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Abstract. This paper presents a deep Inverse Reinforcement Learn-
ing (IRL) framework that can learn an a priori unknown number of
nonlinear reward functions from unlabeled experts’ demonstrations. For
this purpose, we employ the tools from Dirichlet processes and propose
an adaptive approach to simultaneously account for both complex and
unknown number of reward functions. Using the conditional maximum
entropy principle, we model the experts’ multi-intention behaviors as
a mixture of latent intention distributions and derive two algorithms to
estimate the parameters of the deep reward network along with the num-
ber of experts’ intentions from unlabeled demonstrations. The proposed
algorithms are evaluated on three benchmarks, two of which have been
specifically extended in this study for multi-intention IRL, and compared
with well-known baselines. We demonstrate through several experiments
the advantages of our algorithms over the existing approaches and the
benefits of online inferring, rather than fixing beforehand, the number of
expert’s intentions.

Keywords: Inverse reinforcement learning · Multiple intentions · Deep
learning.

1 Introduction

The task of learning from demonstrations (LfD) lies in the heart of many ar-
tificial intelligence applications [28, 37]. By observing the expert’s behavior, an
agent learns a mapping between world states and actions. This so-called policy
enables the agent to select and perform an action, given the current world state.
Despite the fact that this policy can be directly learned from expert’s behav-
iors, inferring the reward function underlying the policy is generally considered
the most succinct, robust, and transferable methodology for the LfD task [1].
Inferring the reward function, which is the objective of Inverse Reinforcement
Learning (IRL), is often very challenging in real-world scenarios. The demon-
strations come from multiple experts who can have different intentions, and
their behaviors are consequently not well modeled with a single reward function.
Therefore, in this study, we research and extend the concept of mixture of con-
ditional maximum entropy models and propose a deep IRL framework to infer
an a priori unknown number of reward functions from experts’ demonstrations
without intention labels.
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Standard IRL can be described as the problem of extracting a reward func-
tion, which is consistent with the observed behaviors [33]. Obtaining the exact
reward function is an ill-posed problem, since many different reward functions
can explain the same observed behaviors [25,39]. Ziebart et al. [39] tackled this
ambiguity by employing the principle of maximum entropy [15]. The principle
states that the probability distribution, which best represents the current state
of knowledge, is the one with the largest entropy [15]. Therefore, Ziebart et
al. [39] chose the distribution with maximal information entropy to model the
experts’ behaviors. The maximum entropy IRL has been widely employed in var-
ious applications [16,34]. However, this method suffers from a strong assumption
that the experts have one single intention in all demonstrations. In this study,
we explore the principle of the mixture of maximum entropy models [30] that
inherits the advantages of maximum entropy principle, while at the same time
is capable of modeling multi-intention behaviors.

In many real-world applications, the demonstrations are often collected from
multiple experts whose intentions are potentially different from each other [2,3,5,
9]. This leads to multiple reward functions, which is in direct contradiction with
the single reward assumption in traditional IRL. To address this problem, Babes
et al. [5] proposed a clustering-IRL scheme where the class of each demonstration
is jointly learned via the respective reward function. Despite the recovery of
multiple reward functions, the number of clusters in this method is assumed
to be known a priori. To overcome this assumption, Choi et al. [9] presented a
non-parametric Bayesian approach using the Dirichlet Process Mixture (DPM)
to infer an unknown number of reward functions from unlabeled demonstrations.
However, the proposed method is formulated based on the assumption that the
reward functions are formed by a linear combination of a set of world state
features. In our work, we do not make this assumption on linearity and model
the reward functions using deep neural networks.

DPM is a stochastic process in the Bayesian non-parametric framework that
deals with mixture models with a countably infinite number of mixture compo-
nents [24]. In general, full Bayesian inference in DPM models is not feasible, and
instead, approximate methods like Monte-Carlo Markov chain (MCMC) [4, 19]
and variational inference [7] are employed. When deep neural networks are in-
volved in DPM (e.g. deep nonlinear reward functions in IRL), approximates
methods may not be able to scale with high dimensional parameter spaces.
MCMC sampling methods are shown to be slow in convergence [7,29] and vari-
ational inference algorithms suffer from restrictions in the distribution family
of the observable data, as well as various truncation assumptions for the vari-
ational distribution to yield a finite dimensional representation [11, 23]. These
limitations apparently make approximate Bayesian inference methods inapplica-
ble for DPM models with deep neural networks. Apart from that, the algorithms
for maximum likelihood estimations like standard EM are no longer tractable
when dealing with DPM models. The main reason is that the number of mixture
components exponentially grows with non-zero probabilities, and after some it-
erations, the Expectation-step would be no longer available in a closed-form.
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However, inspired by two variants of EM algorithms that cope with infeasible
Expectation-step [8,36], we propose two solutions in which the Expectation-step
is either estimated numerically with sampling (based on Monte Carlo EM [36])
or computed analytically and then replaced with a sample from it (based on
stochastic EM [8]).

This study’s main contribution is to develop an IRL framework where one can
benefit from the strength of 1) maximum entropy principle, 2) deep nonlinear
reward functions, and 3) account for an unknown number of experts’ intentions.
To the best of our knowledge, we are the first to present an approach that can
combine all these three capabilities.

In our proposed framework, the experts’ behavioral distribution is modeled
as a mixture of conditional maximum entropy models. The reward functions
are parameterized as a deep reward network, consisting of two parts: 1) a base
reward model, and 2) an adaptively growing set of intention-specific reward mod-
els. The base reward model takes as input the state features and outputs a set
of reward features shared in all intention-specific reward models. The intention-
specific reward models take the reward features and output the rewards for the
respective expert’s intention. A novel adaptive approach, based on the concept
of the Chinese Restaurant Process (CRP), is proposed to infer the number of
experts’ intentions from unlabeled demonstrations. To train the framework, we
propose and compare two novel EM algorithms. One is based on stochastic EM
and the other on Monte Carlo EM. In Section 3, this problem of multi-intention
IRL is defined, following our two novel EM algorithms in Section 4. The re-
sults are evaluated on three available simulated benchmarks, two of which are
extended in this paper for multi-intention IRL, and compared with two base-
lines [5,9]. These experimental results are reported in Section 5 and Section 6 is
devoted to conclusions. The source code to reproduce the experiments is publicly
available1.

2 RELATED WORKS

In the past decades, a number of studies have addressed the problem of multi-
intention IRL. A comparison of various methods for multi-intention IRL, to-
gether with our approach, is depicted in Table 1.

In an early work, Dimitrakakis and Rothkopf [10] formulated the problem
of learning from unlabeled demonstrations as a multi-task learning problem. By
generalizing the Bayesian IRL approach of Ramachandran and Amir [32], they
assumed that each observed trajectory is responsible for one specific reward
function, all of which shares a common prior. The same approach has also been
employed by Noothigattu et al. [27], who assumed that each expert’s reward
function is a random permutation of one sharing reward function. Babes et al. [5]
took a different approach and addressed the problem as a clustering task with
IRL. They proposed an EM approach that clusters the observed trajectories by

1 https://github.com/tue-mps/damiirl

https://github.com/tue-mps/damiirl
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inferring the rewards function for each cluster. Using maximum likelihood, they
estimated the reward parameters for each cluster.

The main limitation in EM clustering approach is that the number of clusters
has to be specified as an input parameter [5, 26]. To overcome this assumption,
Choi and Kim [9] employed a non-parametric Bayesian approach via the DPM
model. Using MCMC sampler, they were able to infer an unknown number of
reward functions, which are linear combinations of state features. Other authors
have also employed the same methodology in the literature [2, 22,31].

All above methods are developed on the basis of model-based reinforcement
learning (RL), in which the model of the environment is assumed to be known.
In the past few years, a couple of approximate, model-free methods have been
developed for IRL with multiple reward functions [13, 14, 20, 21]. Such methods
aimed to solve large-scale problems by approximating the Bellman optimality
equation with model-free RL.

In this study, we constrain ourselves to model-based RL and propose a multi-
intention IRL approach to infer an unknown number of experts’ intentions and
corresponding nonlinear reward functions from unlabeled demonstrations.

Type Features

Models
Model
based

Model
free

Unlabeled
demonstrations

Unknown #
intentions

Non-linear
reward fun.

Dimitrakakis and Rothkopf [10] X X
Babes et al. [5] X X
Nguyen et al. [26] X X
Choi and Kim [9] X X X
Rajasekaran et al. [31] X X X
Li et al. [20] X X X
Hausman et al. [13] X X X
Lin and Zhang [21] X X
Hsiao et al. [14] X X X

Ours X X X X

Table 1. Comparison of proposed models for multi-intention IRL.

3 PROBLEM DEFINITION

In this section, the problem of multi-intention IRL is defined. To facilitate the
flow, we first formalize the multi-intention RL problem. For both problems, we
follow the conventional modelling of the environment as a Markov Decision Pro-
cess (MDP). A finite state MDP in a multi-intention RL problem is a tuple
(S,A, T, γ, b0, R1, R2, ..., RK) where S is the state space , A is the action space,
T : S × A × S → [0, 1] is the transition probability function, γ ∈ [0, 1) is the
discount factor, b0(s) is the probability of staring in state s, and Rk : S → R is
the kth reward function with K to be the total number of intentions. A policy is
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a mapping function πk : S → A ∀k ∈ {1, 2, ...,K}. The value of policy πk with
respect to the kth reward function is the expected discounted reward for follow-
ing the policy and is defined as V πRk = E[

∑
t γ

tRk(st)|b0]. The optimal policy

(π∗k) for the kth reward function is the policy that maximizes the value function
for all states and satisfies the respective Bellman optimality equation [35].

