
Multi-Agent Imitation Learning with Copulas

Hongwei Wang? �, Lantao Yu?, Zhangjie Cao, and Stefano Ermon

Computer Science Department, Stanford University, Stanford, CA 94305, USA
{hongweiw, lantaoyu, caozj, ermon}@cs.stanford.edu

Abstract. Multi-agent imitation learning aims to train multiple agents
to perform tasks from demonstrations by learning a mapping between
observations and actions, which is essential for understanding physical,
social, and team-play systems. However, most existing works on modeling
multi-agent interactions typically assume that agents make independent
decisions based on their observations, ignoring the complex dependence
among agents. In this paper, we propose to use copula, a powerful statis-
tical tool for capturing dependence among random variables, to explicitly
model the correlation and coordination in multi-agent systems. Our pro-
posed model is able to separately learn marginals that capture the local
behavioral patterns of each individual agent, as well as a copula function
that solely and fully captures the dependence structure among agents.
Extensive experiments on synthetic and real-world datasets show that
our model outperforms state-of-the-art baselines across various scenarios
in the action prediction task, and is able to generate new trajectories
close to expert demonstrations.

Keywords: multi-agent systems · imitation learning · copulas.

1 Introduction

Recent years have witnessed great success of reinforcement learning (RL) for
single-agent sequential decision making tasks. As many real-world applications
(e.g., multi-player games [27,6] and traffic light control [7]) involve the participa-
tion of multiple agents, multi-agent reinforcement learning (MARL) has gained
more and more attention. However, a key limitation of RL and MARL is the
difficulty of designing suitable reward functions for complex tasks with implicit
goals (e.g., dialogue systems) [26,22,10,30]. Indeed, hand-tuning reward functions
to induce desired behaviors becomes especially challenging in multi-agent sys-
tems, since different agents may have completely different goals and state-action
representations [35].

Imitation learning [24,11] provides an alternative approach to directly pro-
gramming agents by taking advantage of expert demonstrations on how a task
should be solved. Although appealing, most prior works on multi-agent imitation
learning typically assume agents make independent decisions after observing a
state (i.e., mean-field factorization of the joint policy) [36,16,30,35], ignoring the

? Equal contribution.

ar
X

iv
:2

10
7.

04
75

0v
1

 [
cs

.L
G

]
 1

0
Ju

l 2
02

1

2 H. Wang, L. Yu et al.

(a) Same copula but different marginals (b) Same marginals but different copulas

Fig. 1: In each subfigure, the left part visualizes the joint policy π(a1, a2|s)
on the joint action space [−3, 3]2 and the right part shows the corresponding
marginal policies (e.g., π1(a1|s) =

∫
a2
π(a1, a2|s)da2) as well as the copula

c(F1(a1|s), F2(a2|s)) on the unit cube. Here Fi is the cumulative distribution
function of the marginal πi(ai|s) and ui := Fi(ai|s) is the uniformly distributed
random variable obtained by probability integral transform with Fi. More details
and definitions can be found in Section 3.1.

potentially complex dependencies that exist among agents. Recently, [33] and
[19] proposed to implement correlated policies with opponent modeling, which
incurs unnecessary modeling cost and redundancy, while still lacking coordination
during execution.

Compared to the single-agent setting, one major and fundamental challenge
in multi-agent learning is how to model the dependence among multiple agents
in an effective and scalable way. Inspired by probability theory and statistical
dependence modeling, in this work, we propose to use copulas [29,21,14] to
model multi-agent behavioral patterns. Copulas are powerful statistical tools
to describe the dependence among random variables, which have been widely
used in quantitative finance for risk measurement and portfolio optimization
[5]. Using a copulas-based multi-agent policy enables us to separately learn
marginals that capture the local behavioral patterns of each individual agent and
a copula function that only and fully captures the dependence structure among
the agents. Such a factorization is capable of modeling arbitrarily complex joint
policy and leads to interpretable, efficient and scalable multi-agent imitation
learning. As a motivating example (see Fig. 1), suppose there are two agents,
each with one-dimensional action space. In Fig. 1a, although two joint policies
are quite different, they actually share the same copula (dependence structure)
and one marginal. Our proposed copula-based policy is capable of capturing such
information and more importantly, we may leverage such information to develop
efficient algorithms for such transfer learning scenarios. For example, when we
want to model team-play in a soccer game and one player is replaced by his/her
substitute while the dependence among different roles are basically the same

Multi-Agent Imitation Learning with Copulas 3

regardless of players, we can immediately obtain a new joint policy by switching
in the new player’s marginal while keeping the copula and other marginals
unchanged. On the other hand, as shown in Fig. 1b, two different joint policies
may share the same marginals while having different copulas, which implies that
the mean-field policy in previous works (only modeling marginal policies and
making independent decisions) cannot differentiate these two scenarios to achieve
coordination correctly.

Towards this end, in this paper, we propose a copula-based multi-agent
imitation learning algorithm, which is interpretable, efficient and scalable for
modeling complex multi-agent interactions. Extensive experimental results on
synthetic and real-world datasets show that our proposed method outperforms
state-of-the-art multi-agent imitation learning methods in various scenarios and
generates multi-agent trajectories close to expert demonstrations.

2 Preliminaries

We consider the problem of multi-agent imitation learning under the framework
of Markov games [18], which generalize Markov Decision Processes to multi-
agent settings, where N agents are interacting with each other. Specifically, in
a Markov game, S is the common state space, Ai is the action space for agent
i ∈ {1, . . . , N}, η ∈ P(S) is the initial state distribution and P : S × A1 ×
. . .×AN → P(S) is the state transition distribution of the environment that the
agents are interacting with. Here P(S) denotes the set of probability distributions
over state space S. Suppose at time t, agents observe s[t] ∈ S and take actions
a[t] :=

(
a1[t], . . . , aN [t]

)
∈ A1×. . .×AN , the agents will observe state s[t+1] ∈ S

at time t+ 1 with probability P
(
s[t+ 1] | s[t], a1[t], . . . , aN [t]

)
. In this process,

the agents select the joint action a[t] by sampling from a stochastic joint policy
π : S → P(A1 × . . .×AN). In the following, we will use subscript −i to denote
all agents except for agent i. For example, (ai,a−i) represents the actions of all
agents; πi(ai|s) and πi(ai|s,a−i) represent the marginal and conditional policy
of agent i induced by the joint policy π(a|s) (through marginalization and Bayes’
rule, respectively).

Suppose we have access to a set of demonstrations D = {τ j}Mj=1 provided by

some expert policy πE(a|s), where each expert trajectory τ j = {(sj [t],aj [t])}Tt=1

is collected by the following sampling process:

s1 ∼ η(s),a[t] ∼ πE
(
a|s[t]

)
, s[t+ 1] ∼ P

(
s|s[t],a[t]

)
, for t ≥ 1.

The goal is to learn a parametric joint policy πθ to approximate the expert
policy πE such that we can do downstream inferences (e.g., action prediction
and trajectory generation). The learning problem is off-line as we cannot ask for
additional interactions with the expert policy or the environment during training,
and the reward is also unknown.

4 H. Wang, L. Yu et al.

3 Modeling Multi-Agent Interaction with Copulas

Many modeling methods for multi-agent learning tasks employ a simplifying
mean-field assumption that the agents make independent action choices after
observing a state [2,30,35], which means the joint policy can be factorized as
follows:

π(a1, . . . , aN |s) =

N∏
i=1

πi(ai|s). (1)

Such a mean-field assumption essentially allows for independent construction
of each agent’s policy. For example, multi-agent behavior cloning by maximum
likelihood estimation is now equivalent to performing N single-agent behavior
cloning tasks:

max
π

E(s,a)∼ρπE
[logπ(a|s)] =

N∑
i=1

max
πi

E(s,ai)∼ρπE
,i[log πi(ai|s)], (2)

where the occupancy measure ρπ : S × A1 × . . . × AN → R denotes the state
action distribution encountered when navigating the environment using the joint
policy π [32,25] and ρπ,i is the corresponding marginal occupancy measure.

However, when the expert agents are making correlated action choices (e.g.,
due to joint plan and communication in a soccer game), such a simplifying model-
ing choice is not able to capture the rich dependency structure and coordination
among agent actions. To address this issue, recent works [33,19] propose to use
a different factorization of the joint policy such that the dependency among N
agents can be preserved:

π(ai,a−i|s) = πi(ai|s,a−i)π−i(a−i|s), for i ≥ 1. (3)

Although such a factorization is general and captures the dependency among
multi-agent interactions, several issues still remain. First, the modeling cost is
increased significantly, because now we need to learn N different and complicated
opponent policies π−i(a−i|s) as well as N different marginal conditional policies
πi(ai|s,a−i), each with a deep neural network. It should be noted that there are
many redundancies in such a modeling choice. Specifically, suppose there are
N agents and N > 3, for agent 1 and N , we need to learn opponent policies
π−1(a2, . . . , aN |s) and π−N (a1, . . . , aN−1|s) respectively. These are potentially
high dimensional and might require flexible function approximations. However,
the dependency structure among agent 2 to agent N − 1 are modeled in both
π−1 and π−N , which incurs unnecessary modeling cost. Second, when executing
the policy, each agent i makes decisions through its marginal policy πi(ai|s) =
Eπ−i(a−i|s)(ai|s,a−i) by first sampling a−i from its opponent policy π−i then
sampling its action ai from πi(·|s,a−i). Since each agent is performing such
decision process independently, coordination among agents are still impossible
due to sampling randomness. Moreover, a set of independently learned conditional
distributions are not necessarily consistent with each other (i.e., induced by the
same joint policy) [35].

Multi-Agent Imitation Learning with Copulas 5

In this work, to address above challenges, we draw inspiration from probability
theory and propose to use copulas, a statistical tool for describing the depen-
dency structure between random variables, to model the complicated multi-agent
interactions in a scalable and efficient way.

3.1 Copulas

When the components of a multivariate random variable x = (x1, . . . , xN) are
jointly independent, the density of x can be written as:

p(x) =

N∏
i=1

p(xi). (4)

When the components are not independent, this equality does not hold any more
as the dependencies among x1, . . . , xN can not be captured by the marginals
p(xi). However, the differences can be corrected by multiplying the right hand
side of Equation (4) with a function that only and fully describes the dependency.
Such a function is called a copula [21], a multivariate distribution function on
the unit hyper-cube with uniform marginals.

Intuitively, consider a random variable xi with continuous cumulative distri-
bution function Fi. Applying probability integral transform gives us a random
variable ui = Fi(xi), which has standard uniform distribution. Thus one can
use this property to separate the information in marginals from the dependency
structures among x1, . . . , xN by first projecting each marginal onto one axis of
the hyper-cube and then capture the pure dependency with a distribution on the
unit hyper-cube.

Formally, a copula is the joint distribution of random variables u1, . . . , uN ,
each of which is marginally uniformly distributed on the interval [0, 1]. Fur-
thermore, we introduce the following theorem that provides the theoretical
foundations of copulas:

Theorem 1 (Sklar’s Theorem [28]). Suppose the multivariate random vari-
able (x1, . . . , xN) has marginal cumulative distribution functions F1, . . . , FN
and joint cumulative distribution function F , then there exists a unique cop-
ula C : [0, 1]N → [0, 1] such that:

F (x1, . . . , xN) = C
(
F1(x1), . . . , FN (xN)

)
. (5)

When the multivariate distribution has a joint density f and marginal densities
f1, . . . , fN , we have:

f(x1, . . . , xN) =

N∏
i=1

fi(xi) · c
(
F1(x1), . . . , FN (xN)

)
, (6)

where c is the probability density function of the copula. The converse is also
true. Given a copula C and marginals Fi(xi), then C

(
F1(x1), . . . , FN (xN)

)
=

F (x1, . . . , xN) is a N -dimensional cumulative distribution function with marginal
distributions Fi(xi).

6 H. Wang, L. Yu et al.

Theorem 1 states that every multivariate cumulative distribution function
F (x1, . . . , xN) can be expressed in terms of its marginals Fi(xi) and a copula
C
(
F1(x1), . . . , FN (xN)

)
. Comparing Eq. (4) with Eq. (6), we can see that a

copula function encoding correlations between random variables can be used to
correct the mean-field approximation for arbitrarily complex distribution.

3.2 Multi-Agent Imitation Learning with Copulas

A central question in multi-agent imitation learning is how to model the de-
pendency structure among agent decisions properly. As discussed above, the
framework of copulas provides a mechanism to decouple the marginal policies
(individual behavioral patterns) from the dependency left in the joint policy
after removing the information in marginals. In this work, we advocate copula-
based policy for multi-agent learning because copulas offer unique and desirable
properties in multi-agent scenarios. For example, suppose we want to model the
interactions among players in a soccer game. By using copulas, we will obtain
marginal policies for each individual player as well as dependencies among differ-
ent roles (e.g., forwards and midfielders). Such a multi-agent learning framework
has the following advantages:

– Interpretable. The learned copula density can be easily visualized to intu-
itively analyze the correlation among agent actions.

– Scalable. When the marginal policy of agents changes but the dependency
among different agents remain the same (e.g., in a soccer game, one player is
replaced by his/her substitute, but the dependence among different roles are
basically the same regardless of players), we can obtain a new joint policy
efficiently by switching in the new agent’s marginal while keeping the copula
and other marginals unchanged.

– Succinct. The copula-based factorization of the joint policy avoids the
redundancy in previous opponent modeling approaches [33,19] by separately
learning marginals and a copula.

Learning. We first discuss how to learn a copula-based policy from a set of
expert demonstrations. Under the framework of Markov games and copulas, we
factorize the parametric joint policy as:

π(a1, . . . , aN |s;θ) =

N∏
i=1

πi(ai|s; θi)·c
(
F1(a1|s; θ1), . . . , FN (aN |s; θN)|s; θc

)
, (7)

where πi(ai|s; θi) is the marginal policy of agent i with parameters θi and Fi is
the corresponding cumulative distribution function; the function c (parameterized
by θc) is the density of the copula on the transformed actions ui = Fi(ai|s; θi)
obtained by processing original actions with probability integral transform.

The training algorithm of our proposed method is presented as Algorithm 1.
Given a set of expert demonstrations D, our goal is to learn marginal actions of

Multi-Agent Imitation Learning with Copulas 7

Algorithm 1: Training procedure

Input: The number of trajectories M , the length of trajectory T , the number
of agents N , demonstrations D = {τ i}Mi=1, where each trajectory
τ i = {(si[t],ai[t])}Tt=1

Output: Marginal action distribution MLP MLPmarginal, state-dependent
copula MLP MLPcopula or state-independent copula density c(·)

// Learning marginals

1 while MLPmarginal not converge do
2 for each state-action pair (s, (a1, · · · , aN)) do
3 Calculate the conditional marginal action distributions for all agents:

{fj(·|s)}Nj=1 ←MLPmarginal(s);
4 for agent j = 1, · · · , N do
5 Calculate the likelihood of the observed action aj : fj(aj |s);
6 Maximize fj(aj |s) by optimizing MLPmarginal using SGD;

// Learning copula

7 while MLPcopula or c(·) not converge do
8 for each state-action pair (s, (a1, · · · , aN)) do
9 {fj(·|s)}Nj=1 ←MLPmarginal(s);

10 for agent j = 1, · · · , N do
11 Fj(·|s)← the CDF of fj(·|s);
12 Transform aj to uniformly distributed value: uj ← Fj(aj |s);
13 Obtain u = (u1, · · · , uN) ∈ [0, 1]N ;
14 if copula is set as state-dependent then
15 Calculate the copula density c(·|s)←MLPcopula(s);
16 Calculate the likelihood of u: c(u|s);
17 Optimize MLPcopula by maximizing log c(u|s) using SGD;

18 else
19 Calculate the likelihood of u: c(u);
20 Optimize parameters of c(·) using maximum likelihood or

non-parametric methods;

21 return MLPmarginal, MLPcopula or c(·)

agents and their copula function. Our approach consists of two steps.1 We first
learn marginal action distributions of each agent given their current state (lines
1-6). This is achieved by training MLPmarginal that takes as input a state s and
output the parameters of marginal action distributions of N agents given the input
state (line 3).2 In our implementation, we use mixture of Gaussians to realize

1 An alternate approach is to combine the two steps together and use end-to-end
training, but this does not perform well in practice because the copula term is
unlikely to converge before marginals are well-trained.

2 Here we assume that each agent is aware of the whole system state. But our model
can be easily generalized to the case where agents are only aware of partial system
state by feeding the corresponding state to their MLPs.

8 H. Wang, L. Yu et al.

each marginal policy πi(ai|s; θi) such that we can model complex multi-modal
marginals while having a tractable form of the marginal cumulative distribution
functions. Therefore, the output of MLPmarginal consists of the means, covariance,
and weights of components for the N agents’ Gaussian mixtures. We then calculate
the likelihood of each observed action aj based on agent j’s marginal action
distribution (line 5), and maximize the likelihood by optimizing the parameters
of MLPmarginal (line 6).

After learning marginals, we fix the parameters of marginal MLPs and start
learning the copula (lines 7-20). We first process the original demonstrations
using probability integral transform and obtain a set of new demonstrations with
uniform marginals (lines 8-13). Then we learn the density of copula (lines 14-20).
Notice that the copula can be implemented as either state-dependent (lines 14-17)
or state-independent (lines 18-20): For state-dependent copula, we use MLPcopula
to take as input the current state s and outputs the parameters of copula density
c(·|s) (line 15). Then we calculate the likelihood of copula value u (line 16) and
maximize the likelihood by updating MLPcopula (line 17). For state-independent
copula, we directly calculate the likelihood of copula value u under c(·) (line 19)
and learn parameters of c(·) by maximizing the likelihood of copula value (line
20).

The copula density (c(·) or c(·|s)) can be implemented using parametric
methods such as Gaussian or mixture of Gaussians. It is worth noticing that if
copula is state-independent, it can also be implemented using non-parametric
methods such as kernel density estimation [23,8]. In this way, we no longer learn
parameters of copula by maximizing likelihood as in lines 19-20, but simply store
all copula values u for density estimation and sampling in inference stage. We
will visualize the learned copula in experiments.

Inference. In inference stage, the goal is to predict the joint actions of all agents
given their current state s. The inference algorithm is presented as Algorithm
2, where we first sample a copula value u = (u1, · · · , uN) from the learned
copula, either state-dependent or state-independent (lines 1-5), then apply inverse
probability transform to transform them to the original action space: âj =
F−1j (uj |s) (lines 7-10). Note that an analytical form of the inverse cumulative
distribution function may not always be available. In our implementation, we use
binary search to approximately solve this problem since Fj is a strictly increasing
function, which is shown to be highly efficient in practice. In addition, we can
also sample multiple i.i.d. copula values from c(·|s) or c(·) (line 3 or 5), transform
them into the original action space, and take their average as the predicted action.
This strategy is shown to be able to improve the accuracy of action prediction
(in terms of MSE loss), but requires more running time as a trade-off.

Generation. The generation algorithm is presented as Algorithm 3. To generate
new trajectories, we repeatedly predict agent actions given the current state
(line 2), then execute the generated action and obtain an updated state from the
environment (line 3).

Complexity Analysis. The computational complexity of the training and the
inference algorithms is analyzed as follows. The complexity of each round in

Multi-Agent Imitation Learning with Copulas 9

Algorithm 2: Inference procedure

Input: Marginal action distribution MLP MLPmarginal, state-dependent
copula MLP MLPcopula or state-independent copula density c(·),
current state s

Output: Predicted action â
// Sample from copula

1 if copula is set as state-dependent then
2 Calculate (parameters of) state-dependent copula density

c(·|s)←MLPcopula(s);
3 Sample a copula value u = (u1, · · · , uN) from c(·|s);
4 else
5 Sample a copula value u = (u1, · · · , uN) from c(·);
// Transform copula value to action space

6 Calculate (parameters of) the conditional marginal action distributions for all

agents: {fj(·|s)}Nj=1 ←MLPmarginal(s);
7 for agent j = 1, · · · , N do
8 Fj(·|s)← CDF of fj(·|s);
9 âj ← F−1

j (uj |s);
10 â← (â1, · · · , âj);
11 return â

Algorithm 3: Generation procedure

Input: Inference module (Algorithm 2), initial state s[0], required length L,
environment E

Output: Generated trajectory τ̂
1 for l = 0, · · · , L do
2 Feed state s[l] to the inference module and get the predicted action â[l];
3 Execute â[l] in environment E and get a new state s[l + 1];

4 τ̂ = {(s[l], â[l])}Ll=0;
5 return τ̂ ;

Algorithm 1 is O(MTN), where M is the number of trajectories in the training
set, T is the length of each trajectory, and N is the number of agents. The
complexity of Algorithm 2 is O(N). The training and the inference algorithms
scales linearly with the size of input dataset.

4 Related Work

The key problem in multi-agent imitation learning is how to model the dependence
structure among multiple agents. [16] learn a latent coordination model for players
in a cooperative game, where different players occupy different roles. However,
there are many other multi-agent scenarios where agents do not cooperate for a
same goal or they do not have specific roles (e.g., self-driving). [4] adopt parameter

10 H. Wang, L. Yu et al.

Fig. 2: Experimental environments: PhySim, Driving, and RoboCup.

sharing trick to extend generative adversarial imitation learning to handle multi-
agent problems, but it does not model the interaction of agents. Interaction
Network [3] learns a physical simulation of objects with binary relations, and
CommNet [31] learns dynamic communication among agents. But they fail to
characterize the dependence among agent actions explicitly.

Researchers also propose to infer multi-agent relationship using graph tech-
niques or attention mechanism. For example, [15] propose to use graph neural
networks (GNN) to infer the type of relationship among agents. [12] introduces
attention mechanism into multi-agent predictive modeling. [17] combine genera-
tive models and attention mechanism to capture behavior generating process of
multi-agent systems. These works address the problem of reasoning relationship
among agents rather than capturing their dependence when agents are making
decisions.

Another line of related work is deep generative models in multi-agent sys-
tems. For example, [36] propose a hierarchical framework with programmatically
produced weak labels to generate realistic multi-agent trajectories of basketball
game. [34] use GNN and variational recurrent neural networks (VRNN) to design
a permutation equivariant multi-agent trajectory generation model for sports
games. [13] combine conditional variational autoencoder (CVAE) and long-short
term memory networks (LSTM) to generate behavior of basketball players. Most
of the existing works focus on agent behavior forecasting but provide limited
information regarding the dependence among agent behaviors.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate our method in three settings. PhySim is a synthetic
physical environment where 5 particles are connected by springs. Driving is a
synthetic driving environment where one vehicle follows another along a single lane.
RoboCup is collected from an international scientific robot competition where
two robot teams (including 22 robots) compete against each other. Experimental
environments are shown in Fig. 2. The detailed dataset description is provided
in Appendix A.
Baselines. We compare our method with the following baselines: LR is a
logistic regression model that predicts actions of agents using all of their states.
SocialLSTM [1] predicts agent trajectory using RNNs with a social pooling

Multi-Agent Imitation Learning with Copulas 11

Table 1: Root mean squared error (RMSE) between predicted actions and ground-
truth actions for all methods.

Methods PhySim Driving RoboCup

LR 0.064± 0.002 0.335± 0.007 0.478± 0.009
SocialLSTM 0.186± 0.032 0.283± 0.024 0.335± 0.051

IN 0.087± 0.013 0.247± 0.033 0.320± 0.024
CommNet 0.089± 0.007 0.258± 0.028 0.311± 0.042

VAIN 0.082± 0.010 0.242± 0.031 0.315± 0.028
NRI 0.055± 0.011 0.296± 0.018 0.401± 0.042

Copula 0.037± 0.005 0.158± 0.019 0.221± 0.024

layer in the hidden state of nearby agents. IN [3] predicts agent states and
their interactions using deep neural networks. CommNet [31] simulates the
inter-agent communication by broadcasting the hidden states of all agents and
then predicts their actions. VAIN [12] uses neural networks with attention
mechanism for multi-agents modeling. NRI [15] designs a graph neural network
based model to learn the interaction type among multiple agents. Since most
of the baselines are used for predicting future states given historical state, we
change the implementation of their objective functions and use them to predict
the current action of agents given historical states. Each experiment is repeated 3
times, and we report the mean and standard deviation. Hyper-parameter settings
of baselines as well as our method are presented in Appendix B.

5.2 Results

We compare our method with baselines in the task of action prediction. The
results of root mean squared error (RMSE) between predicted actions and
ground-truth actions are presented in Table 1. The number of Gaussian mixture
components in our method is set to 2 for all datasets. The results demonstrate
that all methods performs the best on PhySim dataset, since agents in PhySim
follow simple physical rules and the relationships among them are linear thus
easy to infer. However, the interactions of agents in Driving and RoboCup
datasets are more complicated, which causes LR and NRI to underperform other
baselines. The performance of IN, CommNet, and VAIN are similar, which is in
accordance with the result reported in [12]. Our method is shown to outperform
all baselines significantly on all three datasets, which demonstrates that explicitly
characterizing dependence of agent actions could greatly improve the performance
of multi-agent behavior modeling.

To investigate the efficacy of copula, we implement three types of copula
function: Uniform copula means we do not model dependence among agent
actions. KDE copula uses kernel density estimation to model the copula function,
which is state-independent. Gaussian mixtures copula uses Gaussian mixture
model to characterize the copula function, of which the parameters are output by
an MLP taking as input the current state. We train the three models on training

12 H. Wang, L. Yu et al.

Table 2: Negative log-likelihood (NLL) of test trajectories evaluated by dif-
ferent types of copula. Uniform copula assumes no dependence among agent
actions. KDE copula uses kernel density estimation to model the copula, which
is state-independent. Gaussian mixtures copula uses Gaussian mixture model to
characterize the copula, which is state-dependent.

Copula type PhySim Driving RoboCup

Uniform 8.994± 0.001 −0.571± 0.024 3.243± 0.049
KDE 1.256± 0.006 −0.916± 0.017 0.068± 0.052

Gaussian mixture 2.893± 0.012 −0.621± 0.028 3.124± 0.061

Combinations PhySim Driving RoboCup

Old marginals + old copula 10.231± 0.562 15.184± 1.527 4.278± 0.452
Old marginals + new copula 8.775± 0.497 13.662± 0.945 4.121± 0.658
New marginals + old copula 1.301± 0.016 0.447± 0.085 0.114± 0.020
New marginals + new copula 1.259± 0.065 −0.953± 0.024 0.077± 0.044

Table 3: Negative log-likelihood (NLL) of new test trajectories in which the action
distribution of one agent is changed. We evaluate the new test trajectories based
on whether to use the old marginal action distributions or copula, which results
in four combinations.

trajectories, then calculate negative log-likelihood (NLL) of test trajectories using
the three trained models. A lower NLL score means that the model assigns high
likelihood to given trajectories, showing that it is better at characterizing the
dataset. The NLL scores of the three models on the three datasets are reported
in Table 2. The performance of KDE copula and Gaussian copula both surpasses
uniform copula, which demonstrates that modeling dependence among agent
actions is essential for improving model expressiveness. However, Gaussian copula
performs worse than KDE copula, because Gaussian copula is state-dependent
thus increases the risk of overfitting. Notice that the performance gap between
KDE and Gaussian copula is less on PhySim, since PhySim dataset is much
larger so the Gaussian copula can be trained more effectively.

5.3 Generalization of Copula

One benefit of copulas is that copula captures the pure dependence among
agents, regardless of their own marginal action distributions. To demonstrate the
generalization capabilities of copulas, we design the following experiment. We first
train our model on the original dataset, and learn marginal action distributions
and copula function (which is called old marginals and old copula). Then we
substitute one of the agents with a new agent and use the simulator to generate a
new set of trajectories. Specifically, this is achieved by doubling the action value of
one agent (for example, this can be seen as substituting an existing particle with
a lighter one in PhySim). We retrain our model on new trajectories and learn new
marginals and new copula. We evaluate the likelihood of new trajectories based on

Multi-Agent Imitation Learning with Copulas 13

whether to use the old marginals or old copula, which, accordingly, results in four
combinations. The NLL scores of four combinations are presented in Table 3. It is
clear, by comparing the first and the last row, that “new marginals + new copula”
significantly outperform “old marginals + old copula”, since new marginals and
new copula are trained on new trajectories and therefore characterize the new
joint distribution exactly. To see the influence of marginals and copula more
clearly, we further compare the results in row 2 and 3, where we use new copula
or new marginals separately. It is clear that the model performance does not
drop significantly if we use the old copula and new marginals (by comparing row
3 and 4), which demonstrates that the copula function basically stays the same
even if marginals are changed. The result supports our claim that the learned
copula is generalizable in the case where marginal action distributions of agents
change but the internal inter-agent relationship stays the same.

5.4 Copula Visualization

L2 L3

L4 L5

L6 L7

L8 L9

L10 L11

(a)

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L3
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L4
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L5
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L6
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L7
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L8
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L9
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L1
0x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L1
1x

(b)

Fig. 3: (a) Trajectories of 10 players (except the
goalkeeper) of the left team in one RoboCup game;
(b) Copula density between x-axis of L2 and x-axis
of another player (L3 ∼ L11).

Another benefit of copulas is
that it is able to intuitively
demonstrate the correlation
among agent actions. We
choose the RoboCup dataset
to visualize the learned cop-
ula. As shown in Fig. 3a,
we first randomly select a
game (the 6th game) between
cyrus2017 and helios2017 and
draw trajectories of 10 play-
ers in the left team (L2 ∼ L11,
except the goalkeeper). It is
clear that the 10 players ful-
fill specific roles: L2 ∼ L4 are
defenders, L5 ∼ L8 are mid-
fielders, and L9 ∼ L11 are
forwards. Then we plot the
copula density between the x-
axis (the horizontal direction)
of L2 and the x-axis of L3 ∼ L11, respectively, as shown in Fig. 3b. These figures
illustrate linear correlation between their moving direction along x-axis, that is,
when L2 moves forward other players are also likely to move forward. However,
the correlation strength differs with respect to different players: L2 exhibits high
correlation with L3 and L4, but low correlation with L9 ∼ L11. This is because
L2 ∼ L4 are all defenders so they collaborate more closely with each other, but
L9 ∼ L11 are forwards thus far from L2 in the field.

14 H. Wang, L. Yu et al.

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

(a) Original trajectories

0 25 50
0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50
0

50

100

(b) Generated trajectories

Fig. 5: Original and generated trajectories on Driving dataset. The x-axis is
timestamp and y-axis is the location (1D coordinate) of two cars.

5.5 Trajectory Generation

The learned copula can also be used to generate new trajectories. We visualize
the result of trajectory generation on RobuCup dataset. As shown in Fig. 4, the
dotted lines denote the ground-truth trajectories of the 10 player in an attack
from midfield to the penalty area. The trajectories generated by our copula model
(Fig. 4b) are quite similar to the demonstration as they exhibit high consistency.
It is clear that midfielders and forwards (No. 5 ∼ No. 11) are basically moving
to the same direction, and they all make a left turn on their way to penalty
area. However, the generated trajectories by independent modeling show little
correlation since the players are all making independent decisions.

4

2

3

5

6

7

8

9

10

11

(a) Independent

4

2

3

5

6

7

8

9

10

11

(b) Copula

Fig. 4: Generated trajectories (solid lines) on
RoboCup using independent modeling or cop-
ula. Dotted lines are ground-truth trajectories.

We also present the result
of trajectory generation on
Driving dataset. We randomly
select 10 original trajectories
and 10 trajectories generated
by our method, and visualize
the result in Fig. 5. The x-
axis is timestamp and y-axis
is the location (coordinate) of
two cars. Our learned policy is
shown to be able to maintain
the distance between two cars.

6 Conclusion and Future Work

In this paper, we propose a copula-based multi-agent imitation learning algorithm
that is interpretable, efficient and scalable to model complex multi-agent interac-
tions. Sklar’s theorem allows us to separately learn marginal policies that capture
the local behavioral patterns of each individual agent and a copula function
that only and fully captures the dependence structure among the agents. Com-
pared to previous multi-agent imitation learning methods based on independent
policies (mean-field factorization of the joint policy) or opponent modeling, our
method is capable of modeling complex dependence among agents and achieving
coordination without any modeling redundancy.

Multi-Agent Imitation Learning with Copulas 15

We point out two directions of future work. First, the copula function is
generalizable only if the dependence structure of agents (i.e., their role assignment)
is unchanged. Therefore, it is interesting to study how to efficiently apply the
learned copula to the scenario with evolving dependence structure. Another
practical question is that whether our proposed method can be extended to the
setting of decentralized execution, since the step of copula sampling (line 3 or 5 in
Algorithm 2) is shared by all agents. A straightforward solution is to set a fixed
sequence of random seeds for all agents in advance, so that the copula samples
obtained by all agents are the same at each timestamp, but how to design a more
robust and elegant mechanism is still a promising direction.

Acknowledgements

This research was supported by TRI, NSF (1651565, 1522054, 1733686), ONR
(N00014-19-1-2145), AFOSR (FA9550-19-1-0024), ARO (W911NF2110125), and
FLI.

References

1. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese.
Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 961–971, 2016.

2. S. V. Albrecht and P. Stone. Autonomous agents modelling other agents: A
comprehensive survey and open problems. Artificial Intelligence, 258:66–95, 2018.

3. P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction networks for
learning about objects, relations and physics. In Advances in neural information
processing systems, pages 4502–4510, 2016.

4. R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler, and M. J.
Kochenderfer. Multi-agent imitation learning for driving simulation. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1534–1539. IEEE, 2018.

5. E. Bouyé, V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. Copulas for
finance-a reading guide and some applications. Available at SSRN 1032533, 2000.

6. N. Brown and T. Sandholm. Superhuman ai for multiplayer poker. Science,
365(6456):885–890, 2019.

7. T. Chu, J. Wang, L. Codecà, and Z. Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation
Systems, 21(3):1086–1095, 2019.

8. R. A. Davis, K.-S. Lii, and D. N. Politis. Remarks on some nonparametric estimates
of a density function. In Selected Works of Murray Rosenblatt, pages 95–100.
Springer, 2011.

9. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual Conference on Robot
Learning, pages 1–16, 2017.

10. J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

16 H. Wang, L. Yu et al.

11. J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in
neural information processing systems, pages 4565–4573, 2016.

12. Y. Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances in
Neural Information Processing Systems, pages 2701–2711, 2017.

13. B. Ivanovic, E. Schmerling, K. Leung, and M. Pavone. Generative modeling of
multimodal multi-human behavior. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3088–3095. IEEE, 2018.

14. H. Joe. Dependence modeling with copulas. Chapman and Hall/CRC, 2014.
15. T. N. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. S. Zemel. Neural relational

inference for interacting systems. In International Conference on Machine Learning,
2018.

16. H. M. Le, Y. Yue, P. Carr, and P. Lucey. Coordinated multi-agent imitation learning.
In Proceedings of the 34th International Conference on Machine Learning, pages
1995–2003, 2017.

17. M. G. Li, B. Jiang, H. Zhu, Z. Che, and Y. Liu. Generative attention networks for
multi-agent behavioral modeling. In AAAI, pages 7195–7202, 2020.

18. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning.
In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

19. M. Liu, M. Zhou, W. Zhang, Y. Zhuang, J. Wang, W. Liu, and Y. Yu. Multi-agent
interactions modeling with correlated policies. arXiv preprint arXiv:2001.03415,
2020.

20. O. Michael, O. Obst, F. Schmidsberger, and F. Stolzenburg. Robocupsimdata: A
robocup soccer research dataset. arXiv preprint arXiv:1711.01703, 2017.

21. R. B. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.
22. A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In

Icml, volume 1, page 2, 2000.
23. E. Parzen. On estimation of a probability density function and mode. The annals

of mathematical statistics, 33(3):1065–1076, 1962.
24. D. A. Pomerleau. Efficient training of artificial neural networks for autonomous

navigation. Neural computation, 3(1):88–97, 1991.
25. M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.
26. S. Russell. Learning agents for uncertain environments. In Proceedings of the

eleventh annual conference on Computational learning theory, pages 101–103, 1998.
27. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

28. A. Sklar. Fonctions de Répartition à n Dimensions et Leurs Marges. Publications
de L’Institut de Statistique de L’Université de Paris, 8:229–231, 1959.

29. M. Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist.
univ. Paris, 8:229–231, 1959.

30. J. Song, H. Ren, D. Sadigh, and S. Ermon. Multi-agent generative adversarial
imitation learning. In Advances in neural information processing systems, pages
7461–7472, 2018.

31. S. Sukhbaatar, R. Fergus, et al. Learning multiagent communication with backprop-
agation. In Advances in neural information processing systems, pages 2244–2252,
2016.

32. U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear
programming. In Proceedings of the 25th international conference on Machine
learning, pages 1032–1039, 2008.

Multi-Agent Imitation Learning with Copulas 17

33. Z. Tian, Y. Wen, Z. Gong, F. Punakkath, S. Zou, and J. Wang. A regularized
opponent model with maximum entropy objective. arXiv preprint arXiv:1905.08087,
2019.

34. R. A. Yeh, A. G. Schwing, J. Huang, and K. Murphy. Diverse generation for
multi-agent sports games. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4610–4619, 2019.

35. L. Yu, J. Song, and S. Ermon. Multi-agent adversarial inverse reinforcement learning.
In International Conference on Machine Learning, 2019.

36. E. Zhan, S. Zheng, Y. Yue, L. Sha, and P. Lucey. Generating multi-agent trajectories
using programmatic weak supervision. arXiv preprint arXiv:1803.07612, 2018.

18 H. Wang, L. Yu et al.

Appendix

A Dataset Details

PhySim is collected from a physical simulation environment where 5 particles
move in a unit 2D box. The state is locations of all particles and the action is
their acceleration (there is no need to include their velocities in state because
accelerations are completely determined by particle locations). We add Gaussian
noise to the observed values of actions. Particles may be pairwise connected by
springs, which can be represented as a binary adjacency matrix A ∈ {0, 1}N×N .
The elasticity between two particles scales linearly with their distance. At each
timestamp, we randomly sample an adjacency matrix from {A1,A2} to connect
all particles, where A1 and A2 are set as complimentary (i.e. A1 + A2 + I = 1)
to ensure that they are as different as possible. Therefore, the marginal action
distribution of each particle given a system state is Gaussian mixtures with two
components. Here the coordination signal for particles can be seen as the hidden
variable determining which set of springs (A1 or A2) is used at current time. We
generate 10, 000 training trajectories, 2, 000 validation trajectories, and 2, 000
test trajectories for experiments, where the length of each trajectory is 500.

Driving is generated by CARLA3 [9], an open-source simulator for au-
tonomous driving research that provides realistic urban environments for training
and validation of autonomous driving systems. To generate the driving data,
we design a car following scenario, where a leader car and a follower car drive
in the same lane. We make the leader car alternatively accelerate to a speed
upper bound and slow down to stopping. The leader car does not care about
the follower and drives following its own policy. The follower car tries to follow
closely the leader car while keeping a safe distance. Here the state is the locations
and velocities of the two cars, and the action is their accelerations. We generate
1, 009 trajectories in total, and split the whole data into training, validation, and
test set with ratio of 6 : 2 : 2. The average length of trajectories is 85.5 in Driving
dataset.

RoboCup [20] is collected from an international scientific robot football
competition in which teams of multiple robots compete against each other. The
original dataset contains all pairings of 10 teams with 25 repetitions of each game
(1, 125 games in total). The state of a game (locations and velocities of 22 robots)
is recorded every 100 ms, resulting in a trajectory of length 6, 000 for each game
(10 min). We select the 25 games between two teams, cyrus2017 and helios2017,
as the data used in this paper. The state is locations of 10 robots (except the
goalkeeper) in the left team, and the action is their velocities. The dataset is
split into training, validation, and test set with ratio of 6 : 2 : 2.

B Implementation Details

For our proposed method, to learn the marginal action distribution of each agent
(i.e. Gaussian mixtures), we use an MLP with one hidden layer to take as input

3 https://carla.org/

https://carla.org/

Multi-Agent Imitation Learning with Copulas 19

a state and output the centers of their Gaussian mixtures. To prevent overfitting,
the variance of these Gaussian mixtures is parameterized by a free variable for
each particle, and the weights of mixtures are set as uniform. Each dimension of
states and actions in the original datasets are normalized to range [−1, 1]. For
PhySim, the number of particles are set to 5. Learning rate is set to 0.01, and
the weight of L2 regularizer is set to 10−5. For Driving, learning rate is 0.005
and L2 regularizer weight is 10−5. For RoboCup, learning rate is 0.001 and L2
regularizer weight is 10−6.

For LR, we use the default implementation in Python sklearn package. For
SocialLSTM [1], the dimension of input is set as the dimension of states in each
dataset. The spatial pooling size is 32, and we use an 8× 8 sum pooling window
size without overlaps. The hidden state dimension in LSTM is 128. The learning
rate is 0.001. For IN [3], all MLPs are with one hidden layer of 32 units. The
learning rate is 0.005. For CommNet [31], all MLPs are with one hidden layer
of 32 units. The dimension of hidden states is set to 64, and the number of
communication round is set to 2. The learning rate is 0.001. For VAIN [12],
the encoder and decoder functions are implemented as a fully connected neural
network with one hidden layer of 32 units. The dimension of hidden states is 64,
and the dimension of attention vectors is 10. The learning rate is 0.0005. For
NRI [15], we use an MLP encoder and an MLP decoder, with one hidden layer
of 32 units. The learning rate is 0.001.

	Multi-Agent Imitation Learning with Copulas

