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Abstract. Nowadays, live video streaming events have become a main-
stay in viewer’s communication in large international enterprises. Pro-
vided that viewers are distributed worldwide, the main challenge resides
on how to schedule the optimal event’s time so as to improve both the
viewer’s engagement and adoption. In this paper we present a multi-
task deep reinforcement learning model to select the time of a live video
streaming event, aiming to optimize the viewer’s engagement and adop-
tion at the same time. We consider the engagement and adoption of
the viewers as independent tasks and formulate a unified loss function
to learn a common policy. In addition, we account for the fact that
each task might have different contribution to the training strategy of
the agent. Therefore, to determine the contribution of each task to the
agent’s training, we design a Transformer’s architecture for the state-
action transitions of each task. We evaluate our proposed model on four
real-world datasets, generated by the live video streaming events of four
large enterprises spanning from January 2019 until March 2021. Our
experiments demonstrate the effectiveness of the proposed model when
compared with several state-of-the-art strategies. For reproduction pur-
poses, our evaluation datasets and implementation are publicly available
at https://github.com/stefanosantaris/merlin.

Keywords: Multi-task learning · Reinforcement learning · Live video
streaming.

1 Introduction

Over the last years, video streaming technologies have been widely exploited
by large international enterprises as the main internal communication medium
[3]. The enterprises schedule several live video streaming events to communi-
cate with thousands of their employees, who are spread around the world. To
ensure that every employee/viewer attends the event without experiencing poor
network performance, the enterprises exploit distributed live video streaming so-
lutions. Such solutions account for each office’s internal bandwidth to overcome
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network congestion and distribute the streaming video to viewers [4]. Although
distributed solutions ensure that every viewer can attend the event, an erro-
neously scheduled time of an event negatively affects the viewer’s engagement,
that is the percentage of the event’s duration that a viewer attends [1]. In prac-
tice, the viewers partially attend the entire duration of an event, when an event
is erroneously scheduled on a non-preferred time e.g., day and hour, resulting in
a low viewer’s engagement. Moreover, the erroneously scheduled time impacts
the number of enterprise’s events that each viewer participates, reflecting on
the viewer’s adoption. In particular, the viewers with several time zones have
low adoption, when organizing the events and ignoring the viewer’s availability.
Instead of manually organizing the events, it is important for the enterprises to
develop a mechanism to learn how to schedule an event on the day and hour
that optimizes both the viewer’s engagement and adoption.

To organize an event, enterprises interact with a centralized agent that is
located in a company offering the live video streaming solution. However, cur-
rent streaming solutions do not account for the optimal selection of the time of
the next event. To overcome the shortcomings of current live video streaming
solutions, in this study we follow a reinforcement learning strategy and design
an agent that receives the viewer’s engagement and adoption as two different
reward signals for the selection of the event’s time. Reinforcement learning has
been proven an efficient means for optimizing a reward signal in various domains
such as robotics [18,28], games [19,27], recommendation systems [14,26], and so
on. However, such approaches train an agent on a single task, where the learned
policy maximizes a single cumulative reward. Nonetheless, the goal of the agent
in our case of the event’s time selection problem is to optimize both the viewer’s
engagement and adoption rewards. Recently, multi-task reinforcement learning
approaches have been proposed to generate a single agent that learns a pol-
icy which optimizes multiple tasks, with each task corresponding to a different
reward signal [8,11,23]. State-of-the-art approaches train an agent by sharing
knowledge among similar tasks [25]. For example, the attentive multi-task deep
reinforcement learning (AMT) model [5] exploits a soft-attention mechanism to
train a single agent on tasks that follow different distributions in the reward
signal. However, AMT transfers knowledge among similar tasks, while isolat-
ing dissimilar tasks during the agent’s training. This means that AMT achieves
sub-optimal performance when tasks have completely different characteristics,
as it happens in the case of live video streaming events. For instance, as we will
demonstrate in Section 2 the viewers have a low engagement behavior over time,
whereas the viewer’s adoption increases among consecutive events.

In addition, to efficiently select the event’s time, the agent has to capture
the evolution of the viewer’s engagement and adoption. Towards this aim, the
Transformer’s architecture has been emerged as a state-of-the-art learning model
across a wide variety of evolving tasks [24]. For example, in [17] the Transformer’s
architecture has been exploited in a reinforcement learning strategy to provide
memory to the agent by preserving the sequence of the past observations. How-
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ever, baseline approaches based on the Transformer’s architecture have not been
studied for multi-task reinforcement learning problems.

To address the shortcomings of state-of-the-art strategies, in this study we
propose a Multi-task lEaRning model for user engagement and adoption in Live
vIdeo streamiNg events (MERLIN), making the following contributions:

– We formulate the viewer’s engagement and adoption tasks as different Markov
Decision Processes (MDPs) and propose a multi-task reinforcement learning
strategy to train an agent that selects the optimal time, that is day and hour
of the enterprise’s next event aiming to maximize both tasks.

– We design a Transformer’s architecture to weigh the importance of each task
during the training of the agent, that is to determine the contribution of each
task to the learning strategy of the agent’s policy.

– We transfer knowledge among tasks through a joint loss function in a multi-
task learner component and compute a common policy that optimizes both
the viewer’s engagement and adoption in a live video streaming event.

Our experimental evaluation on four real-world datasets with live video stream-
ing events show the superiority of the proposed MERLIN model over baseline
multi-task reinforcement learning strategies. The remainder of this paper is or-
ganized as follows, in Section 2 we present the main characteristics of the live
video streaming events as well as the evolution of the viewer’s engagement and
adoption. In Section 3 we formally define the multi-task problem of scheduling
live video streaming events, and detail the proposed MERLIN model. Then, in
Section 4 we present the experimental evaluation of our model against baseline
strategies, and conclude the study in Section 5.

2 Live Video Streaming Events

Table 1. Statistics of the datasets with all the live video streaming events that took
place in four international enterprises from January 2019 until March 2021.

Enterprise 1 (E1) Enterprise 2 (E2) Enterprise 3 (E3) Enterprise 4 (E4)

#Events 833 1, 303 3, 025 7, 249

#Viewers 98, 296 59, 090 194, 026 508, 654

#Time zones 63 97 167 150

Avg. Engagement (ut) 0.455 0.422 0.383 0.409

Avg. Adoption (vt) 1.275 6.905 8.528 6.375

We collected four real-world datasets with all the events that occurred in
four large enterprises worldwide from January 2019 until March 2021. The video
streaming solution of the events was supported by our company. We monitored
a set E of live video streaming events, where for each event et ∈ E on date t the
viewers reported to a backend server of our company the timezones, as well as
their joining and leaving times during the event. The datasets were anonymized
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Fig. 1. Evolution of viewer’s engagement ut and adoption vt in the events.

and made publicly available. In Table 1, we summarize the statistics of the four
evaluation datasets. Each enterprise has a different number of viewers, located
in several countries around the world with different time zones. We observe
that the viewers in Enterprise 1 are distributed to less time zones than the other
enterprises, whereas Enterprise 4 hosts the largest number of live video streaming
events with approximately 0.5M viewers in total. In Figure 1, we present the
average viewer’s engagement to the live video streaming events throughout the
time span. We define the average engagement ut of the viewers that participated
in the event et ∈ E on the date t as follows:

ut =
1

n

n∑
i=1

ki
m

(1)

where n is the number of viewers that participated in the event et, ki is each
viewer’s attendance time and m is the duration of the event. In all enterprises the
viewers have low engagement, that is in all enterprises the viewers attended less
than the half duration of each live video streaming event with average viewer’s
engagement ut <0.5 (Table 1). In addition, the average viewer’s adoption ex-
presses how many events the viewers attended until a date t, where large adop-
tion scores indicate that viewers were willing to participate in the enterprise’s
previous events. We formally define the average adoption vt as follows:

vt =

∑n
i=1 ci
n

(2)

where ci is the number of events that each viewer i attended prior to the event et.
We observe that the viewers in Enterprise 1 adopted less events than the other
enterprises with average adoption vt=1.275. On one of the last dates Enterprise
1 organized an all-hands event where all the viewers were invited, which explains
the pick of the adoption score for Enterprise 1 in Figure 1. The adoption scores
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for Enterprises 2, 3 and 4 increase over time in the last year, as enterprises
started to organize more events than the previous years for viewers who most of
them worked from home due to the COVID’19 pandemic.

3 Proposed Model

An enterprise organizes T = |E| events, where each event on a date/step t is
defined as et = (h, n,m, ut, vt, z), with h being a timestamp that corresponds to
the event’s day and hour. Notice that a date/step t has 24 different timestamps h
and an event et has a duration of m minutes with n viewers. The viewers attend
the event with different time zones which is represented as an one-hot vector
z ∈ Rdz , where dz is the number of different time zones of the viewers. The goal of
the enterprise is to organize each event et ∈ E on the timestamp h, to maximize
the average engagement ut and adoption vt of the viewers. We formulate the
scheduling of the next event as a Markov Decision Process (MDP), where the
agent interacts with the environment/enterprise by selecting the timestamp h of
the next event et+1 and maximizing the cumulative rewards. In particular, we
define the MDP of the live video streaming event as follows [21]:

Definition 1. Live Video Streaming Event MDP. At each step t = 1, . . . , T ,
the agent interacts with the environment and selects an action at ∈ A. An action
at corresponds to the selection of the timestamp h of the next event et+1 based
on the state st ∈ S of the enterprise. We define the state st of the enterprise as a
sequence of the l previous events st = {et−l, . . . , et}4. The agent receives a reward
r(st,at, st+1) ∈ R for selecting the action at ∈ A in state st ∈ S, considering the
enterprise transitions to state st+1 with a probability p(st+1|st,at) ∈ P. The goal
of the agent is to find the optimal policy πθ : S × A → R, where θ is the set of
policy parameters, assigning a probability πθ(at|st) of selecting an action at ∈ A
provided a state st ∈ S. Having computed the policy πθ, the agent maximizes the
expectation of the discounted cumulative reward maxE[

∑T
t=0 γ

tr(st,at, st+1)|πθ],
with γ ∈ [0, 1] being the discount factor.

In our model, we focus on training a common agent that optimizes both the
viewer’s engagement ut and adoption vt. As mentioned in Section 2, the viewer’s
engagement and adoption behavior vary over time. Therefore, we first consider
the viewer’s engagement and adoption as independent tasks, and then train a
common agent to optimize the cumulative rewards of both tasks at the same
time. We define the multi-task Reinforcement Learning (RL) problem in live
video streaming events as follows [5,6,8,11]:

Definition 2. Multi-Task RL in Live Video Streaming In the multi-task
RL problem for live video streaming events, we consider a set of tasks T , that is
the engagement and adoption tasks with |T | = 2. We formulate each task τ ∈ T
4 We consider only the l previous events to capture the most recent viewers behavior.

As we will demonstrate in Section 4, considering large values of l does not necessarily
improve the model’s performance.
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as a different MDP, where the tasks have the same state S and action space A
with a different set of rewards R. For the engagement task we compute reward
r(st,at) as the average engagement ut in Equation 1, and for the adoption task
the reward corresponds to the average adoption vt in Equation 2 at the t-th step.
The goal of the agent is to learn a common policy πθ that solves each task τ ∈ T ,
by maximizing the expected return maxEτ∼T [[

∑T
t=0 γ

tr(sτt ,a
τ
t , s

τ
t+1)|πθ]] for both

tasks. sτt is the state of the agent and aτt is the action taken by the agent for the
task τ at the t-th step.

3.1 MERLIN’s Architecture

Fig. 2. The architecture of the proposed MERLIN model for the viewer’s engagement
and adoption tasks. MERLIN consists of: (i) the policy, (ii) task importance and (iii)
multi-task learner components.

As illustrated in Figure 2, the proposed MERLIN model consists of three
main components: the policy, task importance and multi-task learner compo-
nents. The goal of MERLIN is to compute a common policy πθ that maximizes
the future rewards for the viewer’s engagement and adoption tasks τ ∈ T .
- Policy Component. The role of the policy component is to compute the
action aτt of both tasks. During training, the agent interacts with two environ-
ments in the enterprise, that is the different two tasks τ ∈ T . The input of the
policy component is the l previous events {eτt−l, . . . , eτt } of each task. We imple-
ment a shared state representation module to compute the state sτt of task τ .
In our architecture, we design the respective two actors to generate the actions
aτt for the engagement and adoption tasks [8]. Then, the generated state-action
transitions by both actors are stored in the replay buffer with size lb to train the
common agent.
- Task Importance Component. The task importance component determines
the contribution of each task to the learning process of the agent. Notice that
state-of-the-art RL strategies are designed to learn a policy of a single agent
that optimizes similar tasks, ignoring the information of each task’s state-action
transition [25]. Instead, in the proposed MERLIN model to account for the
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impact of each state-action transition on the policy πθ, we consider the encoder
model of the Transformer’s architecture for the state-action transition sequences.
In doing so, we capture the information of the state-action transitions of both
the engagement and adoption actors over time [15,17]. In addition, the task
importance component computes a weight matrix M ∈ Rlb×|T | which reflects on
the contribution of each actor to the learning process of the policy πθ.
- Multi-Task Learner Component. The role of the multi-task learner com-
ponent is to optimize the policy πθ based on the lb state-action transitions stored
in the replay buffer. Provided the stored state-action transitions in the replay
buffer and the weight matrix M of the task importance component, the multi-
task learner updates the policy parameters through a joint loss function Lpolicy
and the parameters of the task importance component via the Llearner function,
following the temporal-difference learning strategy [21]. In particular, matrix M
first weighs the state-action transitions in the replay buffer, and then the multi-
task learner optimizes the joint loss function Lpolicy to compute the parameters
of the policy component. In addition, the multi-task learner learns its parame-
ters via the joint loss function Llearner, and updates the parameters of the task
importance component accordingly.

3.2 Policy Component

At each step t = 1, . . . , T , the policy component takes as an input the l previous
events {eτt−l, . . . , eτt } of each task τ ∈ T . The goal of the policy component
is to learn a policy πθ that solves each task τ . Provided that the engagement
and adoption tasks have the same state space S and action space A, the policy
component consists of a shared state representation module and two actors, that
is the engagement and adoption actors.
- State Representation Module. The state representation module takes as
an input the l previous events {eτt−l, . . . , eτt }, and generates the state sτt of each
task τ at the t-th step. We represent each event eτt as a dx-dimensional vector
xτt ∈ Rk concatenating the event’s features xτt = Concat(h, n,m, g, o, z). Given
the representations {xτt−l, . . . ,xτt } of the l previous events, we compute the ds-

dimensional state representation vector sτt ∈ Rds as follows: [29,30]:

sτt = ξw(xτt , ∆(t)) = Time-LSTM(xτt , ∆(t)) (3)

where w are the trainable parameters of the Time-LSTM function ξ(·) [29].
Notice that Time-LSTM models the time difference ∆(t) of the event eτt and the
previous event eτt−1 as follows:

gt = σ

(
xτtWxg + σ(∆(t)Wg + bg)

)
qt = ft � qt−1 + it � gt � σ

(
xτtWxq + st−1Wsq + bq

)
ot = σ(xτtWxo +∆(t)Wo + sτt−1Wso + qt �Wqo + bo)
sτt = ot � σ(qt)

(4)
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where gt is the time dependent gate influencing the memory cell and the output
gate ot, qt is the memory cell of LSTM, and ft and it are the forget and input
gates, respectively [10,30]. The symbol � represents the Hadamard element-wise
product and σ(·) is the sigmoid function. The different weight matrices W∗ in
Equation 4 transform the event embedding xτt and the time difference ∆(t) to
the ds-dimensional latent space, and b∗ are the respective bias terms. Notice that
the time difference ∆(t) is important to capture the similarity among consecutive
events in the state sτt . Provided that the engagement and adoption of the viewers
vary over time, our goal is to capture the most recent viewer’s behaviour in the
state space sτt . Therefore, the Time-LSTM in Equation 4 tends to forget events
with high time difference, and focuses on the recent events.
- Engagement and Adoption Actors. The engagement and adoption actors
take as input the state sτt of each task τ ∈ T . The state representation sτt
captures the evolution of the enterprise over time. Given the state sτt and a
policy πθ, each actor computes a da-dimensional action vector aτt ∈ Rda , where
da is the number of all the possible timestamps. Each dimension of the action
vector aτt corresponds to the probability of selecting the timestamp h for the
next event et+1. We implement a two-layer perceptron (MLP) to transform the
state vector sτt ∈ Rb to the action vector aτt ∈ Ru as follows:

aτt = πθ(s
τ
t ) = MLP (sτt ) (5)

where θ are the trainable parameters of the MLP, that is the policy parameters
of the agent. Given the action vector aτt of each actor, we normalize the action
vector aτt based on the softmax function and select the action with the highest
value using the ε-greedy exploration technique [21]. The generated state-action
transitions are stored in the replay buffer to learn the optimal policy πθ based
on the past experiences of each task.

3.3 Task Importance Component

The goal of the task importance component is to determine the contribution
of each task to the learning strategy of the policy πθ. The input of the task
importance component is the set of state-action transitions stored in the replay
buffer by the engagement and adoption actors. At each step t = 1, . . . , T , the
engagement and adoption actors store in the replay buffer the respective state-
action transition (sτt ,a

τ
t ) of the task τ ∈ T . Having stored the lb state-action

transitions of each task τ in the replay buffer, the task importance component
computes the similarity among the tasks. As the replay buffer contains a sequence
of state-action transitions, we employ the encoder of the Transformer’s model to
capture the information of the lb states to dy-dimensional vectors Yτ ∈ Rlb×dy
[24]. To overcome any stability problems that might occur at the early stages of
the training, we implement the Gated Transformer(-XL) (GTrXL) model of the
Transformer’s architecture as follows [17]:

Yτ = ψη({sτt−lb , . . . , s
τ
t }) = GTrXL({sτt−lb , . . . , s

τ
t }) (6)
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where {sτt−lb , . . . , s
τ
t } is the states sequence of the task τ stored in the replay

buffer. Parameters η denote the trainable weights of the GTRrXL function
ψ(·) [17].

By computing the dy-dimensional vectors, that is the rows of matrix Yτ of
each task τ , we deduce the importance of each state sτt in the actions selected by
the actor over time for task τ . Therefore, we can compute a weight matrix M ∈
Rlb×|T | of each state sτt during the training of the agent’s policy πθ. To calculate
the weight matrix M, we employ a two-layer MLP with softmax activation:

M = λω(Yτ ) = softmax

(
MLP (Yτ )

)
(7)

where ω are the parameters of the MLP transformation function λ(·). Intuitively,
we give stronger preference to the states sτt that contribute more to the learning
strategy of the agent than the rest of the states. This means that our agent
learns the policy πθ based on the most important states sτt .

3.4 Multi-Task Learner Component

According to our architecture in Section 3.1 the multi-task learner optimizes
the joint loss function Lpolicy to compute the parameters w and θ of the policy
component of Equations 3 and 5. In addition, based on the joint loss function
Llearner we calculate the parameters ζ of the multi-task learner component, and
update the parameters η and ω of the task importance component of Equations
6 and 7.

The input of the multi-task learner component is the lb state-action tran-
sitions, of each task τ , stored in the replay buffer, and the weight matrix M
generated by the task importance component. The multi-task learner compo-
nent calculates the state-action value Q(sτt ,a

τ
t ), which is an approximation of

the expected cumulative rewards of the agent, given the state sτt and action aτt .
We compute the state-action value Q(sτt , a

τ
t ), as follows:

Q(sτt ,a
τ
t ) = φζ(s

τ
t ,a

τ
t ) = MLP (sτt ⊕ aτt ) (8)

where ζ are the trainable parameters of the MLP function φ(·), and ⊕ denotes
the concatenation of the state sτt and action aτt vectors. Intuitively, the value
Q(sτt ,a

τ
t ) corresponds to the benefit of the agent in terms of the expected reward

for each task τ , when taking the action aτt given the state sτt and following
the policy πθ. By computing the value Q(sτt ,a

τ
t ) based on Equation 8, we can

optimize the joint loss function Lpolicy with respect to the parameters w and θ
as follows [13,20]:

w ← w − α∇wLpolicy(πθ)
θ ← θ − α∇θLpolicy(πθ)

min
w,θ
Lpolicy = − 1

|T |lb

∑
τ∈T

∑lb
k=0 logπθ(a

τ
k, s

τ
k)[r(sτk,a

τ
k)−Mτ,kQ(sτk,a

τ
k)]

(9)
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where α is the learning rate. The term [r(sτk,a
τ
k) −Mτ,kQ(sτk,a

τ
k)] corresponds

to the benefit of taking the action aτk given the state sτk. The expected value
Q(sτk,a

τ
k) is weighted by Mτ,k so as to strengthen/weaken the contribution of

the state sτk when learning the policy πθ, accordingly.
The joint loss function Llearner is formulated as a minimization mean squared

error function with respect to parameters η ω and ζ as follows:

η ← η − α∇ηLlearner(πθ)
ω ← ω − α∇ωLlearner(πθ)
ζ ← ζ − α∇ζLlearner(πθ)

min
η,ω,ζ

Llearner = 1
|T |lb

∑
τ∈T

∑lb
k=0

(
r(sτk,a

τ
k)−Mτ,kQ(sτk,a

τ
k)

)2
(10)

Overall, to train our model we consider that the agent interacts with the
environment in an episodic manner [21]. This means that the agent interacts
with the environment within a finite horizon of T interactions/events. We train
our model for multiple episodes and optimize the joint loss functions Lpolicy and
Llearner in Equations 9 and 10 with respect to the parameters w, θ, η ω and ζ
through backpropagation with the Adam optimizer [12].

4 Experiments

4.1 Setup

- Enviroment. In our experiments, we evaluate the performance of the proposed
model to select the timestamp h of each event that maximizes the viewer’s
engagement ut and adoption vt. For each dataset we order the events according
to the timestamps, and consider the first 70% of the events as training set Etrain,
10% for validation Eval and 20% for testing Etest.The agent interacts with an
emulated environment5 which models the behavioural policy πβ of the events of
each dataset. Following [7,9,30], to emulate the behavioural policy πβ we train
a multi-head neural network on each dataset, which takes as input a sequence
of events and outputs the average engagement and adoption of the next event.
During the agent’s training, we initialize the reinforcement learning environment
with the events of the training set Etrain. To initialize the state sτt of the agent,
we randomly select an event et ∈ Etrain of the training set. At each step t =
1, . . . , T , the agent takes an action aτt for each task τ . Then, the agent receives
the average engagement ut and adoption vt generated by the behavioural policy
πβ as a reward of each task. To evaluate the learned policy πθ, we initialize the
reinforcement learning environment with the events of the test set Etest. Similar
to the training strategy, the state sτt of the agent is initialized by randomly
selecting an event et ∈ Etest from the test set. The agent takes an action aτt
5 Provided the high risk that might hinder when evaluating the learned policy πθ

directly to the enterprises, in our study we perform off-line A/B testing based on
the events of each dataset [9,30].
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and receives the reward by the multi-head network which models the behaviour
policy πβ of the test set Etest.
- Evaluation Metrics. We evaluate the performance of our proposed model
in terms of the step-wise variant of Normalized Capping Importance Sampling
(NCIS) for each task as follows: [22,30]:

NCIS =
∑T
t=1

ρ̄r(sτt ,a
τ
t )∑T

k=1 ρ̄

ρ̄ = min{δ,
∏T
t=1

πθ(aτt |s
τ
t )

πβ(aτt |sτt )}
(11)

where ρ̄ is the max capping of the importance ratio, and δ is a threshold to ensure
small variance and control the bias of the policy πθ towards the behavioural
policy πβ . The term ρ̄r(sτt ,a

τ
t ) is the capped importance weighted reward of

a task τ . Intuitively, by adopting different rewards in the term ρ̄r(sτt ,a
τ
t ), we

can measure the performance of the policy πθ to approximate the behavioural
policy πβ . By setting each reward r(sτt ,a

τ
t ) equal to the viewer’s engagement and

adoption as in Section 3, we can evaluate the performance of the proposed model
based on the respective metrics Eng. NCIS and Ad. NCIS for both tasks. As the
emulated environment is initialized randomly, we repeated our experiments five
times and report average Eng. NCIS and Ad. NCIS in our experiments.

- Baselines. We compare the proposed MERLIN model against the following
strategies: FeedRec [30], AMT6 [5], IMPALA7 [8] and PopART [11]. As there are
no publicly available implementations of FeedRec and PopART, we implemented
both from scratch and published our source codes8.

- Parameter Configuration. For each examined model, we tuned the hyper-
parameters on the validation set, following a grid-selection strategy. In FeedRec,
we set the state representation dimensionality ds = 256 for Enterprises 1 and 3,
and ds = 128 for Enterprises 2 and 4. At the t-th step, the FeedRec model takes
as an input all the events occurred prior to the current step with l = 0. In AMT
we fix a ds = 128 dimensional state representation for all datasets, with a time
window l = 30 previous events. In IMPALA and PopART the state representa-
tion’s dimensionality is fixed to ds = 64 for all Enterprises. The window length l
in IMPALA and PopART is set to 20 and 23, respectively. In the proposed MER-
LIN model we use a ds = 128 dimensional state representation for Enterprises 1
and 4, and 256 and 64 for Enterprises 2 and 3, respectively. The window length l
is fixed to 10 for Enterprise 1, and 15 for Enterprises 2, 3 and 4. In addition, the
size of the replay buffer lb is set to 128 for all Enterprises. In all the examined
models, we follow an ε-greedy exploration-exploitation strategy and set ε = 0.1.
The discount factor γ is fixed to 0.92 and the learning rate is set to α = 0.001.
In the emulated environment, we set the number of interactions/events to 200
and the number of episodes to 300.

6 https://github.com/braemt/attentive-multi-task-deep-reinforcement-learning
7 https://github.com/deepmind/scalable_agent
8 https://github.com/stefanosantaris/merlin

https://github.com/braemt/attentive-multi-task-deep-reinforcement-learning
https://github.com/deepmind/scalable_agent
https://github.com/stefanosantaris/merlin
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All our experiments were conducted on a single server with an Intel Xeon
Bronze 3106, 1.70GHz CPU. The operating system of the server was Ubuntu
18.04 LTS. We accelerated the training of the model using the GPU Geforce
RTX 2080 Ti graph card. Our proposed MERLIN model was implemented in
Pytorch 1.7.1 and we created the reinforcement learning environment with the
OpenAI Gym 0.17.3 library.

4.2 Performance Evaluation

Table 2. Performance comparison of the examined models on the engagement and
adoption tasks in terms of average Eng. NCIS and Ad. NCIS. Bold values indicate the
best method using a statistical significance t-test with p < 0.01.

Task Model Datasets

E1 E2 E3 E4

Avg. Eng. NCIS

FeedRec 0.553 0.591 0.423 0.467
AMT 0.462 0.513 0.371 0.380

IMPALA 0.452 0.493 0.352 0.314
PopART 0.421 0.460 0.432 0.401
MERLIN 0.622 0.663 0.512 0.552

Avg. Ad. NCIS

FeedRec 8.122 15.271 14.393 27.292
AMT 6.284 12.781 11.842 20.962

IMPALA 5.023 10.523 9.232 18.284
PopART 4.891 9.362 9.013 16.642
MERLIN 10.112 17.292 16.961 29.554

In Table 2, we evaluate the performance of the examined models in terms
of average Eng. NCIS and Ad. NCIS over the five trials in the emulated en-
vironment for the engagement and adoption tasks, respectively. The proposed
MERLIN model significantly outperforms the baselines in all datasets. This in-
dicates that MERLIN can efficiently learn a common policy πθ that optimizes
both tasks concurrently. Compared with the second best method FeedRec, MER-
LIN achieves relative improvements of 15.76 and 15.96% in terms of Eng. NCIS
and Ad. NCIS, respectively. FeedRec performs better than the other baseline
approaches because FeedRec formulates a joint loss function for training the
agent on the different tasks. However, each task in FeedRec contributes equally
when learning the policy πθ, and therefore the agent ignores the evolutionary
patterns and the importance of the state-action transitions for each task. The
proposed MERLIN model overcomes this problem by integrating the training
parameters of the task importance component in the common learning strategy
of the policy and multi-task learner components. In doing so, MERLIN balances
the contribution of each task to the generated policy.

In Figure 3 we report the Eng. reward and Ad. reward based on Equations
1 and 2 for the engagement and adoption tasks, respectively, when the inter-
actions/events evolve in the emulated environment. We observe that MERLIN
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Fig. 3. The Eng. reward and Ad.reward based on Equations 1 and 2 of the examined
models for the engagement and adoption tasks, when the interactions/events evolve in
the emulated environment.

constantly achieves higher rewards than the other baseline approaches at the
first interactions. This demonstrates the effectiveness of MERLIN to weigh the
importance of each task during training and learn a policy that optimizes both
tasks. In addition, we observe that the Ad. reward in the adoption task of MER-
LIN converges faster in Enterprises 2, 3 and 4 than in Enterprise 1. As discussed
in Section 2, the viewer’s adoption in Enterprises 2, 3 and 4 increase over time.
Therefore, the task importance component promotes the adoption task during
the training of the policy, thus achieving high reward in Enterprises 2, 3 and 4
at the beginning of the interactions.

4.3 Multi-Task vs Single-Task Learning in Parameter Configuration

In the next set of experiments we compare the proposed MERLIN model with
its variant MERLIN-S. In particular, the agent of the variant MERLIN-S is
trained on a single task, ignoring the multi-task learning strategy of MERLIN.
In Figure 4, we study the impact of the state representation’s dimensionality
ds on the performances of MERLIN and MERLIN-S in terms of Eng. NCIS
and Ad. NCIS for the engagement and adoption tasks, when varying ds in
{32, 64, 128, 256, 512}. We observe that MERLIN achieves the best performance
when setting 128 dimensions for Enterprises 1 and 4, 256 for Enterprise 2, and
64 for Enterprise 3. By increasing the dimensionality ds of the state represen-
tation, the agent of MERLIN achieves similar performances in both tasks. We
observe that MERLIN significantly outperforms the MERLIN-S model in both
tasks, indicating the importance of the multi-task learning strategy to efficiently
extract knowledge from both tasks. In Figure 5, we present the impact of the
window length l on MERLIN and MERLIN-S. We vary the window length l from
5 to 20 by a step of 5. MERLIN requires 10 past events in Enterprise 1, and 15
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Fig. 4. Impact of the state representation’s dimensionality ds on the performance of
MERLIN and its single-task variant MERLIN-S for the engagement and adoption tasks.
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Fig. 5. Impact of the window length l on MERLIN and MERLIN-S.

events in Enterprises 2, 3 and 4. Moreover, we observe that MERLIN constantly
outperforms the single task variant MERLIN-S. Notice that MERLIN-S achieves
the best performance when the window length l is set to 15 past events for En-
terprise 1, and 20 for Enterprises 2, 3 and 4. Therefore, MERLIN-S requires a
higher window length l than MERLIN in all Enterprises, as MERLIN-S omits
the auxiliary information of the other task when training the agent.

5 Conclusions

In this study, we presented a multi-task reinforcement learning strategy to train
an agent so as to select the optimal time of a live video streaming event in large
enterprises, aiming to improve the viewer’s engagement and adoption. In the
proposed MERLIN model, we formulate the engagement and adoption tasks as
different MDPs and design a joint loss function to extract knowledge from both
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tasks. To determine the contribution of each task to the training strategy of
the agent, we implement a task importance learner component that extracts the
most important information, that is the most important state-action transitions
from the replay buffer based on the Transformer’s architecture. Having weighted
the transitions, the agent of MERLIN learns a common policy for both tasks.
Our experiments with four real-world datasets demonstrate the superiority of
our model against several baseline approaches in terms of viewer’s engagement
and adoption. The proposed MERLIN model can significantly help enterprises in
selecting the optimal time of an event. Provided that nowadays the majority of
the events are online, the enterprises want to ensure that their employees/viewers
adopt the video streaming events with high engagement. This means that with
the help of MERLIN in scheduling the live video streaming events, the enterprises
can communicate with their employees efficiently, which as a consequence reflects
on significant productivity gains [2]. An interesting future direction is to study
the influence of distillation strategies on the proposed MERLIN model [16].
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