
Deep Conditional Transformation Models

Philipp F.M. Baumann1[0000−0001−8066−1615], Torsten
Hothorn2[0000−0001−8301−0471], and David Rügamer3[0000−0002−8772−9202]

1 KOF Swiss Economic Institute, ETH Zurich, Zurich, Switzerland
baumann@kof.ethz.ch

2 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich,
Switzerland

torsten.hothorn@uzh.ch
3 Department of Statistics, LMU Munich, Munich, Germany

david.ruegamer@stat.uni-muenchen.de

Abstract. Learning the cumulative distribution function (CDF) of an
outcome variable conditional on a set of features remains challenging, es-
pecially in high-dimensional settings. Conditional transformation models
provide a semi-parametric approach that allows to model a large class of
conditional CDFs without an explicit parametric distribution assumption
and with only a few parameters. Existing estimation approaches within
this class are, however, either limited in their complexity and applicability
to unstructured data sources such as images or text, lack interpretability,
or are restricted to certain types of outcomes. We close this gap by intro-
ducing the class of deep conditional transformation models which unifies
existing approaches and allows to learn both interpretable (non-)linear
model terms and more complex neural network predictors in one holistic
framework. To this end we propose a novel network architecture, provide
details on different model definitions and derive suitable constraints as
well as network regularization terms. We demonstrate the efficacy of our
approach through numerical experiments and applications.

Keywords: Transformation Models · Distributional Regression · Nor-
malizing Flows · Deep Learning · Semi-Structured Regression.

1 Introduction

Recent discussions on the quantification of uncertainty have emphasized that a
distinction between aleatoric and epistemic uncertainty is useful in classical ma-
chine learning [38,18]. Moreover, this distinction was also advocated in the deep
learning literature [20,4].While epistemic uncertainty describes the uncertainty of
the model and can be accounted for in a Bayesian neural network, aleatoric uncer-
tainty [12] can be captured by modeling an outcome probability distribution that
has a stochastic dependence on features (i.e., conditional on features). Apart from
non-parametric estimation procedures, four fundamental approaches in statistics
exist that allow to model the stochastic dependence between features and the
outcome distribution [14]. First, parametric models where additive functions of

ar
X

iv
:2

01
0.

07
86

0v
4

 [
cs

.L
G

]
 6

 A
pr

 2
02

1

2 Baumann et al.

the features describe the location, scale and shape (LSS) of the distribution [34]
or where these features are used in heteroscedastic Bayesian additive regression
tree ensembles [31]. Second, quantile regression models [23,28,1] that directly
model the conditional quantiles with a linear or non-linear dependence on feature
values. Third, distribution regression and transformation models [9,35,3,43,27]
that have response-varying effects on the probit, logit or complementary log-log
scale. Finally, hazard regression [25] which estimates a non-proportional hazard
function conditional on feature values. Parallel to this, various approaches in
machine learning and deep learning have been evolved to model the outcome
distribution through input features. A prominent example is normalizing flows
(see, e.g. [41,33,30,22]), used to learn a complex distribution of an outcome based
on feature values. Normalizing flows start with a simple base distribution FZ and
transform FZ to a more complex target distribution using a bijective transforma-
tion of the random variable coming from the base distribution. The most recent
advances utilize monotonic polynomials [19,32] or splines [29,5,6] to learn this
transformation. As pointed out recently by several authors [21,39], normalizing
flows are conceptually very similar to transformation models. However, normal-
izing flows, in contrast to transformation models, usually combine a series of
transformations with limited interpretability of the influence of single features
on the distribution of the target variable. In this work, we instead focus on
conditional transformation approaches that potentially yield as much flexibility
as normalizing flows, but instead of defining a generative approach, strive to build
interpretable regression models without too restrictive parametric distribution
assumptions.

1.1 Transformation Models

The origin of transformation models (TM) can be traced back to [2] studying a
parametric approach to transform the variable of interest Y prior to the model
estimation in order to meet a certain distribution assumption of the model.
Many prominent statistical models, such as the Cox proportional hazards model
or the proportional odds model for ordered outcomes, can be understood as
transformation models. Estimating transformation models using a neural network
has been proposed by [39]. However, [39] only focus on a smaller subclass of
transformation models, we call (linear) shift transformation models and on models
that are not interpretable in nature. Recently, fully parameterized transformation
models have been proposed [15,16] which employ likelihood-based learning to
estimate the cumulative distribution function FY of Y via estimation of the
corresponding transformation of Y . The main assumption of TM is that Y follows
a known, log-concave error distribution FZ after some monotonic transformation
h. CTMs specify this transformation function conditional on a set of features x:

P(Y ≤ y|x) = FY |x(y) = FZ(h(y|x)). (1)

The transformation function h can be decomposed as h(y|x) := h1 + h2, where
h1 and h2 can have different data dependencies as explained in the following.

Deep Conditional Transformation Models 3

When h1 depends on y as well as x, we call the CTM an interacting CTM. When
h1 depends on y only, we call the model a shift CTM, with shift term h2. When
h2 is omitted in an interacting CTM, we call the CTM a distributional CTM.
In general, the bijective function h(y|x) is unknown a priori and needs to be
learned from the data. [16] study the likelihood of this transformation function
and propose an estimator for the most likely transformation. [16] specify the
transformation function through a flexible basis function approach, which, in the
unconditional case h(y) (without feature dependency), is given by h(y) = a(y)>ϑ
where a(y) is a matrix of evaluated basis functions and ϑ a vector of basis
coefficients which can be estimated by maximum likelihood. For continuous Y
Bernstein polynomials [8] with higher order M provide a more flexible but still
computationally attractive choice for a. That is,

a(y)>ϑ =
1

(M + 1)

M∑
m=0

ϑmfBe(m+1,M−m+1)(ỹ) (2)

where fBe(m,M) is the probability density function of a Beta distribution with

parameters m, M and a normalized outcome ỹ := y−l
u−l ∈ [0, 1] with u > l and

u, l ∈ R. In order to guarantee monotonicity of the estimate of FY |x, strict

monotonicity of a(y)>ϑ is required. This can be achieved by restricting ϑm >
ϑm−1 for m = 1, . . . ,M + 1. When choosing M , the interplay with FZ should
be considered. For example, when FZ = Φ, the standard Gaussian distribution
function, and M = 1, then F̂Y will also belong to the family of Gaussian
distributions functions. Further, when we choose M = n− 1 with n being the
number of independent observations, then F̂Y is the non-parametric maximum
likelihood estimator which converges to FY by the Glivenko-Cantelli lemma
[13]. As a result, for small M the choice of FZ will be decisive, while TMs will
approximate the empirical cumulative distribution function well when M is large
independent of the choice of FZ . Different choices for FZ have been considered in
the literature (see, e.g., [16]), such as the standard Gaussian distribution function
(Φ), the standard logistic distribution function (FL) or the minimum extreme
value distribution function (FMEV).

In CTMs with structured additive predictors (STAP), features considered
in h1 and h2 enter through various functional forms and are combined as an
additive sum. The STAP is given by

ηstruc = s1(x) + . . .+ sk(x) (3)

with s1, . . . , sk being partial effects of one or more features in x. Common choices
include linear effects x>w with regression coefficient w and non-linear effects
based on spline basis representation, spatial effects, varying coefficients, linear and
non-linear interaction effects or individual-specific random effects [7]. Structured
additive models have been proposed in many forms, for example in additive
(mixed) models where E(Y |x) = ηstruc.

4 Baumann et al.

1.2 Related Work and Our Contribution

The most recent advances in transformation models [17,21,14] learn the trans-
formation functions h1 an h2 separately, using, e.g., a model-based boosting
algorithm with pre-specified base learners [14]. Very recent neural network-based
approaches allow for the joint estimation of both transformation functions, but do
either not yield interpretable models [39] or are restricted to STAP with ordinal
outcomes [24].

Our framework combines the existing frameworks and thereby extends ap-
proaches for continuous outcomes to transformation models able to 1) learn more
flexible and complex specifications of h1 and h2 simultaneously 2) learn the CDF
without the necessity of specifying the (type of) feature contribution a priori, 3)
retain the interpretability of the structured additive predictor in h1 and h2 4)
estimate structured effects in high-dimensional settings due to the specification
of the model class within a neural network 5) incorporate unstructured data
source such as texts or images.

2 Model and Network Definition

We now formally introduce the deep conditional transformation model (DCTM),
explain its network architecture and provide details about different model defini-
tions, penalization and model tuning.

2.1 Model Definition

Following [14], we do not make any explicit parameterized distribution assumption
about Y , but instead assume

P(Y ≤ y|x) = FZ(h(y|x)) (4)

with error distribution FZ : R 7→ [0, 1], an a priori known CDF that represents
the data generating process of the transformed outcome h(Y |x) conditional on
some features x ∈ χ. For tabular data, we assume x ∈ Rp. For unstructured
data sources such as images, x may also include multidimensional inputs. Let fZ
further be the corresponding probability density function of FZ . We model this
transformation function conditional on some predictors x by h(y|x) = h1 + h2 =
a(y)>ϑ(x) + β(x), where a(y) is a (pre-defined) basis function a : Ξ 7→ RM+1

with Ξ the sample space and ϑ : χϑ 7→ RM+1 a conditional parameter function
defined on χϑ ⊆ χ. ϑ is parameterized through structured predictors such as
splines, unstructured predictors such as a deep neural network, or the combination
of both and β(x) is a feature dependent distribution shift. More specifically, we
model ϑ(x) by the following additive predictor:

ϑ(x) =

J∑
j=1

Γjbj(x), (5)

Deep Conditional Transformation Models 5

 +

Structured
Network

Deep
Network

Structured
Predictors

Deep
Network

Outcome
Basis Evaluation

Error
Distribution

Transformation
Function

Transformed
Distribution

likelihood

Interaction
Predictor Head

 Interaction Predictor c

Shift Predictor

Fig. 1. Architecture of a deep conditional transformation model. Both the shift and
interaction predictor can potentially be defined by a structured network including linear
terms, (penalized) splines or other structured additive regression terms and deep neural
network defined by an arbitrary network structure. While the shift predictor (CΨ)
is a sum of both subnetwork predictions, the interaction predictor (A � B) is only
multiplied with a final 1-hidden unit fully-connected layer (network head, vec(Γ)) after
the structured predictors and latent features of the deep neural network are combined
with the basis evaluated outcome. The shift and interaction network part together
define the transformation function, which transforms the error distribution and yields
the final likelihood used as loss function.

with Γj ∈ R(M+1)×Oj , Oj ≥ 1, being joint coefficient matrices for the basis
functions in a and the chosen predictor terms bj : χbj 7→ ROj , χbj ⊆ χ. We allow
for various predictor terms including an intercept (or bias term), linear effects
bj(x) = xkj for some kj ∈ {1, . . . , p}, structured non-linear terms bj(x) = G(xkj)
with some basis function G : R 7→ Rq, q ≥ 1 such as a B-spline basis, bivariate
non-linear terms bj(x) = G′(xkj , xkj′) using a tensor-product basis G′ : R×R 7→
Rq′ , q′ ≥ 1 or neural network predictors bj(x) = d(xkj), which define an arbitrary
(deep) neural network that takes (potentially multidimensional) features xkj ∈ χ.
The network will be used to learn latent features representing the unstructured
data source. These features are then combined as a linear combination when
multiplied with Γj . The same types of predictors can also be defined for the shift

term β(x) =
∑J
j=1 cj(x)>ψj , which we also defined as an additive predictor of

features, basis functions or deep neural networks times their (final) weighting ψj .

The final model output for the transformation of y is then given by

a(y)>ϑ(x) = a(y)>ΓB, (6)

with Γ = (Γ1, . . . ,ΓJ) ∈ R(M+1)×P , P =
∑J
j=1Oj the stacked coefficient matrix

combining all Γjs and B ∈ RP a stacked vector of the predictor terms bj(x)s.
Based on model assumption (4) we can define the loss function based on the

6 Baumann et al.

change of variable theorem

fY (y|x) = fZ(h(y|x)) ·
∣∣∣∣∂h(y|x)

∂y

∣∣∣∣
as

`(h(y|x)) = − log fY (y|ϑ(x),β(x))

= − log fZ(a(y)>ϑ(x) + β(x))− log[a′(y)>ϑ(x)]
(7)

with a′(y) = ∂a(y)/∂y.
For n observations (yi,xi), i = 1, . . . , n, we can represent (6) as

(A�B)vec(Γ>) (8)

with A = (a(y1), . . . ,a(yn))> ∈ Rn×(M+1), B = (B1, . . . ,Bn)> ∈ Rn×P , vector-
ization operator vec(·) and the row-wise tensor product (also known as transpose
Kathri-Rao product) operator �. Similar, the distribution shift can be written
in matrix form as CΨ with C ∈ Rn×Q consisting of the stacked cj(x)s and
Ψ = (ψ>1 , . . . ,ψ

>
J)> ∈ RQ the stacked vector of all shift term coefficients. A

schematic representation of an exemplary DCTM is given in Figure 2.

2.2 Network Definition

Our network consists of two main parts: a feature transforming network (FTN)
part, converting X = (x>1 , . . . ,x

>
n)> ∈ Rn×p to B and an outcome transforming

network (OTN) part, transforming y = (y1, . . . , yn)> ∈ Rn to h(y|X) ∈ Rn.
In the OTN part the matrix Γ is learned, while the FTN part only contains
additional parameters to be learned by the network if some feature(s) are defined
using a deep neural network. In other words, if only structured linear effects or
basis function transformations are used in the FTN part, Γ contains all trainable
parameters. Figure 1 visualizes an exemplary architecture.

After the features are processed in the FTN part, the final transformed
outcome is modeled using a conventional fully-connected layer with input A�B,
one hidden unit with linear activation function and weights corresponding to
vec(Γ). The deep conditional transformation model as visualized in Figure 1 can
also be defined with one common network which is split into one part that is
added to the shift predictor and one part that is used in the interaction predictor.

2.3 Penalization

L1-, L2-penalties can be incorporated in both the FTN and OTN part by adding
corresponding penalty terms to the loss function. We further use smoothing
penalties for structured non-linear terms by regularizing the respective entries in
Ψ and Γ to avoid overfitting and easier interpretation. Having two smoothing
directions, the penalty for Γ is constructed using a Kronecker sum of individual
marginal penalties for anisotropic smoothing

DΓ = λaDa ⊕ λbDb,

Deep Conditional Transformation Models 7

where the involved tuning parameters λa, λb and penalty matrices Da,Db corre-
spond to the direction of y and the features x, respectively. Note, however, that
for Γ , the direction of y usually does not require additional smoothing as it is
already regularized through the monotonicity constraint [16]. The corresponding
penalty therefore reduces to

DΓ = IP ⊗ (λbDb) (9)

with the diagonal matrix IP of size P . These penalties are added to the negative
log-likelihood defined by (7), e.g.,

`pen = `(h(y|x)) + vec(Γ)>DΓvec(Γ)

for a model with penalized structured effects only in B. As done in [37] we
use the Demmler-Reinsch orthogonalization to relate each tuning parameter for
smoothing penalties to its respective degrees-of-freedom, which allows a more
intuitive setting of parameters and, in particular, allows to define equal amount
of penalization for different smooth terms. Leaving the least flexible smoothing
term unpenalized and adjusting all others to have the same amount of flexibility
works well in practice.

2.4 Bijectivitiy and Monotonocity Constraints

To ensure bijectivity of the transformation of each yi, we use Bernstein polyno-
mials for A and constraint the coefficients in Γ to be monotonically increasing
in each column. The monotonicity of the coefficients in Γ can be implemented
in several ways, e.g., using the approach by [11] or [39] on a column-basis. Note
that this constraint directly yields monotonically increasing transformation func-
tions if P = 1, i.e., if no or only one feature is used for h1. If P > 1, we can
ensure monotonicity of h1 by using predictor terms in B that are non-negative.
A corresponding proof can be found in the Supplement (Lemma 1). Intuitively
the restriction can be seen as an implicit positivity assumption on the learned
standard deviation of the error distribution FZ as described in the next section
using the example of a normal distribution. Although non-negativity of predictor
terms is not very restrictive, e.g., allowing for positive linear features, basis
functions with positive domain such as B-splines or deep networks with positivity
in the learned latent features (e.g., based on a ReLU activation function), the
restriction can be lifted completely by simply adding a positive constant to B.

2.5 Interpretability and Identifiability Constraints

Several choices for M and FZ will allow for particular interpretation of the
coefficients learned in Ψ and Γ . When choosing FZ = Φ and M = 1, the DCTM
effectively learns an additive regression model with Gaussian error distribution,
i.e., Y |x ∼ N(β̃(x), σ2

s). The unstandardized structured additive effects in β̃(x)
can then be divided by σs yielding β(x). Therefore β(x) can be interpreted as

8 Baumann et al.

shifting effects of normalized features on the transformed response E(h1(y)|x).
For M > 1, features in β(x) will also affect higher moments of Y |x through a non-
linear h1, leading to a far more flexible modeling of FY |x. Smooth monotonously
increasing estimates for β(x) then allow to infer that a rising x leads to rising
moments of Y |x independent of the choice for FZ . Choosing FZ = FMEV or
FZ = FL allows β(x) to be interpreted as additive changes on the log-hazard
ratio or on the log-odds ratio, respectively. The weights in Γ determine the
effect of x on FY |x as well as whether FY |x varies with the values of y yielding
a response-varying distribution [3] or not. In general, structured effects in Γ

!𝐹!|#

!ℎ!(𝑦)

$ℎ! =

𝑦

+

𝑐̂!(𝑥)

+𝐹'

𝑦

1

0

=

= !𝛽(𝑥)

Δ𝑥

Δ𝑥

Fig. 2. Schematic representation of an exemplary DCTM with a learned transformation
ĥ1 for the outcome y. The shift term β̂(x) is composed of an estimated smooth term
ĉ1(x) = c1(x)ψ̂1 for x and a neural network predictor. An increase in x is indicated by
∆x with corresponding effect on F̂Y |x through ĥ2 = β̂(x) on the right hand side of the
equation.

are coefficients of the tensor product A � B and can, e.g., be interpreted by
2-dimensional contour or surface plots (see, e.g., Figure 4).

In order to ensure identifiability and thus interpretability of structured effects
in h1 and h2, several model definitions require the additional specifications of
constraints. If certain features in B or C are modeled by both a flexible neural
network predictor d(x) and structured effects s(x), the subnetwork d(x) can
easily assimilate effects s(x) is supposed to model. In this case, identifiability
can be ensured by an orthogonalization cell [37], projecting the learned effects of
d(x) in the orthogonal complement of the space spanned by features modeled
in s(x). Further, when more than one smooth effect or deep neural network is
incorporated in either B or C, these terms can only be learned up to an additive
constants. To solve this identifiability issue we re-parameterize the terms and
learn these effects with a sum-to-zero constraint. As a result, corresponding
effects can only be interpreted on a relative scale. Note that this is a limitation
of additive models per se, not our framework.

Deep Conditional Transformation Models 9

3 Numerical Experiments

We now demonstrate the efficacy of our proposed framework for the case of a
shift CTM, a distributional CTM and an interacting CTM based on a general
data generating process (DGP).

Data Generating Process The data for the numerical experiments were generated
according to g(y) = η(x) + ε(x) where g : Rn 7→ Rn is bijective and differentiable,
η(x) is specified as in (3) and ε ∼ FZ with FZ being the error distribution. We
choose ε(x) ∼ N(0, σ2(x)) where σ2(x) ∈ R+ is specified as in (3) so that we
can rewrite the model as

FZ

(
g(y)− η(x)

σ(x)

)
= FZ (h1 + h2) . (10)

From (1) and our model definition, (10) can be derived by defining h1 as
g(y)σ−1(x) and h2 as −η(x)σ−1(x). We finally generate y according to g−1(η(x)+
ε(x)) with ε(x) ∼ N(0, σ2(x)). We consider different specification for g, η, σ
and the order of the Bernstein polynomial M for different samples sizes n (see
Appendix).

Evaluation To assess the estimation performance, we compute the relative
integrated mean squared error (RIMSE) between ĥ1, evaluated on a fine grid
of (yi, σ(xi)) value pairs, with the true functional form of h1 as defined by the
data generating process. For the estimation performance of h2, we evaluate the
corresponding additive predictor by calculating the mean squared error (MSE)
between estimated and true linear coefficients for linear feature effects and the
RIMSE between estimated and true smooth non-linear functions for non-linear
functional effects. We compare the estimation against transformation boosting
machines (TBM) [14] that also allow to specify structured additive predictors.
Note, however, that TBMs only implement either the shift (TBM-Shift) or
distributional CTM (TBM-Distribution), but do not allow for the specification
of an interacting CTM with structured predictors, a novelty of our approach. In
particular, only the TBM-Shift comes with an appropriate model specification
such that it can be used for comparison in some of the DGP defined here.

Results We first discuss the 4 out of 10 specifications of the true DGP where h1 is
not learned through features and thus allows for a direct comparison of TBM-Shift
and DCTMs. For h1, we find that, independent of the size of the data set and the
order of the Bernstein polynomial, DCTMs provide a viable alternative to TBM-
Shift, given the overlap between the (RI)MSE distributions and the fact that the
structured effects in DCTMs are not tuned extensively in these comparisons. For
h2, DCTMs outperform TBM-Shift in all 16 configurations for M/n among the
4 DGPs depicted in Figure 5 when taking the mean or the median across the
20 replications. The simulation results for the 6 remaining DGPs can be found
in the supplementary material. For h1 and h2, the results for the majority of
specifications reveal that DCTMs benefit from lower order Bernstein polynomials

10 Baumann et al.

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●●

h1 h2

D
G

P
 1

D
G

P
 2

D
G

P
 3

D
G

P
 4

15/500 25/500 15/3000 25/3000 15/500 25/500 15/3000 25/3000

−8

−6

−4

−2

−7
−6
−5
−4
−3
−2
−1

−8

−6

−4

−2

−6
−5
−4
−3
−2
−1

Order Polynomials/Sample Size

lo
g(

(R
I)

M
S

E
)

Fig. 3. Comparison of the logarithmic (RI)MSEs between TBM-Shift (yellow) and
DCTM (blue) for different data generating processes (DGP in rows) as well as different
orders of the Bernstein polynomial and the sample size (M/n on the x-axis) for 20 runs.
The specification of the DGPs can be found in the Appendix and for this figure are
based on σ1 with alternating g ∈ {g1, g2} and η ∈ {η1, η2}.

independent of the sample size. When only unstructured model components
were specified, DCTM’s estimation of h1 benefits from Bernstein polynomial
with higher order. This holds regardless of g. Figure 4 exemplary depicts the
estimation performance of DCTMs for one DGP setting.

4 Application

We now demonstrate the application of DCTMs by applying the approach to a
movie reviews and a face data set.

4.1 Movie Reviews

The Kaggle movies data set consists of n = 4442 observations. Our goal is
to predict the movies’ revenue based on their production budget, popularity,
release date, runtime and genre(s). Figure 1 in the Appendix depicts the revenue
for different genres. We deliberately do not log-transform the response, but let
the transformation network convert a standard normal distribution (our error
distribution) to fit to the given data.

Model Description First, we define a DCTM solely based on a structured additive
predictor (i.e. no deep neural net predictor) as a baseline model which we refer to

Deep Conditional Transformation Models 11

−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7
−5

−4

−3 −2 −1 0 1 2 3 4

5
6

7

1.00

1.25

1.50

1.75

2.00

−1 0 1 2
y

x 6

h1

−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8−4

−3

−2 −1 0 1 2 3 4
5

6
7
8

1.00

1.25

1.50

1.75

2.00

−1 0 1 2
y

x 6

h1
^

−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5−1.5

−1

−0.5−0.5 0 0.50.5

1

1.5

1.25

1.50

1.75

−3 −2 −1 0 1 2 3
x5

x 6

h2

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

−0.5

00 0.5 11

1.5

2

2.5

1.25

1.50

1.75

−3 −2 −1 0 1 2 3
x5

x 6

h2
^

Fig. 4. Exemplary visualization of the learned feature-driven interaction term h1 (upper
row) as well as shift term h2 (lower row). Plots on the left show the data generating
surface h1, h2, plots on the right the estimated surface ĥ1, ĥ2 for different values of the
feature inputs. The plots correspond to the DGP setting g1, η1, σ2 (see Appendix).

as the “Structured Model”. The structured additive predictor includes the binary
effect for each element of a set of 20 available genres (x0) as well as smooth effects
(encoded as a univariate thin-plate regression splines [42]) for the popularity score
(x1), for the difference of release date and a chosen date in the future in days
(x2), for the production budget in US dollars (x3) and the run time in days (x4):∑20

r=1βrI(r ∈ x0,i) + s1(x1,i) + s2(x2,i) + s3(x3,i) + s4(x4,i). (11)

This linear predictor (11) is used to define the structured component in in the
shift term β(x). For the interaction term, the STAP consists of all the genre
effects and the resulting design matrix B is then combined with the basis of a
Bernstein polynomial A of order M = 25. We compare this model with three
deep conditional transformation models that use additional textual information
of each movie by defining a “Deep Shift Model”, a “Deep Interaction Model”
and a “Deep Combination Model”. The three models all include a deep neural
network as input either in the shift term, in the interaction term or as input for
both model parts, respectively. As deep neural network we use an embedding
layer of dimension 300 for 10000 unique words and combine the learned outputs
by flatting the representations and adding a fully-connected layer with 1 unit for
the shift term and/or 1 units for the interaction term on top. As base distribution
we use a logistic distribution, i.e., FZ(h) = FL(h) = (1 + exp(−h))−1.

Comparisons We use 20% of the training data as validation for early stopping
and define the degrees-of-freedom for all non-linear structured effects using the
strategy described in Section 2.3. We compare our approach again with the shift

12 Baumann et al.

and distributional TBM (TBM-Shift and TBM-Distribution, respectively) as
state-of-the-art baseline. We run both models with the predictor specification
given in (11). For TBM, we employ a 10-fold bootstrap to find the optimal
stopping iteration by choosing the minimum out-of-sample risks averaged over all
folds. Finally we evaluate the performance on the test data for both algorithms.

Results The non-linear estimations of all models show a similar trend for the
four structured predictors. Figure 5 depicts an example for the estimated partial
effects in the h2 term of each model. The resulting effects in Figure 5 can be
interpreted as functional log-odds ratios due to the choice FZ = FL. For example,
the log-odds for higher revenue linearly increase before the effect stagnates for
three of the four model at a level greater than 150 million USD. Table 4.1 shows

release date (days since) runtime (days)

budget (in USD) popularity

0 10000 20000 30000 0 100 200 300

0e+00 1e+08 2e+08 3e+08 0 200 400 600

0

5

10

0.5

1.0

1.5

2.0

0

2

4

0.25

0.50

0.75

1.00

value

pa
rt

ia
l e

ffe
ct

Structured

Deep Shift

Deep Interaction

Deep Combination

Fig. 5. Estimated non-linear partial effect of the 4 available numerical features for h2

(in each sub-plot) based on the four different DCTM models (colors).

(Movie Reviews column) the mean predicted log-scores [10], i.e., the average
log-likelihood of the estimated distribution of each model when trained on 80%
of the data (with 20% of the training data used as validation data) and evaluated
on the remaining 20% test data. Results suggest that deep extensions with movie
descriptions as additional predictor added to the baseline model can improve over
the TBM, but do not achieve as good prediction results as the purely structured
DCTM model in this case. Given the small amount of data, this result is not
surprising and showcases a scenario, where the potential of the structured model
part outweighs the information of a non-tabular data source. The flexibility of our
approach in this case allows to seamlessly traverse different model complexities
and offers a trade-off between complexity and interpretability.

Deep Conditional Transformation Models 13

Table 1. Average result (standard deviation in brackets) over different training/test-
splits on the movie reviews (left) and UTKFace data set. Values correspond to negative
predicted log-scores (PLS; smaller is better) for each model with best score in bold.

Model Movie Reviews UTKFace

D
C

T
M

Structured 19.26 (0.18) 3.98 (0.02)

Deep Shift 19.32 (0.20) 3.81 (0.52)

Deep Interaction 19.69 (0.22) 3.79 (0.21)

Deep Combination 19.67 (0.19) 3.37 (0.09)
T

B
M Shift 23.31 (0.83) 4.25 (0.02)

Distribution 22.38 (0.31) 4.28 (0.03)

4.2 UTKFace

The UTKFace dataset is a publicly available image dataset with n = 23708
images and additional tabular features (age, gender, ethnicity and collection
date). We use this data set to investigate DCTMs in a multimodal data setting.

Model Description Our goal is to learn the age of people depicted in the images
using both, the cropped images and the four tabular features. As in the previous
section we fit the four different DCTM models, all with the same structured
additive predictor (here effect for race, gender and a smooth effect for the collection
date) and add a deep neural network predictor to the h1 (Deep Interaction),
h2 (Deep Shift), to both (Deep Combination) or only fit the structured model
without any information of the faces (Structured). The architecture for the faces
consists of three CNN blocks (see Appendix for details) followed by flattening
operation, a fully-connected layer with 128 units with ReLU activation, batch
normalization and a dropout rate of 0.5. Depending on the model, the final layer
either consists of 1 hidden unit (Deep Shift, Deep Interaction) or 2 hidden units
(Deep Combination).

Comparisons The baseline model is a two-stage approach that first extracts latent
features from the images using a pre-trained VGG-16 [40] and then uses these
features together with the original tabular features in a TBM-Shift/-Distribution
model to fit a classical structured additive transformation model. We again
compare the 4 DCTM models and 2 baseline models using the PLS on 30%
test data and report model uncertainties by repeating the data splitting and
model fitting 4 times. For the DCTMs we use early stopping based on 20% of the
train set used for validation. For TBM models we search for the best stopping
iteration using a 3-fold cross-validation. The results in Table 4.1 (UTKFace
column) suggest that our end-to-end approach works better than the baseline
approach and that the DCTM benefits from a combined learning of h1 and h2
through the images.

14 Baumann et al.

4.3 Benchmark Study

We finally investigate the performance of our approach by comparing its density
estimation on four UCI benchmark data sets (Airfoil, Boston, Diabetes, Forest
Fire) against parametric alternatives. We use a deep distributional regression
approach (DR) [37], a Gaussian process (GP) and a GP calibrated with an isotonic
regression (IR) [26]. We adapt the same architecture as in DR to specifically
examine the effect of the proposed transformation. To further investigate the
impact of the polynomials’ order M (i.e., flexibility of the transformation vs. risk
of overfitting), we run the DCTM model with M ∈ {1, 16, 32, 64} (DCTM-M).
We also include a normalizing flow baseline with a varying number of radial flows
M (NF-M; [36]). This serves as a reference for a model with more than one
transformation and thus potentially more expressiveness at the expense of the
feature-outcome relationship being not interpretable. Details for hyperparameter
specification can be found in the Appendix. Results (Table 2) indicate that

Table 2. Comparison of neg. PLS (with standard deviation in brackets) of different
methods (rows; best-performing model in bold, second best underlined) on four different
UCI repository datasets (columns) based on 20 different initializations of the algorithms.

Airfoil Boston Diabetes Forest F.

DR 3.11 (0.02) 3.07 (0.11) 5.33 (0.00) 1.75 (0.01)
GP 3.17 (6.82) 2.79 (2.05) 5.35 (5.76) 1.75 (7.09)
IR 3.29 (1.86) 3.36 (5.19) 5.71 (2.97) 1.00 (1.94)

DCTM-1 3.07 (0.01) 2.97 (0.03) 5.44 (0.02) 1.83 (0.02)
DCTM-16 3.07 (0.02) 2.76 (0.02) 5.34 (0.01) 1.30 (0.12)
DCTM-32 3.08 (0.02) 2.71 (0.03) 5.39 (0.02) 1.08 (0.15)
DCTM-64 3.08 (0.03) 2.66 (0.05) 5.37 (0.01) 1.41 (1.03)

NF-1 3.04 (0.22) 2.98 (0.20) 5.59 (0.10) 1.77 (0.02)
NF-3 2.88 (0.17) 2.76 (0.14) 5.54 (0.11) 1.76 (0.02)
NF-5 2.90 (0.18) 2.81 (0.20) 5.47 (0.09) 1.77 (0.12)

our approach performs similar to alternative methods. For two data sets, the
greater flexibility of the transformation yields superior performance compared to
methods without transformation (DR, GP, IR), suggesting that the transition
from a pure parametric approach to a more flexible transformation model can
be beneficial. For the other two data sets, DCTM’s performance is one standard
deviation apart from the best performing model. For Airfoil the even greater
flexibility of a chain of transformations (NF-M in comparison to DCTM-M)
improves upon the result of DCTMs.

5 Conclusion and Outlook

We introduced the class of deep conditional transformation models which unifies
existing fitting approaches for transformation models with both interpretable (non-
)linear model terms and more complex predictors in one holistic neural network.

Deep Conditional Transformation Models 15

A novel network architecture together with suitable constraints and network
regularization terms is introduced to implement our model class. Numerical
experiments and applications demonstrate the efficacy and competitiveness of
our approach.

Acknowledgements This work has been partly funded by SNF grant 200021-
184603 from the Swiss National Science Foundation (Torsten Hothorn) and the
German Federal Ministry of Education and Research (BMBF) under Grant No.
01IS18036A (David Rügamer).

References

1. Athey, S., Tibshirani, J., Wager, S., et al.: Generalized random forests. The Annals
of Statistics 47(2), 1148–1178 (2019)

2. Box, G.E., Cox, D.R.: An analysis of transformations. Journal of the Royal Statistical
Society: Series B (Methodological) 26(2), 211–243 (1964)

3. Chernozhukov, V., Fernández-Val, I., Melly, B.: Inference on counterfactual distri-
butions. Econometrica 81(6), 2205–2268 (2013)

4. Depeweg, S., Hernandez-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition
of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In:
International Conference on Machine Learning. pp. 1184–1193. PMLR (2018)

5. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Cubic-spline flows. arXiv
preprint arXiv:1906.02145 (2019)

6. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. In:
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett,
R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran
Associates, Inc. (2019)

7. Fahrmeir, L., Kneib, T., Lang, S., Marx, B.: Regression: Models, Methods and
Applications. Springer Berlin Heidelberg (2013)

8. Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Com-
puter Aided Geometric Design 29(6), 379–419 (2012)

9. Foresi, S., Peracchi, F.: The conditional distribution of excess returns: An empirical
analysis. Journal of the American Statistical Association 90(430), 451–466 (1995)

10. Gelfand, A.E., Dey, D.K.: Bayesian model choice: asymptotics and exact calculations.
Journal of the Royal Statistical Society: Series B (Methodological) 56(3), 501–514
(1994)

11. Gupta, M., Cotter, A., Pfeifer, J., Voevodski, K., Canini, K., Mangylov, A., Moczyd-
lowski, W., van Esbroeck, A.: Monotonic calibrated interpolated look-up tables.
Journal of Machine Learning Research 17(109), 1–47 (2016)

12. Hora, S.C.: Aleatory and epistemic uncertainty in probability elicitation with an
example from hazardous waste management. Reliability Engineering & System
Safety 54(2-3), 217–223 (1996)

13. Hothorn, T.: Most likely transformations: The mlt package. Journal of Statistical
Software, Articles 92(1), 1–68 (2020)

14. Hothorn, T.: Transformation boosting machines. Statistics and Computing 30(1),
141–152 (2020)

15. Hothorn, T., Kneib, T., Bühlmann, P.: Conditional transformation models. Journal
of the Royal Statistical Society: Series B: Statistical Methodology pp. 3–27 (2014)

16 Baumann et al.

16. Hothorn, T., Möst, L., Bühlmann, P.: Most likely transformations. Scandinavian
Journal of Statistics 45(1), 110–134 (2018)

17. Hothorn, T., Zeileis, A.: Predictive distribution modeling using transformation
forests. Journal of Computational and Graphical Statistics pp. 1–16 (2021)

18. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: A tutorial introduction. arXiv preprint arXiv:1910.09457 (2019)

19. Jaini, P., Selby, K.A., Yu, Y.: Sum-of-squares polynomial flow. CoRR (2019)

20. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning
for computer vision? In: Advances in neural information processing systems. pp.
5574–5584 (2017)

21. Klein, N., Hothorn, T., Kneib, T.: Multivariate conditional transformation models.
arXiv preprint arXiv:1906.03151 (2019)

22. Kobyzev, I., Prince, S., Brubaker, M.: Normalizing flows: An introduction and
review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence p. 1–1 (2020). https://doi.org/10.1109/tpami.2020.2992934

23. Koenker, R.: Quantile Regression, vol. Economic Society Monographs. Cambridge
University Press (2005)

24. Kook, L., Herzog, L., Hothorn, T., Dürr, O., Sick, B.: Ordinal neural network trans-
formation models: Deep and interpretable regression models for ordinal outcomes.
arXiv preprint arXiv:2010.08376 (2020)

25. Kooperberg, C., Stone, C.J., Truong, Y.K.: Hazard regression. Journal of the
American Statistical Association 90(429), 78–94 (1995)

26. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using
calibrated regression 80, 2796–2804 (2018)

27. Leorato, S., Peracchi, F.: Comparing Distribution and Quantile Regression. EIEF
Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF)
(2015)

28. Meinshausen, N.: Quantile regression forests. Journal of Machine Learning Research
7(Jun), 983–999 (2006)

29. Müller, T., McWilliams, B., Rousselle, F., Gross, M., Novák, J.: Neural importance
sampling (2019)

30. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan,
B.: Normalizing flows for probabilistic modeling and inference (2019)

31. Pratola, M., Chipman, H., George, E.I., McCulloch, R.: Heteroscedastic BART via
multiplicative regression trees. Journal of Computational and Graphical Statistics
(2019)

32. Ramasinghe, S., Fernando, K., Khan, S., Barnes, N.: Robust normalizing flows
using bernstein-type polynomials (2021)

33. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. Proceedings
of Machine Learning Research, vol. 37, pp. 1530–1538. PMLR (2015)

34. Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale
and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics)
54(3), 507–554 (2005)

35. Rothe, C., Wied, D.: Misspecification testing in a class of conditional distributional
models. Journal of the American Statistical Association 108(501), 314–324 (2013)

36. Rothfuss, J., Ferreira, F., Boehm, S., Walther, S., Ulrich, M., Asfour, T., Krause,
A.: Noise regularization for conditional density estimation (2020)

37. Rügamer, D., Kolb, C., Klein, N.: A Unified Network Architecture for Semi-
Structured Deep Distributional Regression. arXiv preprint arXiv:2002.05777 (2020)

https://doi.org/10.1109/tpami.2020.2992934

Deep Conditional Transformation Models 17

38. Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J., Hirsch, O., Donner-
Banzhoff, N., Hüllermeier, E.: Reliable classification: Learning classifiers that distin-
guish aleatoric and epistemic uncertainty. Information Sciences 255, 16–29 (2014)

39. Sick, B., Hothorn, T., Dürr, O.: Deep transformation models: Tackling complex re-
gression problems with neural network based transformation models. arXiv preprint
arXiv:2004.00464 (2020)

40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015)

41. Tabak, E.G., Turner, C.V.: A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics 66(2), 145–164 (2013)

42. Wood, S.N.: Thin plate regression splines. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 65(1), 95–114 (2003)

43. Wu, C.O., Tian, X.: Nonparametric estimation of conditional distributions and
rank-tracking probabilities with time-varying transformation models in longitudinal
studies. Journal of the American Statistical Association 108(503), 971–982 (2013)

	Deep Conditional Transformation Models