In multi-intention IRL, the context of this study, a finite-state MDP\R is a
tuple (S,A, T, γ, b0, τττ

1, τττ2, ..., τττM ) where τττm is the mth demonstration and M
is the total number of demonstrations. In this work, it is assumed that there
is a total of K intentions, each of which corresponds to one reward function,
so that τττm with length Tτ is generated from the optimal policy (π∗k) of the
kth reward function. It is further assumed that the demonstrations are without
intention labels, i.e. they are unlabeled. Therefore, the goal is to infer the number
of intentions K and the respective reward function of each intention. In the next
section, we model the experts’ behaviors as a mixture of conditional maximum
entropy models, parameterize the reward functions via deep neural networks, and
propose a novel approach to infer an unknown number of experts’ intentions from
unlabeled demonstrations.

4 APPROACH

In the proposed framework for multi-intention IRL, the experts’ behavioral dis-
tribution is modeled as a mixture of conditional maximum entropy models. The
Mixture of conditional maximum entropy models is a generalization of standard
maximum entropy formulation for cases where the data distributions arise from a
mixture of simpler underlying latent distributions [30]. According to this princi-
pal, a mixture of conditional maximum entropy models is a promising candidate
to justify the multi-intention behaviors of the experts. The experts’ behaviors
with the kth intention is defined via a conditional maximum entropy distribution:

p(τττ |ηk = 1, Ψ) = exp(Rk(τττ , Ψk))/Zk, (1)

where ηηη = {η1, η2, ..., ηK |∀ηk ∈ {0, 1},
∑K
k=1 ηk = 1} is the latent intention

vector, Rk(τττ , Ψk) =
∑
s∈τττ Rk(s, Ψk) is the reward of the trajectory with respect

to the kth reward function with Rk(s, Ψk) as the state reward value, and Zk is
the kth partition function.

We define the kth reward function as: Rk(s, Ψk) = RΨk(fffs), where RΨk is a
deep neural network with finite set of parameters Ψk = {Θ0, Θk} which consists
of a base reward model RΘ0

and an intention-specific reward model RΘk (See
Fig. 1). The base reward model with finite set of parameters Θ0 takes the state
feature vector fffs and outputs the state reward feature vector rrrs: rrrs = RΘ0(fffs).
The state reward feature vector rrrs that is produced by the base reward model
is input to all intention-specific reward models. The kth intention-specific re-
ward model with finite set of parameters Θk, takes the state reward feature
vector rrrs and outputs the state reward value: Rk(s, Ψk) = RΘk(rrrs). Therefore
the total set of reward parameters is Ψ = {Θ0, Θ1, ..., ΘK}. The reward of the
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Intention-specific

Fig. 1. Schematics of deep reward network.

trajectory τττ with respect to the kth reward function can be further obtained as:
Rk(τττ , Ψk) = µµµ(τττ)ᵀRRRΨk(τττ), where µµµ(τττ) is the expected State Visitation Frequency
(SVF) vector for trajectory τττ and RRRΨk(τττ) = {RΨk(fffs)|∀s ∈ S} is the vector of
reward values of all states with respect to the kth reward function.

In order to infer the number of intentions K, we propose an adaptive ap-
proach in which the number of intentions adaptively changes whenever a tra-
jectory is visited/re-visited. For this purpose, at each iteration we first as-
sume to have M − 1 demonstrated trajectories {τττ1, τττ2, ..., τττm−1, τττm+1, ..., τττM}
that are already assigned to K intentions with known latent intention vectors
HHH−m = {ηηη1, ηηη2, ..., ηηηm−1, ηηηm+1, ..., ηηηM}. Then, we visit/re-visit a demonstrated
trajectory τττm and the task is to obtain the latent intention vector ηηηm, which
can be assigned to a new intention K + 1, and update the reward parameters
Ψ . As emphasized before, our work aims to develop a method in which K, the
number of intentions, is a priori unknown and can, in theory, be arbitrarily large.
Now we define the predictive distribution for the trajectory τττm as a mixture of
conditional maximum entropy models:

p(τττm|HHH−m, Ψ) =

K+1∑
k=1

p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m) (2)

where p(ηmk = 1|HHH−m) is the prior intention assignment for trajectory τττm, given
all other latent intention vectors. In the case of K intentions, we define a multi-
nomial prior distribution over all latent intention vectors HHH = {HHH−m, ηηηm}:

