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Abstract. Anomaly detection is a widely explored domain in machine
learning. Many models are proposed in the literature, and compared
through different metrics measured on various datasets. The most popu-
lar metrics used to compare performances are F1-score, AUC and AVPR.
In this paper, we show that F1-score and AVPR are highly sensitive to the
contamination rate. One consequence is that it is possible to artificially
increase their values by modifying the train-test split procedure. This
leads to misleading comparisons between algorithms in the literature,
especially when the evaluation protocol is not well detailed. Moreover,
we show that the Fl-score and the AVPR cannot be used to compare
performances on different datasets as they do not reflect the intrinsic
difficulty of modeling such data. Based on these observations, we claim
that Fl-score and AVPR should not be used as metrics for anomaly de-
tection. We recommend a generic evaluation procedure for unsupervised
anomaly detection, including the use of other metrics such as the AUC,
which are more robust to arbitrary choices in the evaluation protocol.

Keywords: Anomaly detection - One-class classification - Contamina-
tion rate - Metrics

1 Introduction

Anomaly detection has been widely studied in the past few years, mostly for its
immediate usability in real-world applications. Though there are multiple def-
initions of anomalies in the literature, most definitions agree on the fact that
anomalies are data points which do not come from the main distribution. In the
setting of unsupervised anomaly detection, the goal is to create a model which
can distinguish anomalous samples from normal ones without being given such
label at train time. In order to do so, most approaches follow a one-class classifi-
cation framework, which models the normal data from the train set, and predicts
as anomalous any point which does not fit this distribution of normal samples.
Such prediction needs some prior knowledge provided through a contamination
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rate on the test set, which is the ratio of anomalous data within. This ratio is
used to build the model’s decision rule.

In this setting, a lot of the literature uses the F1-score or the average precision
(AVPR) to evaluate and compare models. In this paper we show that the evalu-
ation protocol (train-test split and contamination rate estimation) has a direct
influence on the contamination rate of the test set and the decision threshold,
which in turn has a direct influence on these metrics. We highlight a comparabil-
ity issue between results in different papers based on such evidence, and suggest
an unbiased protocol to evaluate and compare unsupervised anomaly detection
algorithms.

After an extensive study of the unsupervised anomaly detection field and of
previous analyses of the evaluation methods (Section , we study the impact
of the evaluation procedure on commonly used metrics (Section [3)). Identified
issues include a possibility to artificially increase the obtained scores and a non-
comparability of the results over different datasets. Taking these into account,
we suggest the use of a protocol leading to a better comparability in Section [

2 Related Work

Anomaly detection has been heavily dominated by unsupervised classification
settings. One very popular approach in unsupervised anomaly detection is one-
class classification, which refers to the setting where at train time, the model is
given only normal samples to learn what the normal distribution is. The goal
is to learn a scoring function to assign each data point an abnormality score.
A threshold is then calculated from either a known or estimated contamination
rate to turn scores into labels, samples with higher scores being considered as
anomalies. In the literature different scoring functions have been used:

Proximity-based methods use heuristics based on distances between samples in
some relevant space. These algorithms estimate the local density of data points
through distances, and point out the most isolated ones. Legacy approaches in-
clude a simple distance to the Kth neighbour [2], Angle-Based Outlier Detection
(ABOD) [11], which uses the variance over the angles between the different vec-
tors to all pairs of points weighted by the distances between them, Local Outlier
Factor (LOF) [3], which measures the local deviation of a given data point with
respect to its neighbours, Connectivity-based Outlier Factor (COF) [23], which
uses a ratio of averages of chaining distances with neighbours and Clustering-
Based Local Outlier Factor (CBLOF) [10], which clusters the data and scores
samples based on the size of the cluster they belong to and the distance to the
closest big cluster. More recent approaches include DROCC [8], which makes
the assumption that normal points lie on a well-sampled, locally linear low di-
mensional manifold and abnormal points lie at least at a certain distance from
this manifold.

Reconstruction-based approaches use notions of reconstruction error to deter-
mine which data points are anomalous, the reconstruction of the densest parts
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of the distribution being easier to learn in general. In [I7] for instance, the projec-
tion of each point on the main PCA axes is used to detect anomalies. As for [2§],
a GAN with a memory matrix is presented, each row containing a memorised
latent vector with the objective to enclose all the normal data, in latent space, in
between memorised vectors. The optimisation introduces a reconstruction error.

Representation-based approaches attempt to project the data in a space in which
it is easy to identify outliers. Following this idea, One-Class SVM (OC-SVM) [22]
uses a hypersphere to encompass all of the instances in the projection space. [12]
proposed a neural network with robust subspace recovery layer. IDAGMM [13]
presents an iterative algorithm based on an autoencoder and clustering, with the
hypothesis that normal data points form a cluster with low variance. OneFlow
[16], is a normalising-flow based method which aims at learning a minimum
enclosing ball containing most of the data in the latent space, the optimisation
ensuring that denser regions are projected close to the origin.

Adwversarial scoring use the output of a discriminator as a proxy for abnormality,
since it is precisely the goal of a discriminator to distinguish normal samples from
other inputs. Driven by the motivation, an ensemble gan method is proposed in
[9]. GANomaly [I] presents a conditional generative adversarial network with a
encoder-decoder-encoder network to train better on normal images at training,
and [27] presents Adversarially Learned Interface method with cycle consistency
to ensure good reconstruction of normal data in one-class setting. [29] presents
a gan network with autoencoder as generator for anomaly detection on images
datasets.

Feature-level approaches try to detect anomalies at feature-level, and aggregate
such information on each sample to produce an abnormality score at sample
level. HBOS [7] assumes feature independence and calculates the degree of ab-
normality by building histograms. RVAE [5] uses a variational autencoder to
introduce cell abnormality, which is converted into sample anomaly detection.

All of these categories are of course non-exclusive, and some approaches, as
the very popular Isolation Forest [I5], which uses the mean depth at which each
sample is isolated in a forest of randomly built trees, do not fall in any of these.
On the opposite, some recent methods combine multiple of such proxies for ab-
normality to reach better performances, each one using different hypotheses to
model anomalies. For example [3T] presents an end-to-end anomaly detection ar-
chitecture. The model uses an autoencoder to perform dimensionality reduction
to one or two dimensions and calculates several similarity errors, feeding then
both latent representation and reconstruction errors to the gaussian mixture
model. AnoGAN [21I], which uses both a reconstruction error and a discrimina-
tor score to detect anomalies, also falls in this category.

Even if the original one-class setting requires data to be all normal at train
time (which makes one-class approaches not strictly unsupervised) some ap-
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proaches do not require clean data at train time, since they use what they learn
about normal data to reduce as much as possible the impact of anomalies [I3/T6].

For all these settings, the main evaluation metrics used in the literature are
the Fl-score, the AUC (area under ROC curve) and the AVPR (average pre-
cision). The link between sensitivity, specificity and F1-score has been studied
in [I4], providing thresholding-related insights. In this work, we highlight the
heterogeneity of current evaluation procedures in unsupervised anomaly detec-
tion performed in a one-class framework, would it be in terms of metrics or
contamination-rate determination. For instance, many papers do not provide
complete information about how the train-test splits are made [BIT6]. For the
same datasets, some papers re-inject the train anomalies in the test set [24]3T19]
E| and some others do not [3I30]. In some cases, it is not clear which contamina-
tion rate was used to compute the threshold [29/T6I3TI928], and some approaches
prefer evaluating their model with multiple thresholds [12]. Different metrics are
used to evaluate performences - F1-score [2927IRIT39I3T], precision [27I93T], re-
call [2709)3T], sensitivity [21], specificity [21], AUC [291127288I2T125/T3l6IT2/915],
AVPR [12/13I5125]. Finally many papers report directly the results from other
papers and do not test the associated algorithms in their particular evaluation
setting.

We show that all above-mentioned setup details have a direct impact on the
F1-score and the AVPR. Since such heterogeneity leads to reproducibility and
comparability issues, we suggest the use of an evaluation protocol with a robust
metric which allows comparison.

3 Issues when Using F1-Score and AVPR Metrics

In this section, we analyse the sensitivity of the F1-score and AVPR metrics with
respect to the contamination rate of the test set. First, we define the problem
and different metrics and explain the impact of the estimation of the contami-
nation rate. Then, we analyse the evolution of the metrics according to the true
contamination rate of the test set. After having explained different evaluation
protocols used in the literature, we show how they can be used to produce artifi-
cially good results using the Fl-score and AVPR metrics. Finally, we show that
these two metrics are also unsuitable for estimating the difficulty of datasets.

3.1 Formalism and Problem Statement

Consider a dataset D = {(x1,v1), ..., (xn,yn)} C R? x {0,1}, with x; the
d-dimensional samples and y; the corresponding labels. We assume both classes
are composed of i.i.d. samples. We also assume the normal class labeled 0 out-
numbers the anomaly class labeled 1. Therefore, we choose the anomaly class as

! [31] do not publish their code but an unofficial implementation widely used (264 stars
and 76 forks at the time of writing) is at available https://github.com/danieltan07/
dagmm
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Fig. 1: Metrics definitions.

positive class and use T to refer to it, while using ~ to refer to the normal class.
This dataset is split into a train set D"%" C D and a test set D! = D\ D",
Different procedures are used in the anomaly-detection community to perform
this split, as detailed in Section We denote N, (resp. N, ) the number of
anomalous (resp. normal) samples in the test set.

We consider one-class classifiers, which are models learning an anomaly-score
function f based only on clean samples X¢%" = {x V(x,y) € D!"%" | y = 0}.
The anomaly-score function returns, for a given sample x, an anomaly score
§ = f(x) € R such that the higher the score, the more likely it is that x is an
anomaly. We define P*(3) (resp. P~(5)) the probability that an anomaly (resp.
a clean sample) obtains an anomaly-score § with the trained model.

To get a binary prediction g for a sample x with anomaly score §, we need
to apply a threshold t to the anomaly score such that § =1 if § > t else § = 0.
Different ways to compute this threshold are used in the literature. A common
approach is to choose it according to an estimation & of the contamination rate c.
The contamination rate is the proportion of anomalous samples in the dataset. It
can be taken as domain knowledge, estimated on the train set or, for evaluation
purposes only, on the test set directly.

3.2 Definition of the Metrics

Using the final prediction and the ground truth labels, we can count the true
positives tp, true negatives tn, false positives fp and false negatives fn, as shown
in Figure[Tal The precision, recall and F1-score are computed using these quanti-
ties as shown in the equations of Figure [Ib] An example of these metrics applied
with a varying contamination rate estimation &, inducing a varying threshold, is
shown in Figure [2| It is interesting to note that, if the estimated contamination
rate & is equal to the true contamination rate o, we have precision = recall = F1-
score. This can be easily explained: if the estimated contamination rate is the true
contamination rate, the threshold is computed such that the number of samples
predicted as anomalous is equal to the number of true anomalies in the set. Thus,
if a normal sample is wrongly predicted as anomalous (i.e. is a false positive), it
necessarily means that an anomalous sample has been predicted as normal (i.e.
is a false negative). That is, fp = fn. Given the formulas of precision and recall
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Fig. 2: Evolution of the Precisions, Recalls and F1-scores according to the esti-
mated contamination rate on three different datasets. The curves are obtained
using the Algorithm [I]introduced in Section

(see equations of Figure we have precision = recall. As the Fl-score is the
harmonic mean of precision and recall, we have precision = recall = F1-score.
Inversely, if this equality can be observed in reported results, it is safe to assume
the estimation of the contamination rate is equal to the true contamination rate.

We also include the AUC and AVPR in our analysis. These metrics are
obtained by analysing the results with different thresholds. The AUC is defined
through the receiver-operator characteristic (ROC) curve, a curve of the true
positive rate over the false positive rate for various thresholds. Therefore, we
redefine tp, fp, fn and tn as functions depending on the threshold. The area
under the ROC curve AUC, sometimes written AUROC, is the total area under
this curve, that is:

Ip

tp(t) d
dt (fp + tn) ‘tdt

Ave = /t:,m (0) + fr(t)

(4)
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Fig. 3: Example of ROC Curve and Precision Recall Curve obtained on the Ar-
rhythmia dataset. The scores are obtained using the Algorithm [I| introduced in

Section
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Similarly, the AVPR is defined through the precision-recall (PR) curve, a
curve of precision over recall for different thresholds. The area under this curve
is referred to as the average precision (AVPR) metric, as it can be seen as a
weighted average of the precision for different recall. We have

AVPRz/ precision(t)%(recall) dt. (5)
t=—o0 t

An example of a ROC curve and a precision recall curve is given in Figure [3

We show in this paper that the Fl-score and AVPR metrics are highly sensi-
tive to the true contamination rate of the test set. We show this sensitivity has a
negative impact on the comparison of different classifiers or datasets, especially
when using different protocols.

3.3 Evaluation Protocols: Theory vs Practice

Machine learning theory tells us that the evaluation of an algorithm should be
done on a test set completely separated from the train set. Algorithm [I| presents
the unbiased procedure to train and evaluate an anomaly detection model. A
dataset (containing both normal and anomalous samples) is split into a train set
and a test set. The anomalous samples from the train set are removed to get a
clean set that is used to train a model. The train set is also used to compute
the contamination rate and fix the threshold, for example using a threshold such
that the train set has as many anomalies as predicted anomalies, i.e. fp = fn.
This threshold is finally used on the predictions made on the new (unseen)
samples composing the test set to measure the Fl-score. The AUC and AVPR
are computed using the predicted scores directly. Even though this procedure is
theoretically the correct way to evaluate a model, it has a significant drawback
in practice. The anomalous samples in the train set are used only to compute
the threshold for the Fl-score and are then thrown away. Because there are, by
definition, few anomalies in a dataset, one could be tempted to use these samples
in the test set. Indeed, as visible in Figure 4] the more anomalous samples we
can use to evaluate a model, the more precise the evaluation.

To make full use of the anomalous samples, the procedure described in Algo-
rithm [2] recycles the anomalous samples contained in the train set. The threshold
is then computed on the test set as there are no anomalies left in the train set
to estimate it. This leads to a situation where precision = recall = F1-score as
described in Section [3.1] This recycling procedure makes sense in the context of
anomaly detection as it obtains more precise results, and can be found in the
literature [2413T].

Algorithms[T]and [2]take as input any dataset and any trainable anomaly-score
function. For the dataset, if not specified otherwise, we use the Arrhythmia and
Thyroid datasets from the (ODDS repository [20] and the Kddcup dataset from
the UCI repository [4]. These datasets are often used in the anomaly-detection
literature, and are therefore all indicated for our analysis. They have respectively
452, 3772 and 494020 samples, with a contamination rate of respectively 14.6%,
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Algorithm 1: Theoretically unbiased evaluation protocol
Input:
D C R? x {0,1} a set of N d-dimensional input samples and their
corresponding labels (1 = anomaly, 0 = normal)
[ the amount of data used for the test set
f a trainable anomaly-score function
Output:
F1-score, AUC and AVPR
Procedure:
Diin D — gplit_train_test(D, )
Xclean — {X V(X, y) c Dtrain | Y= 0}
Normalise the data based on X" if necessary
Train f using Xcen
étral'n — {(f(X), y) V(X, y) c Dtrazn}

Compute estimated contamination rate & = G

W) V(x,y) €D |y=1}]|
‘Dtrain |

Compute threshold ¢ such that HE:¥) WT;Z?;IT"MBZ”' =&

§'° = {((x),y) V(x,y) € D'**'}

7 ={(9,y) V(3,y) €8 vy € {0,1} | § =1if § > t else § = 0}
Compute Fl-score using §°*

Compute AUC and AVPR using §'***

Algorithm 2: Recycling evaluation protocol for anomaly detection
Input:
D C R? x {0,1} a set of N d-dimensional input samples and their
corresponding labels (1 = anomaly, 0 = normal)
[ the amount of data used for the test set
f a trainable anomaly-score function
Output:
Fl-score, AUC and AVPR
Procedure:
Diein D — gplit_train_test(D, )
Xclean — {X V(X, y) c Dtrain | y= 0}
Add {(x,y) V(x,y) € D" | y = 1} to D't
Normalise the data based on X®®™ if necessary
Train f using X°'¢*"

8% = {((x), ) V(x,y) € D'**'}
Compute contamination rate a = HGey) v

(x,y) €D [y=1}]
‘Dtest‘

Compute threshold ¢t such that HGw) Wféﬁgff‘tes”gzt}‘ =«

vt = {(9,y) V(8,y) €8t vy € {0,1} | g =1if § > telse § =0}
Compute Fl-score using §*¢*
Compute AUC and AVPR using §°**

2.5% and 19.7%. For Kddcup, as done in the literature, the samples labeled
as "normal” are considered as anomalous and, for computational reasons, only
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Fig.4: F1-Score, AUC and AVPR versus the number of anomalies in the test set
for three different datasets.

10% are used. For the trainable anomaly-score function, if not specified other-
wise, we use OC-SVM [22] with its default hyper-parameters, as implemented in
sklearn [I8]. We choose this model as it has proven its worth and is often used
as a baseline in the literature. We run all our experiments 100 times to report
meaningful means and standard deviations. The code to reproduce all our figures
and results is available at https://github.com/euranova/F1-Score-is-Biased.

3.4 Metrics Sensitivity to the Contamination Rate of the Test Set

We analyse the effect of the contamination rate of the test set on the Fl-score
and AVPR metrics. To do so, we use a variant of Algorithm [2] with a 20-80
train-test split on the clean samples only. We then re-inject a varying number
of anomalous samples in the test set, from none to all of them. Figure 4| shows
that Fl-score and AVPR improve as more anomalies are added to the test set.
Because the train set is fixed, this clearly shows that the Fl-score and AVPR
metrics are biased by the amount of anomalous samples in the test set. This
sensitivity can be analysed theoretically.

First, note that the contamination rate a = N N—j/ N +1) is
ek ! ! - NtJr""N; N N, N, !

+
increasing with % We start the analysis in a constant-threshold setting where

the threshold ¢ does not depend on the test set, e.g. as in Algorithm [I] In
this setting, we can compute p~ = f;zioo P~(5)ds the probability that the
model classifies correctly a normal sample and p™ = [, P*(3)ds the proba-
bility that the model classifies correctly an anomalous sample (the recall). We
observe that tn = N, *p~ and fp = N; (1 — p~) are directly proportional
to N, , while tp = N;" % p* and fn = N,” * (1 — p*) are directly propor-
tional to Nf. As such, the recall p* does not depend on « while the precision

Nt
N
NFspt N%p . . Nt . .
(ot = = ) increases with =t and therefore with a. This
N xpt+N, *p N7tp++p— N,
=

proves the AVPR increases with « as the only value changing in Equation |5 is
the increasing precision. This also proves the Fl-score with a fixed threshold is
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increasing with «, as it is the harmonic mean of a constant and an increasing
value. This theoretical variation of the F1-score is shown in Figure

We now analyse the case where the threshold ¢ for the Fl-score is computed
using the test set as done in Algorithm [2] As we use a perfect estimation of
the contamination rate, we have recall = precision = F1-score. Let us analyse
this quantity in the view of the recall and compare it to the constant-threshold
setting. If we add an anomaly to the test set, there are two possibilities:

— It is at the right side of the threshold, hence the threshold stays constant as

there are still as many samples detected as anomalies as there are anomalies.

— It is at the wrong side of the threshold. The threshold therefore decreases to

include one more sample as a predicted anomaly. There are two possibilities:

e This additional sample is an anomaly, in which case the recall increases,
whereas it would have decreased in the constant-threshold setting.

e This additional sample is a clean sample, in which case the recall de-

creases the same way it would have decreased in the constant-threshold

setting.

Compared to the constant-threshold setting, the only difference is the case where
the recall is better than expected thanks to the shift of the threshold. There-
fore, adding anomalies increases the F1-score even more than in the constant-
threshold setting, meaning the variable-threshold setting is even more biased by
the contamination rate of the test set. More formally, if we add anomalies with-
out changing the number of clean samples, the new threshold ¢’ will be smaller
(or equal in the case of a perfect classifier) than the old one ¢, as we want
to select more samples as being anomalies. The recall, precision and F1-score
therefore increase from [°, P*(3)d§ (i.e. p in the previous demonstration) to
f;:t, PT(8)ds+ [,°, PT(8)ds, which is greater or equal as a probability is always
positive. Thus, if the classifier is not a perfect classifier, the F1-score increases
with the contamination rate of the test set.

This concludes our demonstration that both the AVPR and the Fl-score
metrics are biased by the contamination rate of the test set.
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Table 1: Demonstration of the sensitivity of the metrics to the evaluation proto-
col. Optimal threshold is the threshold computed on the test set to obtain the
best Fl-score possible (unapplicable to AUC and AVPR).

Split procedure| Algo Algo Algo Algo

Test size 20% 20% 5% 5%
Threshold estimated  estimated  estimated optimal
arrhythmia |0.451+ 0.103) 0.715(% 0.025) 0.867(+ 0.021) 0.888(+ 0.012)

F1 kddcup 0.102(= 0.025) 0.762(+ 0.004) 0.940(+ 0.002) 0.971 (% 0.001)

thyroid 0.446(+ 0.110) 0.647(+ 0.022) 0.781(+ 0.021) 0.803(+ 0.017)
arrhythmia |0.481(x o0.116) 0.770¢% 0.041) 0.924(+ 0.028) 0.924 (& 0.029)

AVPR kddcup 0.299(=+ 0.017) 0.653(+ 0.015) 0.872(+ 0.008) 0.873(+ 0.007)
thyroid 0.488(+ 0.113) 0.719(+ 0.020) 0.880(+ 0.017) 0.881(+ 0.017)
arrhythmia [0.809(+ 0.065) 0.806(+ 0.020) 0.803 (% 0.042) 0.799( 0.042)

AUC kddcup 0.736(+ 0.007) 0.735¢+ 0.007) 0.735(+ 0.011) 0.737(+ 0.011)
thyroid 0.935(+ 0.027) 0.931 (% 0.005) 0.929(+ 0.009) 0.929(+ 0.009)

3.5 How to Artificially Increase your F1-Score and AVPR

Combining the previous results and algorithms, we can define an algorithm to get
an arbitrarily good Fl-score or AVPR on any dataset. As shown in Section [3.4]
the Fl-score and AVPR are sensitive to the contamination rate of the test set.
Using the Algorithm [2] from Section we can make this contamination rate
vary. To do so, we only have to modify /3, the amount of data used for the test
set. Indeed, it modifies the number of normal samples IV, in the test set while
the number of anomalies N, stays the same. Pushed to the extreme, we can have
near to no clean samples in the test set, resulting in a near-to-perfect F1l-score
and AVPR. This phenomenon is shown in Table [I We can see that, by using
the Algorithm [2] the F1-score increases for all three datasets. This is because the
anomalous sample of the train set are re-injected and thus the contamination
rate of the test set increases. Then, using 5% of the data for the test set instead
of 20% increase again the Fl-score and AVPR.

Another interesting observation is that fixing the threshold according to the
contamination rate does not give the optimal Fl-score [14]. In practice, using a
threshold smaller than this one often results in a better Fl-score, as visible in
Figure [2] and shown in Figure [0} As a consequence, we can artificially increase
the Fl-scores even more by computing the optimal threshold. This is shown in
the last two columns of Table [l

This proves that, with the exact same model and seemingly identical metrics,
the Fl-score can be greater and greater. This clearly supports the importance
of specifying in detail the train-test split used and the way the threshold is com-
puted. We observe in the literature that this part of the evaluation protocols is
often missing or unclear [29J3T9lJ5], and the reported results are therefore im-
possible to compare with. This is part of the reproducibility problem observed
in the machine learning community. More importantly, some papers report re-
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Fig. 6: Theoretical example of the evolution of the F1-score for different thresh-
olds and contamination rates of the test set. The model used is a toy model
having P*(8) = 2% 8 and P~ (8) = 2% (1 — §) for 0 < § < 1. Dots are the
fp = fn thresholds and crosses are the optimal thresholds.

sults computed using different evaluation protocols [2419], leading to meaningless
comparisons that are nonetheless used to draw arbitrary conclusions.

3.6 F1-Score Cannot Compare Datasets Difficulty

Another shortcoming of the Fl-score and AVPR metrics is the comparison be-
tween datasets. One may be tempted to conclude that a dataset on which an
approach has a higher Fl-score is easier to model than another dataset with a
lower score. However, this intuition is flawed when using these metrics as they
strongly depend on the contamination rate of these datasets.

Figure [7] highlights the dataset comparison problem. Figure [7d] shows the
F1l-score and AUC obtained on two toy datasets, an easy one (with a big radius)
and a hard one (with a small radius). We show that we can obtain a better F1-
score on a hard dataset (Figure than on an easy dataset (Figure just by
changing the contamination rate. With an equal contamination rate (Figure
we can see that the easy dataset is indeed easier to model.

