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Abstract. Adversarial representation learning aims to learn data representations
for a target task while removing unwanted sensitive information at the same time.
Existing methods learn model parameters iteratively through stochastic gradient
descent-ascent, which is often unstable and unreliable in practice. To overcome
this challenge, we adopt closed-form solvers for the adversary and target task.
We model them as kernel ridge regressors and analytically determine an upper-
bound on the optimal dimensionality of representation. Our solution, dubbed
OptNet-ARL, reduces to a stable one one-shot optimization problem that can be
solved reliably and efficiently. OptNet-ARL can be easily generalized to the case
of multiple target tasks and sensitive attributes. Numerical experiments, on both
small and large scale datasets, show that, from an optimization perspective, OptNet-
ARL is stable and exhibits three to five times faster convergence. Performance
wise, when the target and sensitive attributes are dependent, OptNet-ARL learns
representations that offer a better trade-off front between (a) utility and bias for
fair classification and (b) utility and privacy by mitigating leakage of private
information than existing solutions.
Code is available at https://github.com/human-analysis.

Keywords: Fair machine learning · Adversarial representation learning · Closed-
form solver · Kernel ridge regression.

1 Introduction

Adversarial Representation Learning (ARL) is a promising framework that affords
explicit control over unwanted information in learned data representations. This concept
has practically been employed in various applications, such as, learning unbiased and
fair representations [7, 28, 29, 37], learning controllable representations that are invariant
to sensitive attributes [31, 40], mitigating leakage of sensitive information [10, 33–35],
unsupervised domain adaption [13], learning flexibly fair representations [7, 37], and
many more.

The goal of ARL is to learn a data encoder E : x 7→ z that retains sufficient
information about a desired target attribute, while removing information about a known
sensitive attribute. The basic idea of ARL is to learn such a mapping under an adversarial
setting. The learning problem is setup as a three-player minimax game between three
entities (see Fig.1a, an encoder E, a predictor T , and a proxy adversary A. Target

ar
X

iv
:2

10
9.

05
53

5v
1 

 [
cs

.L
G

] 
 1

2 
Se

p 
20

21

http://hal.cse.msu.edu
https://github.com/human-analysis


2 Sadeghi et al.

predictor T seeks to extract target information and make correct predictions on the target
task. The proxy adversary A mimics an unknown real adversary and seeks to extract
sensitive information from learned representation. As such, the proxy adversary serves
only to aid the learning process and is not an end goal by itself. Encoder E seeks to
simultaneously aid the target predictor and limit the ability of the proxy adversary to
extract sensitive information from the representation z. By doing so, the encoder learns
to remove sensitive information from the representation. In most ARL settings, while
the encoder is a deep neural network, the target predictor and adversary are typically
shallow neural networks.

The vanilla algorithm for learning the parameters of the encoder, target and adversary
networks is gradient descent-ascent (GDA) [33, 40], where the players take a gradient
step simultaneously. However, applying GDA, including its stochastic version, is not
an optimal strategy for ARL and is known to suffer from many drawbacks. Firstly,
GDA has undesirable convergence properties; it fails to converge to a local minimax
and can converge to fixed points that are not local minimax, while being very unsta-
ble and slow in practice [8, 19]. Secondly, GDA exhibits strong rotation around fixed
points, which requires using very small learning rates [3, 30] to converge. Numerous
solutions [14, 30, 32] have been proposed recently to address the aforementioned compu-
tational challenges. These approaches, however, seek to obtain solutions to the minimax
optimization problem in the general case, where each player is modeled as a complex
neural network.

In this paper, we take a different perspective and propose an alternative solution
for adversarial representation learning. Our key insight is to replace the shallow neural
networks with other analytically tractable models with similar capacity. We propose
to adopt simple learning algorithms that admit closed-form solutions, such as linear
or kernel ridge regressors for the target and adversary, while modeling the encoder
as a deep neural network. Crucially, such models are particularly suitable for ARL
and afford numerous advantages, including, (1) closed-form solution allows learning
problems to be optimized globally and efficiently, (2) analytically obtain upper bound
on optimal dimensionality of the embedding z, (3) the simplicity and differentiability
allows us to backpropagate through the closed-form solution, (4) practically it resolves
the notorious rotational behaviour of iterative minimax gradient dynamics, resulting in a
simple optimization that is empirically stable, reliable, converges faster to a local optima,
and ultimately results in a more effective encoder E.

We demonstrate the practical effectiveness of our approach, dubbed OptNet-ARL,
through numerical experiments on an illustrative toy example, fair classification on UCI
Adult and German datasets and mitigating information leakage on the CelebA dataset.
We consider two scenarios where the target and sensitive attributes are (a) dependent,
and (b) independent. Our results indicate that, in comparison to existing ARL solutions,
OptNet-ARL is more stable and converges faster while also outperforming them in terms
of accuracy, especially in the latter scenario.
Notation: Scalars are denoted by regular lower case or Greek letters, e.g., n, λ. Vectors
are boldface lowercase letters, e.g., x, y; Matrices are uppercase boldface letters, e.g.,X .
A n× n identity matrix is denoted by I , sometimes with a subscript indicating its size,
e.g., In. Centered (mean subtracted w.r.t columns) data matrix is indicated by "~", e.g.,
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ŷ

φs(·) Ws(·) + bs

Real Adversary ŝreal

ŝ

(b)

Fig. 1: Adversarial Representation Learning: (a) Consists of three players, an encoder
E that obtains a compact representation z of input data x, predictors T and S that seek
to extract a desired target y and sensitive s attribute, respectively from the embedding.
(b) OptNet-ARL adopts kernel regressors as proxy target predictor and adversary for
learning the encoder. The learned encoder is evaluated against a real target predictor and
adversary, which potentially can be neural networks.

X̃ . Assume thatX contains n columns, then X̃ =XD whereD = In − 1
n11

T and 1
denotes a vector of ones with length of n. Given matrixM ∈ Rm×m, we use Tr[M ] to
denote its trace (i.e., the sum of its diagonal elements); its Frobenius norm is denoted
by ‖M‖F , which is related to the trace as ‖M‖2F = Tr[MMT ]. The pseudo-inverse
of M is denoted by M †. The subspace spanned by the columns of M is denoted by
R(M) or simplyM (in calligraphy); the orthogonal complement ofM is denoted by
M⊥. The orthogonal projector ontoM is denoted by PM.

2 Prior Work

Adversarial Representation Learning: The basic idea of learning data representations
with controllable semantic information has been effective across multiple topics. Domain
adaptation [12, 13, 38], where the goal is to learn representations that are invariant
to the domain, is one of the earliest applications of ARL. More recently, adversarial
learning has been extensively used [5–7, 10, 11, 33, 37, 40, 42] and advocated [29] for
the task of learning fair, invariant or privacy preserving representations of data. All of
the aforementioned approaches represent each entity in ARL by neural networks and
optimize their parameters through stochastic gradient descent-ascent (SGDA). As we
show in this paper, SGDA is unstable and sub-optimal for learning. Therefore, we trade-
off model expressively for ease of learning through a hybrid approach of modeling the
encoder by a deep neural network and target and adversary with closed-form regressors.
Such a solution reduces alternating optimization into a simple optimization problem
which is much more stable, reliable and effective. Table 1 shows a comparative summary
of ARL approaches.
Optimization in Minmax Games: A growing class of learning algorithms, including
ARL, GANs etc., involve more than one objective and are trained via games played
by cooperating or dueling neural networks. An overview of the challenges presented
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Table 1: Comparison between different ARL methods (n: sample size, b: batch size).
Method Encoder / Target & Adversary Optimization Scalability Enc Soln Input Data

SGDA-ARL [29, 40] deep NN / shallow NN alternating SGD ≥ O(b3) unknown raw data
Kernel-SARL [35] kernel regressor / linear closed-form O(n3) global optima features

OptNet-ARL (ours) deep NN / kernel regressor SGD O(b3) local optima raw data

by such algorithms and a plausible solution in general n-player games can be found
in [26]. In the context of two-player minimax games such as GANs, a number of
solutions [3, 8, 14, 19, 30, 32] have been proposed to improve the optimization dynamics,
many of them relying on the idea of taking an extrapolation step [23]. For example, [30]
deploys some regularizations to encourage agreement between different players and
improve the convergence properties. In another example, [32] uses double gradient to
stabilize the optimization procedure. In contrast to all of these approaches, that work with
the given fixed models for each player, we seek to change the model of the players in the
ARL setup for ease of optimization. In the context of ARL, [35] considers the setting
where all the players, including the encoder, are linear regressors. While they obtained
a globally optimum solution, the limited model capacity hinders the flexibility (cannot
directly use raw data), scalability and performance (limited by pre-trained features) of
their solution. In this paper we advocate the use of ridge regressors (linear or kernel)
for the target and adversary, while modeling the encoder as a deep neural network. This
leads to a problem that obviates the need for gradient descent-ascent and can instead
be easily optimized with standard SGD. Not only does this approach lead to stable
optimization, it also scales to larger datasets and exhibits better empirical performance.
Differentiable Solvers: A number of recent approaches have integrated differentiable
solvers, both iterative as well as closed-form, within end-to-end learning systems. Struc-
tured layers for segmentation and higher order pooling were introduced by [17]. Simi-
larly [39] proposed an asymmetric architecture which incorporates a Correlation Filter
as a differentiable layer. Differential optimization as a layer in neural networks was
introduced by [1, 2]. More recently, differentiable solvers have also been adopted for
meta-learning [4, 25] as well. The primary motivation for all the aforementioned ap-
proaches is to endow deep neural networks with differential optimization and ultimately
achieve faster convergence of the end-to-end system. In contrast, our inspiration for
using differential closed-form solvers is to control the non-convexity of the optimization
in ARL, in terms of stability, reliability and effectiveness.

3 Problem Setting

Let the data matrixX = [x1, . . . ,xn] ∈ Rd×n be n realizations of d-dimensional data,
x ∈ Rd. Similarly, we denote n realizations of sensitive attribute vector s ∈ Rq and
target attribute vector y ∈ Rp by matrices S = [s1, · · · , sn] and Y = [y1, · · · ,yn],
respectively. Treating the attributes as vectors enables us to consider both multi-class clas-
sification and regression under the same formulation. Each data sample xk is associated
with the sensitive attribute sk and the target attribute yk, respectively.
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The ARL problem is formulated with the goal of learning parameters of an embed-
ding function E(·;ΘE) that maps a data sample x to z ∈ Rr with two objectives: (i)
aiding a target predictor T (·;Θy) to accurately infer the target attribute y from z, and
(ii) preventing an adversary A(·;Θs) from inferring the sensitive attribute s from z. The
ARL problem can be formulated as a bi-level optimization,

min
ΘE

min
Θy

Ly (T (E(x;ΘE);Θy),y) s.t. min
Θs

Ls (A(E(x;ΘE);Θs), s) ≥ α (1)

where Ly and Ls are the loss functions (averaged over the training dataset) for the
target predictor and the adversary, respectively; α ∈ (0,∞) is a user defined value that
determines the minimum tolerable loss α for the adversary on the sensitive attribute;
and the minimization in the constraint is equivalent to the encoder operating against an
optimal adversary. Denote the global minimums of the adversary and target estimators
as

Jy(ΘE) := min
Θy

Ly (T (E(x;ΘE);Θy),y)

Js(ΘE) := min
Θs

Ls (A(E(x;ΘE);Θs), s) .
(2)

The constrained optimization problem in (1) can be alternately solved through its La-
grangian version:

min
ΘE

{
(1− λ)Jy(ΘE)− λJs(ΘE)

}
, 0 ≤ λ ≤ 1. (3)

3.1 Motivating Exact Solvers

Most state-of-the-art ARL algorithms cannot solve the optimization problems in (2)
optimally (e.g., SGDA). For any given ΘE , denote the non-optimal adversary and target
predictors loss functions as J approx

y (ΘE) and J approx
s (ΘE), respectively. It is obvious that

for any givenΘE , it holds

J approx
y (ΘE) ≥ Jy(ΘE) and J approx

s (ΘE) ≥ Js(ΘE).

Note that the optimization problem raised from non-optimal adversary and target predic-
tors is

min
ΘE

{
(1− λ)J approx

y (ΘE)− λJ approx
s (ΘE)

}
, 0 ≤ λ ≤ 1. (4)

Intuitively, solution(s) of (4) do not outperform that of (3). We now formulate this
intuition more concretely.

Definition 1. Let (a1, a2) and (b1, b2) be two arbitrary points in R2. We say (b1, b2)
dominates (a1, a2) if and only if b1 > a1 and b2 < a2 hold simultaneously.

Theorem 2. For any λ1, λ2 ∈ [0, 1], consider the following optimization problems

Θexact
E = argmin

ΘE

{
(1− λ1)Jy(ΘE)− λ1Js(ΘE)

}
(5)

and
Θapprox

E = argmin
ΘE

{
(1− λ2)Japprox

y (ΘE)− λ2Japprox
s (ΘE)

}
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Then, any adversary-target objective trade-off generated by
(
Js(Θ

exact
E ), Jy(Θ

exact
E )

)
cannot be dominated by the trade-off generated by

(
Js(Θ

approx
E ), Jy(Θ

approx
E )

)
.

See supplementary material for the proof of all Lemmas and Theorems.

4 Approach

Existing instances of ARL adopt deep neural networks to represent E, T andA and learn
their respective parameters {ΘE ,Θy,Θs} through stochastic gradient descent-ascent
(SGDA). Consequently, the target and adversary in Eq. 2 are not solved to optimality,
thereby resulting in a sub-optimal encoder.

4.1 Closed-Form Adversary and Target Predictor

The machine learning literature offers a wealth of methods with exact solutions that are
appropriate for modeling both the adversary and target predictors. In this paper, we argue
for and adopt simple, fast and differentiable methods such as kernel ridge regressors as
shown in Fig. 1b. On one hand, such modeling allows us to obtain the optimal estimators
globally for any given encoder E(·;ΘE).

On the other hand, kernelized ridge regressors can be stronger than the shallow neural
networks that are used in many ARL-based solutions (e.g., [11, 29, 33, 40]). Although
it is not the focus of this paper, it is worth noting that even deep neural networks in
the infinite-width limit reduce to linear models with a kernel called the neural tangent
kernel [18], and as such can be adopted to increase the capacity of our regressors.

Consider two reproducing kernel Hilbert spaces (RKHS) of functions Hs and Hy

for adversary and target regressors, respectively. Let a possible corresponding pair of
feature maps be φs(·) ∈ Rrs and φy(·) ∈ Rry where rs and ry are the dimensionality of
the resulting features and can potentially approach infinity. The respective kernels for
Hs and Hy can be represented as ks(z1, z2) = 〈φs(z1), φs(z2)〉Hs and ky(z1, z2) =
〈φy(z1), φy(z2)〉Hy

. Under this setting, we can relate the target and sensitive attributes
to any given embedding z as,

ŷ =Wyφy(z) + by, ŝ =Wsφs(z) + bs (6)

where Θy = {Wy, by} and Θs = {Ws, bs} are the regression parameters, Wy ∈
Rp×ry andWs ∈ Rq×rs , by ∈ Rp and bs ∈ Rq respectively.

Let the entire embedding of input data be denoted asZ := [z1, · · · , zn] and the corre-
sponding features maps asΦy := [φy(z1), · · · , φy(zn)] andΦs := [φs(z1), · · · , φs(zn)],
respectively. Furthermore, we denote the associated Gram matrices byKy = Φy

TΦy

and Ks = Φs
TΦs. A centered Gram matrix K̃ corresponding to the Gram matrix K

can be obtained [16] as,

K̃ = Φ̃T Φ̃ = (ΦD)T (ΦD) =DTKD. (7)

Invoking the representer theorem [36], the regression parameters can be represented
as Wy = ΛyΦ̃

T
y and Ws = ΛsΦ̃

T
s for target and adversary respectively, where Λy ∈
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Rp×n andΛs ∈ Rn×q are new parameter matrices. As a result, the kernelized regressors
in (6) can be equivalently expressed as

ŷ = ΛyΦ̃
T
y φy(z) + by, ŝ = ΛsΦ̃

T
s φs(z) + bs. (8)

In a typical ARL setting, once an encoder is learned (i.e., for a given fixed embedding
z), we evaluate against the best possible adversary and target predictors. In the following
Lemma, we obtain the minimum MSE for kernelized adversary and target predictors for
any given embedding Z.

Lemma 3. Let Jy(Z) and Js(Z) be regularized minimum MSEs for adversary and
target:

Jy(Z) = min
Λy,by

{
E
{∥∥ŷ − y∥∥2}+ γy

∥∥Λy

∥∥2
F

}
,

Js(Z) = min
Λs,bs

{
E
{∥∥ŝ− s∥∥2}+ γs

∥∥Λs

∥∥2
F

}
where γy and γs are regularization parameters for target and adversary regressors,
respectively. Then, for any given embedding matrix Z, the minimum MSE for kernelized
adversary and target can be obtained as

Jy(Z) =
1

n

∥∥Ỹ ∥∥2
F
− 1

n

∥∥∥∥PMy

[
Ỹ T

0n

] ∥∥∥∥2
F

,

Js(Z) =
1

n

∥∥S̃∥∥2
F
− 1

n

∥∥∥∥PMs

[
S̃T

0n

] ∥∥∥∥2
F

(9)

where

My =

[
K̃y√
nγyIn

]
, Ms =

[
K̃s√
nγsIn

]
are both full column rank matrices and a projection matrix for any full column rank
matrixM is

PM =M(MTM)−1MT

It is straightforward to generalize this method to the case of multiple target and
adversary predictors through equation (3). In this case we will have multiple λ’s to
trade-off between fairness and utility.

4.2 Optimal Embedding Dimensionality

The ability to effectively optimize the parameters of the encoder is critically dependent
on the dimensionality of the embedding as well. Higher dimensional embeddings can
inherently absorb unnecessary extraneous information in the data. Existing ARL ap-
plications, where the target and adversary are non-linear neural networks, select the
dimensionality of the embedding on an ad-hoc basis.

Adopting closed-form solvers for the target and adversary enables us to analytically
determine an upper bound on the optimal dimensionality of the embedding for OptNet-
ARL. To obtain the upper bound we rely on the observation that a non-linear target
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predictor and adversary, by virtue of greater capacity, can learn non-linear decision
boundaries. As such, in the context of ARL, the optimal dimensionality required by
non-linear models is lower than the optimal dimensionality of linear target predictor
and adversary. Therefore, we analytically determine the optimal dimensionality of the
embedding in the following theorem.

Theorem 4. Let z in Figure 1b be disconnected from the encoder and be a free vector
in Rr. Further, assume that both adversary and target predictors are linear regressors.
Then, for any 0 ≤ λ ≤ 1 the optimal dimensionality of embedding vector, r is the number
of negative eigenvalues of

B = λS̃T S̃ − (1− λ)Ỹ T Ỹ . (10)

Given a dataset with the target and sensitive labels, Y and S respectively, the matrix
B and its eigenvalues can be computed offline to determine the upper bound on the
optimal dimensionality. By virtue of the greater capacity, the optimal dimensionality
required by non-linear models is lower than the optimal dimensionality of linear pre-
dictors and therefore, Theorem 2 is a tight upper bound for the optimal embedding
dimensionality. One large datasets where B ∈ Rn×n, the Nyström method with data
sampling [24] can be adopted.

4.3 Gradient of Closed-Form Solution

In order to find the gradient of the encoder loss function in (3) with Jy and Js given in (9),
we can ignore the constant terms, ‖Ỹ ‖F and ‖S̃‖F . Then, the optimization problem
in (3) would be equivalent to

min
ΘE

{
(1− λ)

∥∥∥∥PMs

[
S̃T

0n

] ∥∥∥∥2
F

− λ
∥∥∥∥PMy

[
Ỹ T

0n

] ∥∥∥∥2
F

}

= min
ΘE

{
(1− λ)

p∑
k=1

‖PMs
uk
s‖2 − λ

q∑
m=1

‖PMy
um
y ‖2

}
(11)

where the vectors uk
s and um

y are the k-th and m-th columns of
[
S̃T

0n

]
and

[
Ỹ T

0n

]
,

respectively. Let M be an arbitrary matrix function of ΘE , and θ be arbitrary scalar
element ofΘE . Then, from [15] we have

1

2

∂‖PMu‖2
∂θ

= uTPM⊥
∂M

∂θ
M †u (12)

where [∂M
∂θ

]
ij

=

{
∇Tzi

(
[M ]ij

)
∇θ(zi) +∇Tzj

(
[M ]ij

)
∇θ(zj), i ≤ n

0, else.
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Equation (12) can be directly used to obtain the gradient of objective function in (11).
Directly computing the gradient in Eq (12) requires a pseudoinverse of the matrix

M ∈ R2n×n, which has a complexity of O(n3). For large datasets this computation can
get prohibitively expensive. Therefore, we approximate the gradient using a single batch
of data as we optimize the encoder end-to-end. Similar approximations [24] are in fact
commonly employed to scale up kernel methods. Thus, the computational complexity
of computing the loss for OptNet-ARL reduces to O(b3), where b is the batch size.
Since maximum batch sizes in training neural networks are of the order of 10s to 1000s,
computing the gradient is practically feasible. We note that, the procedure presented in
this section is a simple SGD in which its stability can be guaranteed under Lipschitz and
smoothness assumptions on encoder network [45].

5 Experiments

In this section we will evaluate the efficacy of our proposed approach, OptNet-ARL,
on three different tasks; Fair Classification on UCI [9] datatset, mitigating leakage of
private information on the CelebA dataset, and ablation study on a Gaussian mixture
example. We also compare OptNet-ARL with other ARL baselines in terms of stability of
optimization, the achievable trade-off front between the target and adversary objectives,
convergence speed and the effect of embedding dimensionality. We consider three
baselines, (1) SGDA-ARL: vanilla stochastic gradient descent-ascent that is employed
by multiple ARL approaches including [11,20,29,33,40] etc., (2) ExtraSGDA-ARL: a
state-of-the-art variant of stochastic gradient descent-ascent that uses an extra gradient
step [23] for optimizing minimax games. Specifically, we use the ExtraAdam algorithm
from [14], and (3) SARL: a global optimum solution for a kernelized regressor encoder
and linear target and adversary [35]. Specifically, hypervolume (HV) [43], a metric for
stability and goodness of trade-off (comparing algorithms under multiple objectives)
is also utilized. A larger HV indicates a better Pareto front achieved and the standard
deviation of the HV represents the stability.

In the training stage, the encoder, a deep neural network, is optimized end-to-end
against kernel ridge regressors (RBF Gaussian kernel1) in the case of OptNet-ARL
and multi-layer perceptrons (MLPs) for the baselines. Table 2 summarizes the network
architecture of all experiments. We note that the optimal embedding dimensionality, r
for binary target is equal to one which is consistent with Fisher’s linear discriminant
analysis [44]. The embedding is instance normalized (unit norm). So we adopted a
fixed value of σ = 1 for Gaussian Kernel in all the experiments. We let the regression
regularization parameter be 10−4 for all experiments. The learning rate is 3× 10−4 with
weight decay of 2× 10−4 and we use Adam as optimizer for all experiments.

At the inference stage, the encoder is frozen, features are extracted and a new target
predictor and adversary are trained. At this stage, for both OptNet-ARL and the baselines,
the target and adversary have the same model capacity. Furthermore, each experiment on
each dataset is repeated five times with different random seeds (except for SARL which
has a closed-form solution for encoder) and for different trade-off parameters λ ∈ [0, 1].
We report the median and standard deviation across the five repetitions.

1 k(z,z′) = exp (− ‖z−z′‖2)
2σ2
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Table 2: Network Architectures in Experiments.
Method Encoder Embd Target Adversary Target Adversary
(ARL) Dim (Train) (Train) (Test) (Test)

Adult
SGDA [29, 40] MLP-4-2 1 MLP-4 MLP-4 MLP-4-2 MLP-4-2
ExtraSGDA [23] MLP-4-2 1 MLP-4 MLP-4 MLP-4-2 MLP-4-2
SARL [35] RBF krnl 1 linear linear MLP-4-2 MLP-4-2
OptNet-ARL (ours) MLP-4-2 1 RBF krnl RBF krnl MLP-4-2 MLP-4-2

German
SGDA [29, 40] MLP-4 1 MLP-2 MLP-2 logistic logistic
ExtraSGDA [23] MLP-4 1 MLP-2 MLP-2 logistic logistic
SARL [35] RBF krnl 1 linear linear logistic logistic
OptNet-ARL (ours) MLP-4 1 RBF krnl RBF krnl logistic logistic

CelebA
SGDA [29, 40] ResNet-18 128 MLP-64 MLP-64 MLP-32-16 MLP-32-16
ExtraSGDA [23] ResNet-18 128 MLP-64-32 MLP-64-32 MLP-32-16 MLP-32-16
OptNet-ARL (ours) ResNet-18 [1, 128] RBF krnl RBF krnl MLP-32-16 MLP-32-16

Gaussian Mixture
SGDA [29, 40] MLP-8-4 2 MLP-8-4 MLP-8-4 MLP-4-4 MLP-4-4
ExtraSGDA [23] MLP-8-4 2 MLP-8-4 MLP-8-4 MLP-4-4 MLP-4-4
SARL [35] RBF krnl 2 linear linear MLP-4-4 MLP-4-4
RBF-OptNet-ARL (ours) MLP-8-4 2 RBF krnl RBF krnl MLP-4-4 MLP-4-4
IMQ-OptNet-ARL (ours) MLP-8-4 [1, · · · , 512] IMQ krnl IMQ krnl MLP-4-4 MLP-4-4

5.1 Fair Classification

We consider fair classification on two different tasks. UCI Adult Dataset: It includes 14
features from 45, 222 instances. The task is to classify the annual income of each person
as high (50K or above) or low (below 50K). The sensitive feature we wish to be fair
with respect to is the gender of each person. UCI German Dataset: It contains 1000
instances of individuals with 20 different attributes. The target task is to predict their
creditworthiness while being unbiased with respect to age. The correlation between target
and sensitive attributes are 0.03 and 0.02 for the Adult and German dataset, respectively.
This indicates that the target attributes are almost orthogonal to the sensitive attributes.
Therefore, the sensitive information can be totally removed with only a negligible loss in
accuracy for the target task.
Stability: Since there is no trade-off between the two attributes, we compare stability by
reporting the median and standard deviation of the target and adversary performance in
Table 3. Our results indicate that OptNet-ARL achieves a higher accuracy for target task
and lower leakage of sensitive attribute and with less variance. For instance, in Adult
dataset, OptNet-ARL method achieves 83.86% and 83.81% target accuracy with almost
zero sensitive leakage. For OptNet-ARL the standard deviation of sensitive attribute is
exactly zero, which demonstrates its effectiveness and stability in comparison to the
baselines. Similarly for the German dataset, OptNet-ARL achieves 80.13% for sensitive
accuracy, which is close to random chance (around 81%).
Fair Classification Performance: We compare our proposed approach with many base-
line results on these datasets. The optimal dimensionality for OptNet-ARL is r = 1 as
determined by Theorem 4 and r = 50 for the baselines (common choice in previous
work). Diff value in Table 3 shows the difference between adversary accuracy and ran-
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Table 3: Fair Classification On UCI Dataset (in %)
Adult Dataset German Dataset

Method Target Sensitive Diff Target Sensitive Diff
(income) (gender) 67.83 (credit) (age) 81

Raw Data 85.0 85.0 17.6 80.0 87.0 6.0

LFR [41] 82.3 67.0 0.4 72.3 80.5 0.5
AEVB [21] 81.9 66.0 1.4 72.5 79.5 1.5
VFAE [28] 81.3 67.0 0.4 72.7 79.7 1.3
SARL [35] 84.1 67.4 0.0 76.3 80.9 0.1

SGDA-ARL [40] 83.61± 0.38 67.08± 0.48 0.40 76.53± 1.07 87.13± 5.70 6.13
ExtraSGDA-ARL [14] 83.66± 0.26 66.98± 0.49 0.4 75.60± 1.68 86.80± 4.05 5.80
OptNet-ARL 83.81± 0.23 67.38± 0.00 0.00 76.67± 2.21 80.13± 1.48 0.87

dom guessing. On both datasets, both Linear-SARL and OptNet-ARL can achieve high
performance on target task with a tiny sensitive attribute leakage for the German dataset.

5.2 Mitigating Sensitive Information Leakage

The CelebA dataset [27] contains 202, 599 face images of 10, 177 celebrities. Each
image contains 40 different binary attributes (e.g., gender, emotion, age, etc.). Images
are pre-processed and aligned to a fixed size of 112×96 and we use the official train-test
splits. The target task is defined as predicting the presence or absence of high cheekbones
(binary) with the sensitive attribute being smiling/not smiling (binary). The choice of
this attribute pair is motivated by the presence of a trade-off between them. We observe
that the correlation between this attribute pair is equal to 0.45, indicating that there is no
encoder that can maintain target performance without leaking the sensitive attribute.

For this experiment, we note that SARL [35] cannot be employed, since, (1) it does
not scale to large datasets (O(n3)) like CelebA, and (2) it cannot be applied directly on
raw images but needs features extracted from a pre-trained network. Most other attribute
pairs in this dataset either suffer from severe class imbalance or small correlation,
indicating the lack of a trade-off. Network architecture details are shown in Table 2.
Stability and Trade-off: Figure 2(a) shows the attainment surface [22] and hypervol-
ume [43] (median and standard deviation) for all methods. SGDA spans only a small part
of the trade-off and at the same time exhibits large variance around the median curves.
Overall both baselines are unstable and unreliable when the two attributes are dependent
on each other. On the other hand, OptNet-ARL solutions are very stable and while also
achieving a better trade-off between target and adversary accuracy.
Optimal Embedding Dimensionality: Figure 2(b) compares the utility-bias trade-off
the sub-optimal embedding dimensionality (r = 128) with that of the optimal dimen-
sionality (r = 1). We can observe that optimal embedding dimensionality (r = 1) is
producing a more stable trade-off between adversary and target accuracies.
Training Time: It takes five runs for SGDA-ARL and ExtraSGDA and two runs for
OptNet-ARL to train a reliable encoder for overall 11 different values of λ ∈ [0, 1]. The
summary of training time is given in Figure 2(c). ExtraSGDA-ARL takes an extra step
to update the weights and therefore, it is slightly slower than SGDA-ARL. OptNet-ARL
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Figure 2: CelebA: (a) Trade-off between adversary and target accuracy for dependent pair
(smiling/not-smiling, high cheekbones). (b) Trade-off between adversary and target for independent
pair (smiling/not-smiling, gender) (b) Overall and single run training time for different ARL methods.
OptNet-ARL Regardless the fact that OptNet-ARL training time is significantly lower than that of
baselines, even a single run of OptNet-ARL is faster because it does not need to train any target and
adversary.
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(d)

Fig. 2: CelebA: (a) Trade-off between adversary and target accuracy for dependent
pair (smiling/not-smiling, high cheekbones). (b) Comparison between the trade-offs of
optimal embedding dimensionality r = 1 and that of r = 128. (c) Overall and single run
training time for different ARL methods. (d) Trade-off between adversary and target for
independent pair (smiling/not-smiling, gender).

on the other hand is significantly faster to obtain reliable results. Even for a single run,
OptNet-ARL is faster than the baselines. This is because, OptNet-ARL uses closed-form
solvers for adversary and target and therefore does not need to train any additional
networks downstream to the encoder.
Independent Features: We consider the target task to be binary classification of smil-
ing/not smiling with the sensitive attribute being gender. In this case, the correlation
between gender and target feature is 0.02, indicating that the two attributes are almost
independent and hence it should be feasible for an encoder to remove the sensitive
information without affecting target task. The results are presented in Figure 2 (d). In
contrast to the scenario where the two attributes are dependent, we observe that all
ARL methods can perfectly hide the sensitive information (gender) from representation
without loss of target task. Therefore, OptNet-ARL is especially effective in a more
practical setting where the target and sensitive attributes are correlated and hence can
only attain a trade-off.

5.3 Ablation Study on Mixture of Four Gaussians

In this experiment we consider a simple example where the data is generated by a mixture
of four different Gaussian distributions. Let {fi}4i=1 be all Gaussian distributions with



Adversarial Representation Learning With Closed-Form Solvers 13

means at (0, 0), (0, 1), (1, 0), and (1, 1), respectively and covariance matrices all equal
toΣ = 0.22I2. Denote by f(x) the distribution of input data. Then,

f(x| •) = f1(x) +
1

2
f2(x) + +

1

2
f3(x), P{•} = 1

2

f(x| •) = f4(x) +
1

2
f2(x) + +

1

2
f3(x), P{•} = 1

2

The sensitive attribute is assumed to be the color (0 for red and 1 for blue) and the target
task is reconstructing the input data. We sample 4000 points for training and 1000 points
for testing set independently. For visualization, the testing set is shown in Figure 3(a).
In this illustrative dataset , the correlation between input data and color is 0.61 and
therefore there is no encoder which results in full target performance at no leakage of
sensitive attribute. Network architecture details are shown in Table 2.
Stability and Trade-off: Figure 3(b) illustrates the five-run attainment surfaces and
median hypervolumes for all methods. Since the the dimensionality of both input and
output is 2, the optimal embedding dimensionality is equal to 2 which we set it in
this experiment. We note that SARL achieves hypervolume better than SGDA and
ExtraSGDA ARLs which is not surprising due to the strong performance of SARL
on small-sized datasets. However, SARL is not applicable to large datasets. Among
other baselines, ExtraSGDA-ARL appears to be slightly better. In contrast, the solutions
obtained by RBF-OptNet-ARL (Gaussian kernel) outperform all baselines and are highly
stable across different runs, which can be observed from both attainment surfaces and
hypervolumes. Addition to Gaussian kernel, we also used inverse multi quadratic (IMQ)
kernel [46]2 for OptNet to examine the effect kernel of function. As we observe from
Figure 3(b), IMQ-OptNet-ARL performs almost similar to OptNet-ARR with Gaussian
kernel in terms of both trade-off and stability.
Batch Size: In order to examine the effect of batch size on OptNet-ARL (with Gaussian
kernel), we train the encoder with different values of batch size between 2 and 4000
(entire training data). The results are illustrated in Figure 3(c). We observer that the
trade-off HV is quite insensitive to batch sizes greater than 25 which implies that the
gradient of min-batch is an accurately enough estimator of the gradient of entire data.
Embedding Dimensionality: We also study the effect of embedding dimensionality
(r) by examining different values for r in [1, 512] using RBF-OptNet-ARL. The results
are illustrated in Figure 3(d). It is evident that the optimal embedding dimensionality
(r = 2) outperforms other values of r. Additionally, HV of r = 1 suffers severely due to
the information loss in embedding, while for 2 < r ≤ 512 the trade-off performance is
comparable to that of optimal embedding dimensionality, r = 2.

6 Concluding Remarks

Adversarial representation learning is a minimax theoretic game formulation that affords
explicit control over unwanted information in learned data representations. Optimization
algorithms for ARL such as stochastic gradient descent-ascent (SGDA) and their variants

2 k(z,z′) = 1√
‖z−z′‖2+c2
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Fig. 3: Mixture of Gaussians: (a) Input data. The target task is to learn a representation
which is informative enough to reconstruct the input data and at the same time hide the
color information (• vs •). (b) Trade-off between the MSEs of adversary and target task
for different ARL methods. (c) The HVs of OptNet-ARL (Gaussian kernel) vs different
batch size values in [2, 4000]. (d) The HV values of OptNet-ARL (Gaussian kernel) vs
different values of r in [1, 512].

are sub-optimal, unstable and unreliable in practice. In this paper, we introduced OptNet-
ARL to address this challenge by employing differentiable closed-form solvers, such
as kernelized ridge regressors, to model the ARL players that are downstream from the
representation. OptNet-ARL reduces iterative SGDA to a simple optimization, leading
to a fast, stable and reliable algorithm that out-performs existing ARL approaches on
both small and large scale datasets.
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