Skip to main content

FedDNA: Federated Learning with Decoupled Normalization-Layer Aggregation for Non-IID Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12975))

Abstract

In the federated learning paradigm, multiple mobile clients train their local models independently based on the datasets generated by edge devices, and the server aggregates the model parameters received from multiple clients to form a global model. Conventional methods aggregate gradient parameters and statistical parameters without distinction, which leads to large aggregation bias due to cross-model distribution covariate shift (CDCS), and results in severe performance drop for federated learning under non-IID data. In this paper, we propose a novel decoupled parameter aggregation method called FedDNA to deal with the performance issues caused by CDCS. With the proposed method, the gradient parameters are aggregated using the conventional federated averaging method, and the statistical parameters are aggregated with an importance weighting method to reduce the divergence between the local models and the central model to optimize collaboratively by an adversarial learning algorithm based on variational autoencoder (VAE). Extensive experiments based on various federated learning scenarios with four open datasets show that FedDNA achieves significant performance improvement compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The source code will be publicly available after acceptance.

References

  1. Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., Saligrama, V.: Federated learning based on dynamic regularization. In: Proceedings of ICLR (2021)

    Google Scholar 

  2. Chen, T., Giannakis, G., Sun, T., Yin, W.: Lag: lazily aggregated gradient for communication-efficient distributed learning. In: Proceedings of NIPS, pp. 5050–5060 (2018)

    Google Scholar 

  3. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision (2009). http://help.sentiment140.com/home

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  5. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.B.: The Non-IID data quagmire of decentralized machine learning. In: Proceedings of ICML (2020)

    Google Scholar 

  6. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  7. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging (2015). http://arxiv.org/abs/1508.01991

  8. Ji, J., Chen, X., Wang, Q., Yu, L., Li, P.: Learning to learn gradient aggregation by gradient descent. In: Proceedings of IJCAI, pp. 2614–2620 (2019)

    Google Scholar 

  9. Jiang, L., Tan, R., Lou, X., Lin, G.: On lightweight privacy-preserving collaborative learning for internet-of-things objects. In: Proceedings of IoTDI, pp. 70–81 (2019)

    Google Scholar 

  10. Joyce, J.M.: Kullback-Leibler Divergence, pp. 720–722 (2011)

    Google Scholar 

  11. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: Proceedings of ICML (2020)

    Google Scholar 

  12. Killeen, P.R.: An alternative to null-hypothesis significance tests. Psychol. Sci. 16(5), 345–53 (2005)

    Article  Google Scholar 

  13. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: Proceedings of ICLR (2014)

    Google Scholar 

  14. Konecny, J., McMahan, H.B., Ramage, D.: Federated optimization: Distributed optimization beyond the datacenter. In: NIPS Optimization for Machine Learning Workshop 2015, p. 5 (2015)

    Google Scholar 

  15. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

    Google Scholar 

  17. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs (2010). http://yann.lecun.com/exdb/mnist

  18. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of MLSys, pp. 429–450 (2020)

    Google Scholar 

  19. Li, T., Sanjabi, M., Smith, V.: Fair resource allocation in federated learning. In: Proceedings of ICLR (2020)

    Google Scholar 

  20. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: FedBN: federated learning on Non-IID features via local batch normalization. In: Proceedings of ICLR (2021)

    Google Scholar 

  21. Malinovsky, G., Kovalev, D., Gasanov, E., Condat, L., Richtarik, P.: From local SGD to local fixed-point methods for federated learning. In: Proceedings of ICML (2020)

    Google Scholar 

  22. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of AISTATS, vol. 54, pp. 1273–1282 (2017)

    Google Scholar 

  23. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: ICML (2019)

    Google Scholar 

  24. Pathak, R., Wainwright, M.J.: FedSplit: an algorithmic framework for fast federated optimization. In: Proceedings of NeurIPS, vol. 33 (2020)

    Google Scholar 

  25. Reisizadeh, A., Farnia, F., Pedarsani, R., Jadbabaie, A.: Robust federated learning: the case of affine distribution shifts. In: Proceedings of NeurIPS (2020)

    Google Scholar 

  26. Rothchild, D., et al.: FetchSGD: communication-efficient federated learning with sketching. In: Proceedings of ICML (2020)

    Google Scholar 

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobilenetV2: inverted residuals and linear bottlenecks. In: Proceedings of CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  28. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: Proceedings of ICLR (2020)

    Google Scholar 

  29. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. In: Proceedings of NeurIPS (2020)

    Google Scholar 

  30. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  31. Yu, F.X., Rawat, A.S., Menon, A., Kumar, S.: FedAwS: federated learning with only positive labels. In: Proceedings of ICML (2020)

    Google Scholar 

  32. Yuan, H., Ma, T.: Federated accelerated stochastic gradient descent. In: Proceedings of NeurIPS, vol. 33 (2020)

    Google Scholar 

  33. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks. In: Proceedings of ICML (2019)

    Google Scholar 

  34. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with Non-IID data. arXiv abs/1806.00582 (2018)

    Google Scholar 

  35. Zhu, H., Jin, Y.: Multi-objective evolutionary federated learning. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1310–1322 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Key R&D Program of China (Grant No. 2018YFB1004704), the National Natural Science Foundation of China (Grant Nos. 61972196, 61832008, 61832005), the Key R&D Program of Jiangsu Province, China (Grant No. BE2018116), the Collaborative Innovation Center of Novel Software Technology and Industrialization, and the Sino-German Institutes of Social Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, JH., Li, W., Lu, S. (2021). FedDNA: Federated Learning with Decoupled Normalization-Layer Aggregation for Non-IID Data. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12975. Springer, Cham. https://doi.org/10.1007/978-3-030-86486-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86486-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86485-9

  • Online ISBN: 978-3-030-86486-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics