Skip to main content

Explainable Online Deep Neural Network Selection Using Adaptive Saliency Maps for Time Series Forecasting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12975))

Abstract

Deep neural networks such as Convolutional Neural Networks (CNNs) have been successfully applied to a wide variety of tasks, including time series forecasting. In this paper, we propose a novel approach for online deep CNN selection using saliency maps in the task of time series forecasting. We start with an arbitrarily set of different CNN forecasters with various architectures. Then, we outline a gradient-based technique for generating saliency maps with a coherent design to make it able to specialize the CNN forecasters across different regions in the input time series using a performance-based ranking. In this framework, the selection of the adequate model is performed in an online fashion and the computation of saliency maps responsible for the model selection is achieved adaptively following drift detection in the time series. In addition, the saliency maps can be exploited to provide suitable explanations for the reason behind selecting a specific model at a certain time interval or instant. An extensive empirical study on various real-world datasets demonstrates that our method achieves excellent or on par results in comparison to the state-of-the-art approaches as well as several baselines.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 and the Federal Ministry of Education and Research of Germany as part of the competence center for machine learning ML2R (01–S18038A).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021.

  2. 2.

    https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021.

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. arXiv preprint arXiv:1810.03292 (2018)

  2. Argiento, R., Guglielmi, A., Pievatolo, A.: Bayesian density estimation and model selection using nonparametric hierarchical mixtures. Comput. Stat. Data Anal. 54(4), 816–832 (2010)

    Article  MathSciNet  Google Scholar 

  3. Assaf, R., Schumann, A.: Explainable deep neural networks for multivariate time series predictions. In: IJCAI, pp. 6488–6490 (2019)

    Google Scholar 

  4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  5. Binkowski, M., Marti, G., Donnat, P.: Autoregressive convolutional neural networks for asynchronous time series. In: International Conference on Machine Learning, pp. 580–589. PMLR (2018)

    Google Scholar 

  6. Birgé, L., Massart, P.: Gaussian model selection. J. Eur. Math. Soc. 3(3), 203–268 (2001)

    Article  MathSciNet  Google Scholar 

  7. Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017)

  8. Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrated ensemble for time series forecasting. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 478–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_29

    Chapter  Google Scholar 

  9. Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrage of forecasting experts. Mach. Learn. 108(6), 913–944 (2018). https://doi.org/10.1007/s10994-018-05774-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Demertzis, K., Iliadis, L., Anezakis, V.D.: A deep spiking machine-hearing system for the case of invasive fish species. In: INISTA, pp. 23–28 (2017)

    Google Scholar 

  11. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM comput. Surv. (CSUR) 46(4), 1–37 (2014)

    Article  Google Scholar 

  13. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)

  14. Gers, F.A., Eck, D., Schmidhuber, J.: Applying LSTM to time series predictable through time-window approaches. In: Tagliaferri, R., Marinaro, M. (eds.) Neural Nets. Perspectives in Neural Computing, pp. 193–200. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0219-9_20

    Chapter  Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  16. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 409–426. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0865-5_26

    Chapter  MATH  Google Scholar 

  17. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  18. Jain, G., Mallick, B.: A study of time series models ARIMA and ETS. Available at SSRN 2898968 (2017)

    Google Scholar 

  19. Kim, T.Y., Cho, S.B.: Predicting residential energy consumption using CNN-LSTM neural networks. Energy 182, 72–81 (2019)

    Article  Google Scholar 

  20. Livieris, I.E., Pintelas, E., Pintelas, P.: A CNN-LSTM model for gold price time-series forecasting. Neural Comput. Appl. 32(23), 17351–17360 (2020)

    Article  Google Scholar 

  21. Mittelman, R.: Time-series modeling with undecimated fully convolutional neural networks. arXiv preprint arXiv:1508.00317 (2015)

  22. Priebe, F.: Dynamic model selection for automated machine learning in time series (2019)

    Google Scholar 

  23. Rivals, I., Personnaz, L.: On cross validation for model selection. Neural Comput. 11(4), 863–870 (1999)

    Article  Google Scholar 

  24. Romeu, P., Zamora-Martínez, F., Botella-Rocamora, P., Pardo, J.: Time-series forecasting of indoor temperature using pre-trained deep neural networks. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 451–458. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40728-4_57

    Chapter  Google Scholar 

  25. Saadallah, A., Moreira-Matias, L., Sousa, R., Khiari, J., Jenelius, E., Gama, J.: Bright-drift-aware demand predictions for taxi networks. IEEE Trans. Knowl. Data Eng. 32(2), 234–245 (2020)

    Article  Google Scholar 

  26. Saadallah, A., Priebe, F., Morik, K.: A drift-based dynamic ensemble members selection using clustering for time series forecasting (2019)

    Google Scholar 

  27. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  28. Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)

    Article  Google Scholar 

  29. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Comput. 14(10), 2497–2529 (2002)

    Article  Google Scholar 

  30. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  31. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  32. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Saadallah .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 198 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadallah, A., Jakobs, M., Morik, K. (2021). Explainable Online Deep Neural Network Selection Using Adaptive Saliency Maps for Time Series Forecasting. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12975. Springer, Cham. https://doi.org/10.1007/978-3-030-86486-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86486-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86485-9

  • Online ISBN: 978-3-030-86486-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics