Skip to main content

Evaluate Pseudo Labeling and CNN for Multi-variate Time Series Classification in Low-Data Regimes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12895))

Abstract

Nowadays, huge amount of data are being produced by a large and diverse family of sensors (e.g., remote sensors, biochemical sensors, wearable devices). These sensors typically measure multiple variables over time, resulting in data streams that can be profitably organized as multivariate time-series. In practical scenarios, the speed at which such information is collected often makes the data labeling a difficult task. This results in a low-data regime scenario where only a small set of labeled samples is available and standard supervised learning algorithms cannot be employed. To cope with the task of multi-variate time series classification in low-data regime scenarios, here, we propose a framework that combines convolutional neural networks (CNNs) with self-training (pseudo labeling) in a transductive setting (test data are already available at training time). Our framework, named \(ResNet^{IPL}\), wraps a CNN based classifier into an iterative procedure that, at each step, enlarges the training set with new samples and their associated pseudo labels. An experimental evaluation on several benchmarks, coming from different domains, has demonstrated the value of the proposed approach and, more generally, the ability of the deep learning approaches to effectively deal with scenarios characterized by low-data regimes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/hfawaz/dl-4-tsc.

  2. 2.

    https://github.com/xuczhang/tapnet.

  3. 3.

    Code will be available upon acceptance.

References

  1. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  2. Castellanos, M.G., Bergmeir, C., Triguero, I., Rodríguez, Y., Benítez, J.M.: Self-labeling techniques for semi-supervised time series classification: an empirical study. Knowl. Inf. Syst. 55(2), 493–528 (2018)

    Article  Google Scholar 

  3. Chen, Y., Hu, B., Keogh, E.J., Batista, G.E.A.P.A.: DTW-D: time series semi-supervised learning from a single example. In: KDD, pp. 383–391. ACM (2013)

    Google Scholar 

  4. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33(4), 917–963 (2019)

    Article  MathSciNet  Google Scholar 

  5. Frank, J., Mannor, S., Pineau, J., Precup, D.: Time series analysis using geometric template matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 740–754 (2013)

    Article  Google Scholar 

  6. Gbodjo, Y.J.E., Ienco, D., Leroux, L.: Toward spatio-spectral analysis of sentinel-2 time series data for land cover mapping. IEEE Geosci. Remote Sens. Lett. 17(2), 307–311 (2020)

    Article  Google Scholar 

  7. Geler, Z., Kurbalija, V., Radovanovic, M., Ivanovic, M.: Comparison of different weighting schemes for the KNN classifier on time-series data. Knowl. Inf. Syst. 48(2), 331–378 (2016)

    Article  Google Scholar 

  8. van der Maaten, L., Hinton, G.: Visualizing Data Using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  9. Marussy, K., Buza, K.: SUCCESS: a new approach for semi-supervised classification of time-series. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 437–447. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_39

    Chapter  Google Scholar 

  10. Saporta, A., Vu, T., Cord, M., Pérez, P.: ESL: entropy-guided self-supervised learning for domain adaptation in semantic segmentation. CoRR abs/2006.08658 (2020)

    Google Scholar 

  11. de Sousa, C.A.R., Rezende, S.O., Batista, G.E.A.P.A.: Influence of graph construction on semi-supervised learning. In: ECML/PKDD, vol. 8190, pp. 160–175 (2013)

    Google Scholar 

  12. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)

    Google Scholar 

  13. Tavenard, R., et al.: Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21(118), 1–6 (2020)

    MATH  Google Scholar 

  14. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42(2), 245–284 (2015)

    Article  Google Scholar 

  15. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: IJCNN, pp. 1578–1585. IEEE (2017)

    Google Scholar 

  17. Yamaguchi, Y., Faloutsos, C., Kitagawa, H.: CAMLP: confidence-aware modulated label propagation. In: SDM, pp. 513–521. SIAM (2016)

    Google Scholar 

  18. Zhang, X., Gao, Y., Lin, J., Lu, C.: TapNet: multivariate time series classification with attentional prototypical network. In: AAAI, pp. 6845–6852 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Ienco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ienco, D., Pereira-Santos, D., de Carvalho, A.C.P.L.F. (2021). Evaluate Pseudo Labeling and CNN for Multi-variate Time Series Classification in Low-Data Regimes. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12895. Springer, Cham. https://doi.org/10.1007/978-3-030-86383-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86383-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86382-1

  • Online ISBN: 978-3-030-86383-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics