

as the predicted value is inconsistent with the real one, it will be recognized as
misclassification. In fact, there are different levels of severity in mistakes [4]. As
shown in Figure 1(c), the classifier makes a less serious mistake when it classifies
a “porcupine” into an “opossum” than a “ sunflower” obviously, because they all
belong to the superclass “medium mammals”. Therefore, when misclassification
is unavoidable, providing a reasonable mistake is more significant.

Recently, more and more work is devoted to using hierarchical classification
methods [35,34] to make multi-granular predictions and avoid serious mistakes.
In hierarchical classification, label structures play a critical role. Hence many re-
searchers try to construct efficient label structures, which can be roughly divided
into semantics-based methods and computation-based methods. The former ex-
tracts the semantic structure from WordNet [18], where categories are organized
into a tree-shape structure according to their semantic relations [41,7,8,14]. How-
ever, these relations may be inconsistent with the appearances, which weakens
the performance of classification tasks. Therefore, a lot of work builds visual
information tree structures [13,3,19,20,21,16,11,29]. Some build the tree struc-
tures based on the confusion matrix [13,3,19,20,21], which is constructed by the
results of a classifier. Others construct the label structure based on the affinity
matrix [16,11,29] calculted by the similarity of any two categories.

Different label structures provide various prior knowledge for the underly-
ing classification tasks. Hence integrating these structures can further improve
the performance [33,43]. As shown in Fig.1, in the mission of “porcupine” clas-
sification, if one has determined its superclass “s1” and “medium mammals”
according to the label structure based on the affinity matrix and semantics re-
spectively, then, “porcupine” can be easily determined by combining these two
intermediate results. A straightforward strategy to fuse multiple label structures
is constructing a hierarchical classifier for each structure, and the prediction is
obtained by integrating the results of multiple classifiers [33]. This idea is sim-
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ple and efficient, but in the deep learning scenario, it is memory-consuming and
computationally redundant to design a neural network for each label structure.

In this paper, a multi-task multi-structure fusion (MMF) model is proposed
to make the superclasses from different label structures instruct the subclass
recognition. It achieves this by encouraging the learned feature to satisfy the
multiple similarity constraints in various hierarchical label structures. Specifi-
cally, it is a deep convolutional neural network with two kinds of classification
branches: the conventional classification branch (CCB) used for identifying sub-
classes, and the multiple superclass classification branches (MSCBs), where each
branch is responsible for recognizing the superclasses defined by a specific label
structure.

Our main contributions are summarized in three folds: 1) We find that inte-
grating multiple label structures can further improve the performance of hierar-
chical classification, and propose a MMF model to combine different hierarchical
label structures. 2) Further, various architectures of our MMF model are ex-
plored for better classification. 3) We adjust the hierarchical evaluation metrics
for multiple label structures. Experimental results on CIFAR100 and Car196 are
better than traditional flat classifiers and hierarchical classifiers with any single
label structure.

2 Related Work

2.1 Hierarchical Classification

The traditional methods decompose the hierarchical classification task into sev-
eral subtasks and train a subclass classifier for each superclass node indepen-
dently [13,3,29,9]. However, this strategy is memory-consuming and computing
expensive for storing and training many subclass classifiers. Therefore, these
methods are not suitable for deep learning. For deep hierarchical classification,
Frome et al. [12] constructs a deep visual-semantic model by re-training the lower
layers of the pre-trained visual network to predict the vector representation of
the image label text in the hierarchical label structure learned by the language
model. Barz & Denzler [2] design an algorithm to map the labels into a unit
hypersphere where the cosine distances between different labels are equal to the
distance in the hierarchical label structure.

Besides the implicit label embedding, many researchers want to explicitly
model the hierarchical label structure. Wu et al. [36] adds one fully connected
softmax layer for each layer in the hierarchy to make the network recognize both
the superclasses and the subclasses. But in this work, the relations between the
superclasses and subclasses are underutilized. Bertinetto et al. [4] adds a weight
matrix between the superclass classifier and the subclass classifier, thus, predic-
tions of the superclass can be propagated to and affect the predictions of the
subclass through the weight matrix. Ahmed et al. [1] trains a network to provide
superclasses information and common knowledge through shared features to a
set of expert networks, each of which devoted to recognizing the subclasses of a
specific superclass. Therefore, the multi-task framework has been proved efficient
for hierarchical classification.
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Fig. 2. The architecture of our MMF model with a five-stage CNN.

2.2 Multiple Label Structures Fusion

As we have mentioned, different label structures provide different priori knowl-
edge for hierarchical classification, thus, integrating these structures can further
improve the performance. Wang et al. [33] constructs a classifier for each label
structure, and the prediction of a test sample is obtained by integrating the
results of multiple classifiers. This idea is simple and efficient, but in the deep
learning scenario, it is memory-consuming and computationally redundant to
design a neural network for each label structure. Instead of training multiple
subclass classifiers, Zhao et al. [43] fuses multiple category similarities defined
by different label structures in the kernel space, then trains one kernel SVM clas-
sifier. Inspired by this idea, we propose a multi-task multi-structure framework
to make the superclasses from different label structures instruct the subclass
recognition by encouraging the learned features to satisfy the multiple similarity
constraints in different label structures.

3 Method

3.1 Problem Definition

Given an image dataset D with N classes, after M label structure construction
methods applied, we can obtain M tree-like label structures. Except for the
layer containing the root node, each layer in the structure is equipped with a
specific classifier to decide the category in the current layer. To simplify the
problem, all the structures covered in this paper are arranged with three levels.
Take the right side of Fig.2 as an example, a label structure is represented as
Hm = {R,CSm ,C}, where R is the root node, CSm is the superclass set in
Hm, and C is the subclass set. Consequently, given a sample x in D, its labels
compose of one subclass c and M superclasses csm . For hierarchical classification
with multiple label structures, all these superclasses should be predicted.

3.2 Multi-Task Multi-Structure Fusion Framework

Assumed that multiple label structures have been obtained, the MMF model
can be constructed, which includes two kinds of classification branches: CCB is
a classification branch with a traditional classifier to identify the subclass, while
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(a) (b) (c) (d)

Fig. 3. The construction of HA on CIFAR100. (a) Samples from CIFAR100 dataset.
(b) Feature representations devided from 100 classes in images. (c) The affinity matrix
obtained from the features. (d) HA with 30 superclasses after spectral clustering.

MSCBs are several classifiers for the superclass identification. Fig.2 shows an
overview of our model. All MSCBs work in parallel to encourage the features
derived from the network to meet various similarity constraints in different label
structures, guiding CCB to make more accurate predictions.

MSCBs The MSCBs contains multiple superclass classifiers. As shown in
Fig.2, the “Hm classifier” in MSCBs completes its task based on the label struc-
ture Hm. As the superclasses are more generic than the subclasses (e.g., medium
mammals and porcupine in Fig.1 (c)), and the high-level features usually contain
more details to discriminate the subclasses, MSCBs should be inserted in the
early stages. We will explore the influence of various network stages to attach
the MSCBs in the following experiments.

3.3 Multiple Label Structures

For a dataset D, we introduce two kinds of Hm to construct our MMF model:
the semantic label structure HS and the visual label structure HA based on the
affinity matrix.

HS Usually, a semantic structure is adopted to organize the data. Take CI-
FAR100 as an example: there is a three-level semantic hierarchical label structure
(one root node, 20 superclasses, and 100 subclasses) in the dataset (like Hm in
Fig.2). We adopt this semantic structure HS inherent in the datasets in our
paper.

HA We construct a visual label structure based on the affinity matrix through
two stages as shown in Fig.3: feature extraction and label structure construc-
tion. For feature extraction (from (a) to (b)), we use a pre-trained VGG16 to
extract features. Then, for label structure construction, we adopt sample pair-
wise distance to calculate the similarity between any two categories (from (b)
to (c)), and simplify the calculation with [29] by Eq.(1), where ci is the i-th
class, and Qci , σci are the mean and variance of features in ci. Then the affinity
matrix A can be constructed by Eq.(2), where δij is a self-tuning parameter [30],
and we take 1 in our work. Finally, we use spectral clustering [24] to build the
corresponding HA (from (c) to (d)).

dis(ci, cj)
2 =

∥∥Qci −Qcj

∥∥2 + σ2
ci + σ2

cj . (1)
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Aij = exp(−dis(ci, cj)
δij

). (2)

3.4 Hierarchical Measures

As it is a multi-structure fusion work, we add the hierarchical information to
the evaluation measures, and consider the similarity between the predicted class
and the ground truth, i.e., the severity of the classifier’s mistakes. However, the
existing evaluation measures [42] such as hierarchical F1-measure (FH), the tree
induced loss (TIE) and the lowest common ancestor (LCA) of the prediction
and the ground truth, are designed for a single label structure. Therefore, we
adjust the above three measures to fit our method.

FHa The traditional precision P and recall R rate are extended to the hier-
archical precision PH and recall RH rate, which can well measure the severity of
mistakes, as the error in the superclasses is more serious than that in the sub-
classes. As our MMF deals with multiple label structures, we take the average
of all PH and RH in each label structure. FHa is calculated from PHa and RHa:

PHa =
1

M

M∑
m=1

∣∣∣ ˆCm
aug ∩ Cm

aug

∣∣∣∣∣∣ ˆCm
aug

∣∣∣ , RHa =
1

M

M∑
m=1

∣∣∣ ˆCm
aug ∩ Cm

aug

∣∣∣∣∣Cm
aug

∣∣ , (3)

FHa =
2 · PHa ·RHa

PHa +RHa
, (4)

where M is the number of the label structures, ˆCm
aug is the predicted extension

set which contains the class nodes on the path from the root class to the predict
subclass in Hm, Cm

aug is the real extension set which contains the class nodes on
the path from the root class to the real subclass in Hm, and | · | is an operator
to calculate the number of the elements.

TIEa In the tree structure, the total number of edges from the predicted node
to the real node along a specific label structure is represented as TIE distance.
To deal with multiple label structures, we introduce TIEa to average all the TIE
distances in each label structure by Eq.(5), where |Edgem(c, ĉ)| is the number
of edges from the predicted node ĉ to the real node c in Hm. Accordingly, the
smaller the TIEa, the more similar the predicted class is to the real class.

TIEa =
1

M

M∑
m=1

|Edgem(c, ĉ)| . (5)

LCAa We modified the LCA height to the mean value of all LCA heights
in each label structure to obtain LCAa by Eq.(6), where Heightm(c, ĉ) is the
lowest common ancestor height between the predicted node ĉ and the real node
c in Hm. A smaller LCAa means a smaller classification error.

LCAa =
1

M

M∑
m=1

Heightm(c, ĉ). (6)
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3.5 Traing and Inference

The multi-task loss for MMF model contains a CCB loss and several MSCBs
losses denoted by Eq.(7), where φ(x; θ) is a classification network, the parameter
θ is learned by minimizing our loss function. ĉ , ˆcsm are the predicted subclass
and superclass, c, csm are the ground truth of subclass and superclass in Hm

respectively. λm is the constraint intensity of “Hm classifier”, and λ =
∑M

m=1 λm.
We use the standard cross entropy loss to compute LCCB and LHm

.

L(φ(x, θ), c,CS) = (1− λ) ∗ LCCB(ĉ, c) +

M∑
m=1

λm ∗ LHm( ˆcsm , csm). (7)

When training, samples with different hierarchical label structures are input
into the framework for multiple rounds of iterative training. MSCBs impose
constraints on the network through the multi-task loss, affecting the prediction
of subclasses. When it comes to inference, the final predicted result of subclass
is decided by CCB only.

4 Experiments

4.1 Experimental Settings

Datasets We conduct experiments on two benchmark datasets CIFAR100 and
Car196. In CIFAR100, there is a total number of 100 categories belonging to
20 semantic superclasses on average. Car196 is a fine-grained dataset containing
196 subclasses from three different kinds of semantic superclasses “Make” (49
categories), “Type”(18 categories), and “Year”. We choose “Make” and “Type”
as the semantic label structures because “Year” is not discriminative. We also
construct a three-level HA for each dataset.

Backbones The backbones of our network are VGG16 [31] and ResNet50
[32] trained from scratch. Note that there are five stages in both backbones.

Evaluation Metrics Four evaluation metrics are considered in our work
to fully analyze the classifiers’ results. Besides the flat measure top-1 accuracy
(Acc), we also adopt three hierarchical measures proposed before to better eval-
uate the performance of the classifiers.

4.2 Ablation Study

The impact of HA, the network stages to attach MSCBs, and the constraint
intensity λ on the model’s performance is explored in the following ablation
experiments. Note that all the ablation studies are adapted both VGG16 and
ResNet50 backbone on CIFAR100 and Car196, in order to show the generaliza-
tion of our model.

HAs As HA is three-level, the number of superclasses decides its structure.
To obtain a suitable number of superclasses, we perform a series of ablation
experiments on our MMF model with a singe label structure HA. Referring to
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Table 1. The subclass performance with different HA.

Dataset Numsuper

VGG16 ResNet50
Acc(↑) FHa(↑) TIEa(↓) LCAa(↓) Acc(↑) FHa(↑) TIEa(↓) LCAa(↓)

CIFAR100

18 72.67 84.15 0.9509 0.4754 79.20 88.12 0.7130 0.3565
20 72.51 84.07 0.9558 0.4779 79.01 88.04 0.7176 0.3588
25 72.46 83.78 0.9733 0.4867 79.13 87.93 0.7240 0.3620
30 72.95 84.04 0.9574 0.4787 79.21 87.91 0.7252 0.3626

Car196

15 82.67 91.70 0.4979 0.2490 90.19 95.44 0.2738 0.1369
18 81.04 90.87 0.5478 0.2739 89.17 95.06 0.2963 0.1482
20 82.42 91.47 0.5116 0.2558 89.69 95.22 0.2865 0.1433
30 79.58 89.38 0.6370 0.3185 89.06 94.47 0.3321 0.1660
40 79.09 88.66 0.6804 0.3402 89.26 94.33 0.3402 0.1701
50 79.76 89.05 0.6569 0.3285 89.67 94.50 0.3297 0.1649

the number of superclasses in HS, We vary the number of HA’s superclasses in
[18, 20, 25, 30] for CIFAR100 , and [15, 18, 20, 30, 40, 50] for Car196. According
to the results of Table 1, we select the HA with 30 superclasses for CIFAR100,
and 15 for Car196.

(a) (b) (c)

Fig. 4. (a) MSCBs attached in different stages on CIFAR100. (b) and (c) are the con-
straint intensities of MSCBs on CIFAR100 and Car196 respectively. Note that results
in the first row are for VGG16, and the second are for ResNet50.

MSCBs An important thing for our MMF model is where to insert the classi-
fiers for superclasses. We explore it with HA, HS and multiple structures HA&S

on CIFAR100, and the results with λ = 0.2 are shown in Fig.4(a). One interest-
ing phenomenon can be observed in the both backbones: adding the superclass
classifiers in the early stages is more effective. The reason may be that the low-
level features are more generic and lose details of the high-level features for
subclasses identification. So in the experiments, we insert MSCBs in the early
stages to make our MMF model firstly grasp general concepts, then the CCB
captures details in each concept to discriminate subclasses.
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Table 2. The subclass performance of VGG16.

Dataset Method Structure Numclass λ Acc(↑) FHa(↑) TIEa(↓) LCAa(↓)

CIFAR100

Greedy [3,17] HS 100/20 - 70.09 81.98 1.0811 0.5405
NBPath [29] HS 100/20 - 70.49 82.23 1.0664 0.5332

MMF

w/o H 100 - 72.20 83.35 0.9991 0.4995
HA 100/30 0.1 73.27 84.97 0.9015 0.4507
HS 100/20 0.1 73.25 84.70 0.9179 0.4590

HA&S 100/30/20 0.15 73.37 84.79 0.9127 0.4563

Car196

Greedy [3,17]
HT 196/18 - 51.45 73.89 1.5663 0.7832
HM 196/49 - 54.05 75.40 1.4763 0.7381

NBPath [29]
HT 196/18 - 52.99 74.71 1.5172 0.7586
HM 196/49 - 55.30 76.05 1.4373 0.7186

MMF

w/o H 196 - 74.63 87.88 0.7273 0.3637
HA 196/15 0.6 82.67 91.70 0.4979 0.2490
HT 196/18 0.4 82.35 91.34 0.5344 0.2672
HM 196/49 0.3 82.24 91.89 0.4864 0.2432

HA&T 196/15/18 0.3 82.67 92.23 0.4661 0.2330
HA&M 196/15/49 0.3 81.62 91.77 0.4938 0.2469
HT&M 196/18/49 0.2 80.69 91.44 0.5134 0.2567

HA&T&M 196/15/18/49 0.2 83.67 92.88 0.4274 0.2137

λ: We fix MSCBs on the stage where the best performance is achieved, then
vary λ in [0.1, 0.8]. In Fig.4(b) and (c), experimental results on the subclasses
show that different Acc obtained by adjusting λ. With a larger λ (λ ≥ 0.1), the
performance on the subclasses is worse than the MMF w/o H. And it’s not weird
that results of different label structures don’t coincide exactly because they have
different similarity constraints, corresponding to different constraint strengths.
In the following experiments with a single label structure, we set λ with the best
performance. And for multiple label structures, λm is set to the same values for
the sake of making these label structures act equally, varying within the range
of the λ which achieved the best results in the single label structures.

4.3 Experimental Results and Analyses

Our deep MMF model with different single label structures and their combina-
tions is compared with two methods based on the top-down strategy. For the
top-down methods, we choose two methods which are based on the greedy selec-
tion at each hierarchy (Greedy) [3,17] and the N-Best Path (NBPath) [29]. To
improve the performance, we adopt features extracted from a carefully fine-tuned
VGG16 or ResNet50, which is the backbone in our MMF model. Then kernel
SVMs are employed as the classifiers at each hierarchy. For our MMF model,
we adopt different label structures as shown in Table 2 and Tabel 3. “w/o H”
means MMF model without any hierarchical structures, which is a traditional
classification network contains a backbone and a classifier for subclass classifica-
tion. “HT” and “HM” are the semantic structures based on “Type” and “Make”
respectively, and “HA&S” (i.e., HA and HS) etc. are multiple label structures.

Table 2 and Table 3 show the results of VGG16 and ResNet50 on CIFAR100
and Car196, respectively. Note that in the multi-structure models, the perfor-
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Table 3. The subclass performance of ResNet50.

Dataset Method Structure Numclass λ Acc(↑) FHa(↑) TIEa(↓) LCAa(↓)

CIFAR100

Greedy [3,17] HS 100/20 - 76.22 85.68 0.8594 0.4297
NBPath [29] HS 100/20 - 76.44 85.78 0.8535 0.4267

MMF

w/o H 100 - 78.50 87.22 0.7668 0.3834
HA 100/30 0.1 79.38 88.14 0.7114 0.3557
HS 100/20 0.1 79.51 88.28 0.7034 0.3517

HA&S 100/30/20 0.15 79.52 88.28 0.7029 0.3514

Car196

Greedy [3,17]
HT 196/18 - 86.80 93.30 0.4022 0.2011
HM 196/49 - 87.30 93.57 0.3855 0.1928

NBPath [29]
HT 196/18 - 87.40 93.63 0.3823 0.1911
HM 196/49 - 87.69 93.78 0.3732 0.1866

MMF

w/o H 196 - 88.66 94.84 0.3097 0.1548
HA 196/15 0.3 90.19 95.44 0.2738 0.1369
HT 196/18 0.3 90.10 95.44 0.2736 0.1368
HM 196/49 0.3 89.92 95.59 0.2645 0.1322

HA&T 196/15/18 0.1 90.20 95.72 0.2567 0.1283
HA&M 196/15/49 0.1 89.45 95.41 0.2756 0.1378
HT&M 196/18/49 0.2/0.1 90.42 95.89 0.2468 0.1234

HA&T&M 196/15/18/49 0.05 90.29 95.87 0.2477 0.1239

mance of the subclass classifiers achieves the best performance when the λm for
different structures is equal, except for HT&M in ResNet50. It can be concluded
that: 1) For the subclass classifier performance, our MMF model with a sin-
gle structure is better than the top-down methods with a considerable margin,
which verifies the efficiency of the end-to-end training. 2) Besides, MMF with
any single structure achieves better performance than “w/o H”, indicating the
benefit of the superclass classifiers. 3) Furthermore, MMF with multiple label
structures performs better than any single one, which confirms our assumption
that multiple label structures can provide richer similarity constraints to improve
the performance of the subclass classifier. 4) The gain in hierarchical evaluation
metrics is more obvious than the flat measure Acc, indicating that predictions in
our MMF model are more closer to the ground truth (i.e., a less serious mistake).

5 Conclusion

In this paper, we have constructed a multi-task multi-structure fusion model for
hierarchical classification. Various factors have been explored, such as different
label structures based on the affinity matrix, the stages to attach the superclass
classifiers, and theconstraint intensities. Besides, the hierarchical evaluation met-
rics have been adjusted to fit the classification with multiple label structures. The
experimental results demonstrate that different label structures provide various
prior knowledge for the subclass classifier. Meanwhile, integrating these multiple
label structures can achieve better results.

In this work, relations of the subclass and its superclasses are impplicitly
modeled by the weighted multi-task loss function. In the future, we will explore
more direct ways to utilize multiple label structures.
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