p(HHH|φφφ) =

K∏
k=1

φMk

k (3)

where Mk is the number of trajectories with intention k and φφφ is the vec-
tor of mixing coefficients φφφ = {φ1, φ2, ...φK} with Dirichlet prior distribution
p(φφφ) = Dir(α/K), where α is the concentration parameter. As K → ∞ the
main problematic parameters are the mixing coefficients. Marginalizing out the
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mixing coefficients and separating the latent intention vector for mth trajectory
yield (see Appendix A for full derivation):

p(ηmk = 1|HHH−m) =
M−mk

M − 1 + α

p(ηmK+1 = 1|HHH−m) =
α

M − 1 + α

(4)

where M−mk is the number of trajectories assigned to intention k excluding the
mth trajectory, p(ηmk = 1|HHH−m) is the prior probability of assigning the new
trajectory m to intention k ∈ {1, 2, ...,K}, and p(ηmK+1 = 1|HHH−m) is the prior
probability of assigning the new trajectory m to intention K+1. Equation (4) is
known as the CRP representation for DPM [24]. Considering the exchangeability
property [12], the following optimization problem is defined:

max
Ψ

Lm(Ψ) = log

K+1∑
k=1

p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m) ∀m ∈ {1, 2, ...,M}

(5)

The parameters Ψ can be estimated via Expectation Maximization (EM) [6].
Differentiating Lm(Ψ) with respect to ψ ∈ Ψ yields the following E-step and
M-step (see Appendix B for full derivation):

E-step Evaluation of the posterior distribution over the latent intention vector
∀k ∈ {1, 2, ...,K}:

γmk =
M−mk

∏Tτ−1
t=0 πk(at|st)

α
∏Tτ−1
t=0 πK+1(at|st) +

∑K
k̂=1M

−m
k

∏Tτ−1
t=0 πk̂(at|st)

(6)

and for k = K + 1:

γmk =
α
∏Tτ−1
t=0 πk(at|st)

α
∏Tτ−1
t=0 πK+1(at|st) +

∑K
k̂=1M

−m
k

∏Tτ−1
t=0 πk̂(at|st)

(7)

where we have defined γmk = p(ηmk = 1|τττm,HHH−m, Ψ).

M-step update of the parameter value ψ ∈ Ψ with gradient of:

∇ψL(Ψ) =

K+1∑
k=1

γmk (µµµ(τττm)− Ep(τττ |ηk=1,Ψ)[µµµ(τττ)])ᵀ
dRRRΨk(τττ)

dψ
(8)

where Ep(τττ |ηk=1,Ψ)[µµµ(τττ)] is the expected SVF vector under the parameterized
reward function RΨk [39].

When K approaches infinity, the EM algorithm is no longer tractable since
the number of mixture components exponentially grows with non-zero probabil-
ities. As a result, after some iterations, the E-step would be no longer available
in a closed-form. We propose two solutions for estimation of the reward param-
eters which are inspired by stochastic and Monte Carlo EM algorithms. Both
proposed solutions are deeply evaluated and compared with in Section 5.
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Algorithm 1: Adaptive multi-intention IRL based on stochastic EM

Initialize K, Θ0, Θ1, Θ2, ..., ΘK , M1,M2, ...,MK ;
while iteration < MaxIter do

Solve for π1, π2, ..., πK ;
for m = 1 to M do

Initialize ΘK+1 and solve for πK+1;
E-step Obtain γmk ∀k ∈ {1, 2, ...,K,K + 1};
S-step Sample ηmk ∼ γmk ;
if ηmK+1 = 1 then

K = K + 1;
end
Remove Ku unoccupied intentions: K = K −Ku;
Update M1,M2, ...,MK ;
M-step Update ψ ∈ {Θ0, Θ1, Θ2, ..., ΘK} by (8);

end

end

4.1 First solution with stochastic expectation maximization

Stochastic EM, introduces a stochastic step (S-step) after the E-step that repre-
sents the full expectation with a single sample [8]. Alg. 1 presents the summary
of the first solution to multi-intention IRL via stochastic EM algorithm when
the number of intentions is no longer known.

Given (6) and (7), first the posterior distribution over the latent intention
vector ηηηm for trajectory τττm ∈ {τττ1, τττ2, ..., τττM} is obtained. Then, the full expec-
tation is estimated with a sample ηηηm from the posterior distribution. Finally,
the reward parameters are updated via (8).

4.2 Second solution with Monte Carlo expectation maximization

The Monte Carlo EM algorithm is a modification of the EM algorithm where the
expectation in the E-step is computed numerically via Monte Carlo simulations
[36]. As indicated, Alg. 1 relies on the full posterior distribution which can be
time-consuming. Therefore, another solution for multi-intention IRL is presented
in which the E-step is performed through Metropolis-Hastings sampler (see Alg.
2 for the summary).

First, a new intention assignment for mth trajectory, ηηη∗m, is sampled from the
prior distribution of (4), then ηηηm = ηηη∗m is set with the acceptance probability

of min{1, p(τττ
m|ηηη∗m,Ψ)

p(τττm|ηηηm,Ψ) } where (see Appendix C for full derivation):

p(τττm|η∗mk∗ = 1, Ψ)

p(τττm|ηmk = 1, Ψ)
=

∏Tτ
t=1 πk∗(amt |smt )∏Tτ
t=1 πk(amt |smt )

(9)

with k ∈ {1, 2, ...,K} and k∗ ∈ {1, 2, ...,K,K + 1}.
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Algorithm 2: Adaptive multi-intention IRL based on Monte Carlo EM

Initialize K, Θ0, Θ1, Θ2, ..., ΘK , M1,M2, ...,MK ;
while iteration < MaxIter do

Solve for π1, π2, ..., πK ;
for m = 1 to M do

Obtain p(ηηηm|HHH−m, α);
Sample ηηη∗m ∼ p(ηηηm|HHH−m, α);
if η∗mK+1 = 1 then

Initialize ΘK+1 and solve for πK+1;
end

E-step Assign ηηη∗m → ηηηm by probability of min{1, p(τττ
m|ηηη∗m,Ψ)

p(τττm|ηηηm,Ψ)
};

if ηmK+1 = 1 then
K = K + 1;

end
Remove Ku unoccupied intentions: K = K −Ku;
Update M1,M2, ...,MK ;
M-step Update ψ ∈ {Θ0, Θ1, Θ2, ..., ΘK} by (8);

end

end

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed methods through
several experiments with three goals: 1) to show the advantages of our methods
in comparison with the baselines in environments with both linear and non-linear
rewards, 2) to demonstrate the advantages of adaptively inferring the number of
intentions rather than predefining a fixed number, and 3) to depict the strengths
and weaknesses of our proposed algorithms with respect to each other.

5.1 Benchmarks

In order to deeply compare the performances of various models, the experiments
are conducted on three different environments: GridWorld, Multi-intention Ob-
jectWorld, and Multi-intention BinaryWorld. Variants of all three environments
have been widely employed in IRL literature [18,38].

GridWorld [9] is a 8×8 environment with 64 states and four actions per state
with 20% probability of moving randomly. The grids are partitioned into non-
overlapping regions of size 2× 2, and the feature function is defined by a binary
indicator function for each region. Three reward functions are generated with
linear combinations of state features and reward weights which are sampled to
have a non-zero value with the probability of 0.2. The main idea behind using this
environment is to compare all the models in aspects other than their capability
of handling linear/non-linear reward functions.

Multi-intention ObjectWorld (M-ObjectWorld) is our extension of Object-
World [18] for multi-intention IRL. ObjectWorld is a 32× 32 grid of states with
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five actions per state with a 30% chance of moving in a different random direc-
tion. The objects with two different inner and outer colors are randomly placed,
and the binary state features are obtained based on the Euclidean distance to
the nearest object with a specific inner or outer color. Unlike ObjectWorld, M-
ObjectWorld has six different reward functions, each of which corresponds to
one intention. The intentions are defined for each cell based on three rules: 1)
within 3 cells of outer color one and within 2 cells of outer color two, 2) Just
within 3 cells of outer color one, and 3) everywhere else (see Table 2). Due to
the large number of irrelevant features and the nonlinearity of the reward rules,
the environment is challenging for methods that learn linear reward functions.
Fig. 2 (top three) shows a 8 × 8 zoom-in of M-ObjectWorld with three reward
functions and respective optimal policies.

Multi-intention BinaryWorld (M-BinaryWorld) is our extension of Binary-
World [38] for multi-intention IRL. Similarly, BinaryWorld has 32 × 32 states,
five actions per state with a 30% chance of moving in a different random direc-
tion. But every state is randomly occupied with one of the two-color objects. The
feature vector for each state consequently consists of a binary vector, encoding
the color of each object in 3 × 3 neighborhood. Similar to M-ObjectWorld, six
different intentions can be defined for each cell of M-BinaryWorld based on three
rules: 1) four neighboring cells have color one, 2) five neighboring cells have color
one, and 3) everything else (see Table 2). Since in M-BinaryWorld the reward
depends on a higher representation for the basic features, the environment is
arguably more challenging than the previous ones. Therefore, most of the ex-
periments are carried in this environment. Fig. 2 (bottom three) shows a 8 × 8
zoom-in of M-BinaryWorld with three different reward functions and policies.

In order to assess the generalizability of the models, the experiments are also
conducted on transferred environments. In transferred environments, the learned
reward functions are re-evaluated on new randomized environments.

Fig. 2. 8× 8 zoom-ins of M-ObjectWorld
(top three) and M-BinaryWorld (bottom
three) with three reward functions.

Reward rule

Intention 1 2 3

A +5 -10 0
B -10 0 +5
C 0 +5 -10
D -10 +5 0
E +5 0 -10
F 0 -10 +5

Table 2. Reward values
in M-ObjectWorld and M-
BinaryWorld
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5.2 Models

In this study, we compare our methods with existing approaches that can han-
dle IRL with multiple intentions and constrain the experiments to model-based
methods. The following models are evaluated on the benchmarks:

– EM-MLIRL(K), proposed by Babes et al. [5]. This method requires the
number of experts’ intentions K to be known. To research the influence on
setting K for this method, we use K ∈ {2, 3, 4}.

– DPM-BIRL, a non-parametric multi-intention IRL method proposed by Choi
and Kim [9].

– SEM-MIIRL, our proposed solution based on stochastic EM.
– MCEM-MIIRL, our proposed solution based on Monte Carlo EM.
– KEM-MIIRL, a simplified variant of our approach where the concentration

parameter is zero and the number of intentions are fixed to K ∈ {2, 5}.

5.3 Metric

Following the same convention used in [9], the imitation performance is evalu-
ated by the average of expected value difference (EVD). The EVD measures
the performance difference between the expert’s optimal policy and the op-
timal policy induced by the learned reward function. For m ∈ {1, 2, ...,M},
EVD = |V π̃m

R̃m
−V πm

R̃m
|, where π̃m and R̃m are the true policy and reward function

for mth demonstration, respectively, and πm is the predicted policy under the
predicted reward function demonstration. In all experiments, a lower average-
EVD corresponds to better imitation performance.

5.4 Implementations details

In our experiments, we employed a fully connected neural network with five hid-
den layers of dimension 256 and a rectified linear unit for the base reward model,
and a set of linear functions represents the intention-specific reward models. The
reward network is trained for 200 epochs using Adam [17] with a fixed learn-
ing rate of 0.001. For easing the reproducibility of our work, the source code is
shared with the community at https://github.com/tue-mps/damiirl.

5.5 Results

Each experiment is repeated for 6 times with different random environments, and
the results are shown in the form of means (lines) and standard errors (shadings).
The demonstration length for GridWorld is fixed to 40 time-steps and for both
M-ObjectWorld and M-BinaryWorld is 8 time-steps.

Fig. 3 and Fig. 4 show the imitation performances of our SEM-MIIRL and
MCEM-MIIRL in comparison with two baselines, EM-MLIRL(K) and DPM-
BIRL, for varying number of demonstrations per reward function in original
and transferred environments, respectively. Each expert is assigned to one out
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Fig. 3. Imitation performance in comparison with the baselines. Lower average-EVD
is better.

Fig. 4. Imitation performance in comparison with the baselines in transferred environ-
ments. Lower average-EVD is better.

Fig. 5. Effects of overestimating/underestimating vs inferring the number of reward
functions in original (left) and transferred (right) M-BinaryWorlds. Lower average-EVD
is better



Deep Adaptive Multi-Intention IRL 13

Fig. 6. Effects of α on Average-EVD (left) and number of predicted intentions (right).
Lower average-EVD is better

of three reward functions (intentions A, B, and C in M-ObjectWorld and M-
BinaryWorld) and the concentration parameter is set to one. The results show
clearly that our methods achieve significant lower average-EVD errors when com-
pared to existing methods, especially in nonlinear environments of M-ObjectWorld
and M-BinaryWorld, with SEM-MIIRL slightly outperforming MCEM-MIIRL

Fig. 7. Execution time (right) and Convergence (left). Lower average-EVD is better.

To address the importance of inferring the number of intentions, we have
compared the performances of our SEM-MIIRL and MCEM-MIIRL with two
simplified variants, 2EM-MIIRL and 5EM-MIIRL, where the concentration pa-
rameter is set to zero and the number of intentions is fixed and equal to 2 and
5, respectively. Fig. 5 shows the results of these comparisons for a varying num-
ber of true reward functions from one to six (from intention: {A} to {A, B,
C, D, E, F}) in both original and transferred M-BinaryWorld. The number of
demonstrations is fixed to 16 per reward function and α = 1 for both SEM-
MIIRL and MCEM-MIIRL. As depicted, overestimation and underestimation of
the number of reward functions, as happens frequently in both 2EM-MIIRL and
5EM-MIIRL, deteriorate the imitation performance. This while the adaptability
in SEM-MIIRL and MCEM-MIIRL yields to less sensitivity with changes in the
number of true reward functions.
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Further experiments are conducted to deeply assess and compare MCEM-
MIIRL and SEM-MIIRL. Fig. 6 depicts the effects of the concentration param-
eter on both Average-EVD and number of predicted intentions. The number
of demonstrations is fixed to 16 per reward function and intentions are {A, B,
C}. As shown, the best value for the concentration parameter is between 0.5 to
1, with lower values leading to higher Average-EVD and lower number of pre-
dicted intentions, while higher values result in higher Average-EVD and higher
number of predicted intentions for both MCEM-MIIRL and SEM-MIIRL. The
final experiment is devoted to the convergence behavior of MCEM-MIIRL and
SEM-MIIRL. The number of demonstrations is again fixed to 16 per reward func-
tion, intentions are {A, B, C} and the concentration parameter is set to 1. As
shown in Fig. 7 (left image), the per-iteration execution time of MCEM-MIIRL
is lower than SEM-MIIRL. The main reason is that SEM-MIIRL evaluates the
posterior distribution over all latent intentions. However, this extra operation
guarantees faster converges of SEM-MIIRL, making it overall the more efficient
than MCEM-MIIRL as can be seen in Fig. 7 (right image).

6 CONCLUSIONS

We proposed an inverse reinforcement learning framework to recover complex re-
ward functions by observing experts whose behaviors originate from an unknown
number of intentions. We presented two algorithms that are able to consistently
recover multiple, highly nonlinear reward functions and whose benefits were
pointed out through a set of experiments. For this, we extended two complex
benchmarks for multi-intention IRL in which our algorithms distinctly outper-
formed the baselines. We also demonstrated the importance of inferring rather
than underestimating or overestimating the number of experts’ intentions

Having shown the benefits of our approach in inferring the unknown number
of experts’ intention from a collection of demonstrations via model-based RL,
we aim to extend the same approach in model-free environments by employing
approximate RL methods.
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Appendix A

We assume that we have M−1 demonstrated trajectories with a set of known la-
tent intention vectorsHHH−m = {ηηη1, ηηη2, ..., ηηηm−1, ηηηm+1, ..., ηηηM} with K intentions.
Then, we have a new demonstrated trajectory τττm and the task is to obtain the
latent intention vector ηηηm, which can be a new intention K + 1, and update
the reward parameters Ψ . We are willing to consider growing/infinite number of
intentions.

In the case of K intentions, we define a Categorical prior distribution over
HHH = {HHH−m, ηηηm}:

p(HHH|φφφ) =

M∏
m=1

Cat(φφφ)

=

K∏
k=1

φMk

k

(10)

where Mk is the number of trajectories with intention k and φφφ is the vector of
mixing coefficients φφφ = {φ1, φ2, ...φK} with prior distribution of:

p(φφφ) = Dir(α/K)

=
Γ (α)

Γ (α/K)K

K∏
k=1

π
α/K−1
k

(11)

where α is the concentration parameter. The main problematic variable as K →
∞ are the mixing coefficients. We marginalize out φφφ:

p(HHH) =

∫
p(HHH|φφφ)p(φφφ)

=
Γ (α)

Γ (M + α)

K∏
k=1

Γ (Mk + α/K)

Γ (α/K)

(12)

Given that:

p(HHH) = p(ηηηm|HHH−m)p(HHH−m) (13)

we can define the conditional prior over ηηηm = {ηm1 , ηm2 , ..., ηmK} as:

p(ηmk = 1|HHH−m) =
M−mk + α/K

M − 1 + α
(14)

where M−mk is the number of trajectories with intention k excluding τττm. By
letting K →∞, we reach:

p(ηmk = 1|HHH−m) =
M−mk

M − 1 + α
(15)
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where p(ηmk = 1|HHH−m) is the prior probability of assigning the trajectory τττm to
intention k ∈ {1, 2, ...,K}. Since:

K∑
k=1

p(ηmk = 1|HHH−m) =
M − 1

M − 1 + α
6= 1 (16)

we define p(ηmK+1 = 1|HHH−m) as the prior probability of assigning the trajectory
τττm to intention k + 1:

p(ηmK+1 = 1|HHH−m) = 1− M − 1

M − 1 + α

=
α

M − 1 + α

(17)

Equations (15) and (17) are known as Chinese Restaurant Process [19].

Appendix B

Given the predictive distribution for mth trajectory:

p(τττm|HHH−m, Ψ) =

K+1∑
k=1

p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m) (18)

the following optimization problem can be defined ∀m ∈ {1, 2, ...,M} by em-
ploying the exchangeability property [12]:

max
Ψ

Lm(Ψ) = log

K+1∑
k=1

p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m) (19)

The parameters Ψ can be estimated via Expectation Maximization (EM) [6].
Differentiating the log-likelihood function L(Ψ) with respect to ψ ∈ Ψ yields:

∇ψLm =
∇ψ

∑K+1
k=1 p(τττ

m|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)∑
k̂ p(τττ

m|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

=

K+1∑
k=1

∇ψp(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)∑
k̂ p(τττ

m|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

(20)

A standard trick in setting up the EM procedure is to introduce the posterior
distribution over the latent intention vector ηηηm [6]:

γmk = p(ηmk = 1|τττm,HHH−m, Ψ) =
p(τττm, ηmk = 1|HHH−m, Ψ)∑K+1

k̂=1
p(τττm, ηm

k̂
= 1|HHH−m, Ψ)

=
p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)∑K+1

k̂=1
p(τττm|ηm

k̂
= 1, Ψ)p(ηm

k̂
= 1|HHH−m)

(21)
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Now the term under summation in (20) can be written as::

∇ψp(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)∑K+1

k̂=1
p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

=
p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)∑K+1

k̂=1
p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

∇ψp(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

= γmk
∇ψp(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

= γmk ∇ψ log p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

(22)

Performing the differentiation of the second term in (22) yields:

∇ψ log p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)

= ∇ψ log p(τττm|ηmk = 1, Ψ) +
��

���
���

���:
0

∇ψ log p(ηmk = 1|HHH−m)

= ∇ψ log(
exp(Rk(τττm, ψk))

Z(k)
)

= ∇ψ(Rk(τττm, ψk)− logZ(k))

= ∇ψ(Rk(τττm, ψk)− log
∑
τ

exp(Rk(τττ , ψk)))

=
dRk(τττm, ψk)

dψ
−

∑
τ exp(Rk(τττ , ψk)))dRk(τ

ττ,ψk)
dψ∑

τ exp(Rk(τττ , ψk)))

=
dRk(τττm, ψk)

dψ
−

∑
τ

p(τττ |ηk = 1, Ψ)
dRk(τττ , ψk)

dψ

= (µµµ(τττm)− Ep(τττ |ηk=1,Ψ)[µµµ(τττ)])ᵀ
dRRRΨk(τττ)

dψ

(23)

Therefore (20) results in:

∇ψL =
K+1∑
k=1

γmk (µµµ(τττm)− Ep(τττ |ηk=1,Ψ)[µµµ(τττ)])ᵀ
dRRRΨk(τττ)

dψ
(24)

which is known as the M-step. The posterior distribution over the latent intention
vector ηηηm can be obtained as:

γmk =
p(τττm|ηmk = 1, Ψ)p(ηmk = 1|HHH−m)∑K+1

k̂=1
p(τττm|ηm

k̂
= 1, Ψ)p(ηm

k̂
= 1|HHH−m)

=
b0(s0)

∏T−1
t=0 T (st+1|st, at)πk(at|st)p(ηmk = 1|HHH−m)∑K+1

k̂=1
b0(s0)

∏T−1
t=0 T (st+1|st, at)πk̂(at|st)p(ηmk̂ = 1|HHH−m)

=

∏T−1
t=0 πk(at|st)p(ηmk = 1|HHH−m)∑K+1

k̂=1

∏T−1
t=0 πk̂(at|st)p(ηmk̂ = 1|HHH−m)

(25)
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Using (15) and (17) yields ∀k ∈ {1, 2, ...,K}:

γmk =
M−mk

∏T−1
t=0 πk(at|st)

α
∏T−1
t=0 πK+1(at|st) +

∑K
k̂=1M

−m
k

∏T−1
t=0 πk̂(at|st)

(26)

and for K + 1:

γmk =
α
∏T−1
t=0 πk(at|st)

α
∏T−1
t=0 πK+1(at|st) +

∑K
k̂=1M

−m
k

∏T−1
t=0 πk̂(at|st)

(27)

Which are known as the E-step.

Appendix C

The likelihood ratio for the mth trajectory is obtained as:

p(τττm|η∗mk∗ = 1, Ψ)

p(τττm|ηmk = 1, Ψ)
=
b0(s0)

∏Tτ
t=1 T (st+1|st, at)πk∗(amt |smt )

b0(s0)
∏Tτ
t=1 T (st+1|st, at)πk(amt |smt )

=

∏Tτ
t=1 πk∗(amt |smt )∏Tτ
t=1 πk(amt |smt )

(28)

with k ∈ {1, 2, ...,K} and k∗ ∈ {1, 2, ...,K,K + 1}.s
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