This situation also appears in real-world datasets. Indeed, in Table [I] with
Algorithm (1} the kdd cup dataset appears harder than arrhythmia and thyroid
as it obtains a worse F1l-score. However, if we compare them with Algorithm
the kdd cup dataset obtains better results than the other two. The comparison
of the datasets difficulty is inconsistent and therefore unreliable.

4 Call for Action

Given the instability shown in Section[3] we suggest the anomaly-detection com-
munity to use the evaluation protocol described in Algorithm [2] but using only
the AUC metric. Other approaches could be adopted, but this one will give
better comparability between reported results and these results will have lower
variances.
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(d) Performances comparison between easy toy dataset and hard toy dataset

Fig.7: Analysis of the dataset comparison through different metrics. We ran-
domly draw normal samples from a standard gaussian distribution, and anoma-
lous samples from a noisy a around the mean. By varying the radius of the circle
- 2.5 for the easy case, 2.1 for the hard one - we change the difficulty of the
dataset. The greater the radius, the easier it is to separate both distributions. A
simple gaussian is used as model.

4.1 TUse AUC

We have demonstrated in Section Bl how the Fl-score and AVPR metrics can
be tricky to use and lead to wrong conclusions, slowing down the research in
the field. To avoid these pitfalls, we recommend using the AUC metric. First of
all, AUC is not sensitive to the contamination rate of the test set, as shown in
Figure [d] This can be proven by developing Equation [4}

[~ tp(t) d ([ fp
AU = /t:,oo t(0) + f(D) dt (fp n m)

:/:ooo /giP*(é)dé% </t_oo P(.§’)d:§/>

- / PH(5)P (1) ds dt (8)
{(5,t)eR?|5>t}

(6)

t

dt (7)

t
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which depends only on the model properties (P* and P~) and not on the test
set. This independence prevents most of the problems identified in the previous
section. As illustrated in Figure [7] datasets are more comparable using AUC.
Moreover, Table [1] highlights the stability of the AUC.

Additionally, there is no need to define a threshold when using AUC. This
is a good thing as the choice of a threshold can prevent comparability. Indeed,
most of the proposed models in the literature [29T9T6I3TI9] do not include a
way to train a threshold. Therefore, arbitrary thresholds are used to compute
the Fl-score. The way to arbitrarily choose this threshold can vary from one
paper to the other and lead to incomparable results. Even worse, this threshold
could depend on the test set, such as the one producing fp = fn, thus having
results biased by the contamination rate of the test set. This is not a problem
with the AUC as it does not need a threshold.

Finally, another source of non-comparability is the choice of the positive class.
Some may choose the normal class as positive [8/I9] and other the anomaly class
as positive [I2126]9]. AUC has the advantage of being independent of the choice
of which class is seen as positive, as long as the scores are negated accordingly.
Indeed, Equationis symmetric between P and P~ up to the § > ¢ part which
is solved by negating the scores.

All in all, AUC is insensitive to many arbitrary choices in the evaluation pro-
tocol. It results in a better comparability between the different reported results.

4.2 Do not Waste Anomalous Samples

As, by definition, anomalous samples are rare, it is important to re-inject them
in the test set, as described in Algorithm [2| Indeed, by using more anomalous
samples in the test set, the variance in the metrics is lower.

As shown in Table [1] when using AUC, Algorithm [2| gives the same mean
result than Algorithm [I} but with a better precision (lower standard deviation).
This is easily explained by the fact that there are more anomalies in the test set,
increasing the applicability of the law of large numbers. This increased precision
can be useful to obtain significant results rather than random-looking ones. Algo-
rithm [2 can be used as long as the metric used is not biased by the contamination
rate of the test set. It is therefore compatible with the AUC metric.

5 Conclusion

The literature in the field of anomaly detection lacks precision in describing eval-
uation protocols. Because of the sensitivity of the F1-score and AVPR metrics to
the contamination rate of the test set, this results in a reproducibility issue of the
proposed works as well as a comparison problem between said works. Moreover,
we observe that some works do the subtle mistake of comparing results pro-
duced with different evaluation protocols and draw arbitrary conclusions from
it. To solve this problem, we suggest the anomaly-detection community to use
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the AUC, which is insensitive to most arbitrary choices in the evaluation pro-
tocol. Moreover, we propose to use a recycling algorithm (Algorithm [2|) for the
train-test split to make the most of anomalies in each dataset. These two actions
will result in more comparable and more precise results across research teams.
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