Skip to main content

A Highly Modular Architecture for Canned Pattern Selection Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12924))

Abstract

Due to the continuously increasing rate of data production from multiple sources, especially from social media, data analysis techniques are focusing on identifying patterns in the formed graphs and extracting knowledge from them. Most techniques till now, begin with given patterns and calculate the coverage in the graph. Here, we propose a graph mining architecture that focus on finding small sub-graph patterns, referred to as canned pattern, from a database of graphs without any domain knowledge of the graph. These patterns can be used to expedite the query formulation time, increase the domain knowledge and support the data analysis. The canned pattern should maximize coverage and diversity over the graph database while minimizing the cognitive-load of the patterns. The approach presented here is based on an innovative modular architecture that combines state-of-art techniques to extract these patterns and validate the extracted result.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: Simgnn: a neural network approach to fast graph similarity computation. In: ACM ICWSDM (2019)

    Google Scholar 

  2. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: PAKDD (2008)

    Google Scholar 

  3. Bunke, H.: What is the distance between graphs. Bull. EATCS 20, 35–39 (1983)

    Google Scholar 

  4. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recogn. Lett. 19(3), 255–259 (1998)

    Article  Google Scholar 

  5. Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit distance computation through fast bipartite matching. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 102–111. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20844-7_11

    Chapter  MATH  Google Scholar 

  6. Galluccio, L., Michel, O., Comon, P., Hero, A.O.: Graph based k-means clustering. Signal Process. 92(9), 1970–1984 (2012)

    Article  Google Scholar 

  7. Huang, K., Chua, H.E., Bhowmick, S.S., Choi, B., Zhou, S.: Catapult: data-driven selection of canned patterns for efficient visual graph query formulation. In: Proceedings of the 2019 International Conference on Management of Data. SIGMOD 2019, pp. 900–917. Association for Computing Machinery (2019)

    Google Scholar 

  8. Jamshidi, K., Mahadasa, R., Vora, K.: Peregrine. In: Proceedings of the Fifteenth European Conference on Computer Systems, April 2020. https://doi.org/10.1145/3342195.3387548

  9. Kuhn, H.W.: The Hungarian method for the assignment problem. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 29–47. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_2

    Chapter  Google Scholar 

  10. Langville, A., Meyer, C.: A survey of eigenvector methods of web information retrieval. SIAM Rev. 47(1), 135–161 (2004). https://doi.org/10.1137/S0036144503424786

    Article  MathSciNet  MATH  Google Scholar 

  11. Munger, A., Bunke, H.: On median graphs: properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1144–1151 (2001). https://doi.org/10.1109/34.954604

    Article  Google Scholar 

  12. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report 1999–66, Stanford InfoLab (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marinos Tzanikos , Maria Krommyda or Verena Kantere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzanikos, M., Krommyda, M., Kantere, V. (2021). A Highly Modular Architecture for Canned Pattern Selection Problem. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2021. Lecture Notes in Computer Science(), vol 12924. Springer, Cham. https://doi.org/10.1007/978-3-030-86475-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86475-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86474-3

  • Online ISBN: 978-3-030-86475-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics