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Abstract. The term dataset shift refers to the situation where the data
used to train a machine learning model is different from where the model
operates. While several types of shifts naturally occur, existing shift
detectors are usually designed to address only a specific type of shift. We
propose a simple yet powerful technique to ensemble complementary shift
detectors, while tuning the significance level of each detector’s statistical
test to the dataset. This enables a more robust shift detection, capable
of addressing all different types of shift, which is essential in real-life
settings where the precise shift type is often unknown. This approach
is validated by a large-scale statistically sound benchmark study over
various synthetic shifts applied to real-world structured datasets.
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1 Introduction

It is crucial for ML practitioners to detect possibly harmful changes of the data
consumed by ML models, thus identifying situations of dataset shift, where the
joint distribution P(X,Y ) of the input features X and output Y in the source
domain S, used to train the model, is different from the distribution in the target
domain T , where the model operates.

There are many reasons why target domain data is different in practice from
carefully collected source data. For instance, by sample selection bias, when
some samples are less likely to be included in the source datasets because of
a specific selection process implicitly dependent on the output variable. This
is often the case for data collected through web surveys, where self-selection
and under-representation of people with limited internet access prevent reliable
inference [5]. Another example of dataset shift affecting the model validity is when
the target variable distribution is not stationary. This is the case for pneumonia
diagnosis models, which are sensitive to seasonal outbreaks [14].

Dataset shifts are usually categorised as follows: (i) prior shift indicates that
the only changing factor is the prior distribution PS(Y ) 6= PT (Y ), (ii) covari-
ate shift indicates that the only changing factor is the covariates distribution
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PS(X) 6= PT (X), while (iii) sample selection bias impacts both prior and covari-
ate distributions. Another cause for dataset change is concept shift, where the
dependence of the target variable on the features changes from source to target
domain. In this work we focus on unsupervised approaches, while concept shift
detection requires target labels and so is not covered in this study.

To protect deployed models from dataset shift, we need to compare source
and target data. The most challenging aspect of shift detection stems from the
absence of ground truth for the target variable, preventing the use of simple
model metric monitoring techniques. Thus, in order to detect changes in the
output distribution, it is essential to find robust proxies.

There are two dominant approaches for generic shift detection, one comparing
feature distributions, either directly or through a domain-discriminating classifier
trained on the features from the two domains [21], the second comparing the
distributions of the model predictions as proxies for the true prior distributions,
called Black-Box Shift Detector (BBSD) [14]. The feature-based approaches are
more sensitive to shifts impacting the feature distribution, while the BBSD has
been specifically designed to deal with prior shift. In both cases, hypothesis
testing is employed to seek statistically significant differences. Although these
two approaches have different designs and purposes, they are usually compared
on generic shift detection tasks mainly on datasets for visual classification [21].

The key idea of this paper is that ensembling shift detectors and adapting the
significance level of their statistical tests is a more robust approach, especially
suited for real-life settings where the precise shift type is unknown. This result is
supported by the following contributions:

– We propose various ensemble schemes to combine feature- and prediction-
based shift detectors and validate detectors ensembling as a more robust
solution.

– Motivated by the observation that the statistical tests needed for drift detec-
tion have a different behaviour across datasets, we propose the adaptation
of the significance level required for detection to the specific dataset under
study.

– We perform a statistically sound benchmark study of base and ensembled shift
detectors on structured datasets (21 OpenML1 and Kaggle 2 classification
datasets, largely differing in number of features and class proportions). Indeed
the vast majority of deployed models in production consume structured data,
highlighting the need for studies on model and data monitoring approaches
for this modality. The shift detectors are evaluated against various types
of synthetic drifts, including selection bias drift, which is less explored in
the existing shift detection benchmarks although very frequent in real-world
scenarios.

– Last but not least, we also investigate both theoretically and empirically
the degradation of the BBSD detector, a core component of the detectors
ensembles, as the predictive power of the underlying classifier drops.

1 www.openml.org
2 www.kaggle.com
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After presenting related work, Section 3 describes the shift detection ap-
proaches in more details, as well as promoting the benefit of adapting the
statistical tests to the dataset. Section 4 presents the experimental setting with a
focus on synthetic drift generation, while Section 5 discusses the main outcomes
and observations from the experiments.

2 Related Work

Dataset shift [20,16] has been addressed extensively in the context of domain
adaptation, by exploring techniques aiming to align the model representations
of source and target data, especially without target labels [13,22].

Label shift correction is a sub-field of domain adaptation that recently con-
tributed to novel shift detection approaches. In particular, [14] proposed a shift
detection approach based on the Black Box Shift Learning technique to correct
label shift. [21] presented a general framework for shift detection and evaluated
the BBSD and other state-of-the-art shift detection techniques on image datasets.
A similar approach to correct prior shift is the Regularized Learning under Label
Shifts [3], also relying on classifiers predictions. An alternative maximum likeli-
hood approach to estimate target label distributions highlights the benefits of
calibration under prior shift [1,11].

Best practices for responsible deployment of ML models include data moni-
toring, by inspecting incoming data for any signs of deviation from the expected
scenario [2,12]. While dataset shift detection is an important part of ML mon-
itoring system, recent work [24,10] has focused on directly predicting models
performance drop for specific task-relevant drifts.

Besides monitoring possible distributional changes, the analysis of individual
samples against the source dataset introduces the anomaly detection problem,
extensively treated in the machine learning literature [23,7,15].

Another related field is out-of-distribution detection [25], which together
with shift detection task has been used recently to evaluate ML models predictive
uncertainty [18]. The study of predictive uncertainty offers a unifying view of
the robustness a ML model should be equipped with to address any type of
unexpected abnormality in input data. Finally hypothesis testing [26] is a core
part of all shift detection techniques.

3 Shift Detectors

3.1 Notations and Problem Setup

Let X be an input space and Y be a label space where |Y| is finite. Let X ∈ X
and Y ∈ Y be random variables. We denote by f : X → Y a predictor of the
classification task at hand and we will refer to it as the primary model.
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3.2 Feature-Based Detection

The simplest feature-based detection is univariate hypothesis testing on individual
features. For n features, this requires n univariate hypotheses tests to separately
compare the distributions of features between the source and the target domain,
and eventually aggregate the n p-values through Bonferroni correction.

However it can quickly become cumbersome when the feature space is large.
For a more scalable solution, a more compact data representation can be ob-
tained through standard dimensionality reduction techniques such as Principal
Component Analysis (PCA) or Sparse Random Projection (SRP) [21].

In this work we do not consider detectors based on multivariate hypothe-
sis testing as they were found to offer comparable performance to aggregated
univariate tests [21].

A different solution to detect feature distributional changes in high dimensional
datasets relies on domain-discriminating models [4]. The domain classifier is a
model trained to discriminate source and target domains, using the very same
features employed by the primary model. By design a domain classifier is meant
to identify covariate shift and sample selection bias, but not prior shift which
assumes unchanged feature distribution.

High accuracy of the classifier is a symptom of dataset shift, therefore a
Binomial test with a null hypothesis of 0.5 accuracy for indistinguishable domains
and balanced datasets is used to make sure the observed difference is statistically
significant. One limitation of the domain classifier is the need of retraining for
any new incoming target dataset.

3.3 Prediction-Based Detection

BBSD exploits the primary model to measure the distributions of predictions on
source and target features, which are used as proxies for the true source and target
label distributions. There are two variants of BBSD, one using the probability
outputs (BBSDs), and the other using the hard-thresholded predictions (BBSDh).

For BBSDh, a χ2 test is used to compare source and target predicted class
distributions, while for BBSDs the Kolmogorov-Smirnov (KS) test is employed to
compare per-class probability distributions. The primary model predictions are
k-dimensional with k = |Y| the number of classes in the primary task, thus the
BBSDs shift detection requires k univariate hypothesis tests. As in the previous
section, Bonferroni correction [21] can be used to aggregate the k KS tests.

Complementarily to the domain classifier, the BBSD has been specifically
designed to address prior shift situations, but the distribution of predictions can
also serve as proxy for the distribution of covariates [14].

3.4 Limitations of Shift Detectors

BBSD degrades as primary performances drop. We present two limitations of the
above shift detection method. Firstly, the statistical power of BBSD is limited
by the predictive power of the primary model. We theoretically prove in the
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Appendix (cf. Section A.1) that there exist prior shifts such that the smaller
the predictive power of the model is, the higher the p-values of the BBSD test
are, reducing the sensitivity of the test. This phenomenon also occurs on more
general type of shifts as validated experimentally (cf. Section 4).

Detection power reduced by Bonferroni correction. Another limitation stems from
the use of Bonferroni correction. Indeed, when the p-values of k hypotheses are
aggregated by Bonferroni correction, a significance level of α/k is required for
each hypothesis to ensure that the Type-I error rate stays below α. However if
the hypotheses are not independent, this correction is too conservative and the
family-wise Type-I error is controlled at a level strictly lower than α, resulting
in a loss of power [17,19]. This is the case for the BBSDs test as the underlying
tests are done on the distribution of predicted probabilities of each class. For
binary classification, the null hypothesis for one class and its complementary
class are the same so that the Type-I error rate is actually bounded by α/2
(instead of the expected α), reducing the test’s power. This is also the case for
the univariate hypothesis testing on individual features, where the Bonferroni
correction is conservative because of features correlation. We propose to address
the latter limitation by adapting the significance level to the dataset.

3.5 Dataset Adaptive Significance Level

To improve the BBSDs test’s power, keeping the Type-I error below a desired
rate (i.e. 5%), we set the significance level to the 5% quantile of the empirical
p-value distribution under the null hypothesis. We achieve this by performing 100
runs of shift detection comparing different random splits of the source dataset
only.

A dataset-specific significance level is not only beneficial for shift detectors
requiring aggregation of multiple univariate tests, but also when dealing with
small datasets (i.e. from 10 to 100 samples). Indeed, performing statistical tests on
small datasets yields p-values that can only assume few values. This quantization
leads to non-uniform distributions of p-values under the null hypothesis so that
a dataset-specific significance level is also beneficial.

The drawback of this adaptation represents the initial setup cost of running
detection experiments on the source data, but the selected significance level can
be used for all subsequent shift detection tasks for the given dataset.

Finally, for very imbalanced datasets (creditcard, pc2 and mc1 where the
minority class represents less than 0.7%), the distribution of the BBSDs p-values
under H0 is extremely skewed towards 1. The study of the impact of imbalanced
datasets on prediction-based detectors is left for future research.

As a natural extension of base shift detectors, the detectors ensembles also
benefit from the adaptation of the significance level.

3.6 Detectors Ensembles

We evaluate two ensembling strategies combining feature and prediction-based
shift detectors, in order to exploit their complementary detection abilities:
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– domain classifier trained on both features and primary model predictions;
– pair of statistical tests from complementary shift detectors with Bonferroni

correction.

Ensembling strategies are naturally robust to various shift types, and represent
a better fit to real-life settings where the precise shift type is often unknown. We
confirm experimentally that ensembling retains the advantages of feature- and
prediction-based shift detectors (cf. Section 4), providing a single practical tool
for reliable drift monitoring.

4 Experimental Setup

The purpose of our experiments is to compare the different detection approaches
on various types of simulated drift over a large collection of structured datasets.
Specifically we aim at highlighting differences in the approaches related to both
the detection power and efficiency, the latter expressed in terms of minimum
number of samples required to detect a shift. All the details of the experiments
setup and reproducibility of this work are available in the Appendix (cf. Section
A.2).

4.1 Datasets and Shift Simulation

In our experiments we use 21 datasets for classification tasks from OpenML and
Kaggle as listed in Table 7 of the Appendix.

In order to simulate dataset drift we synthetically apply different types of
shift to a split of the original dataset. The 10 simulated shifts belong to the
following categories and are detailed in Table 1:

– Prior shift: generated by changing the fraction of samples belonging to a
class.

– Covariate shift due to Gaussian noise: generated by adding Gaussian noise
to some numeric features of a fraction of samples.

– Covariate shift due to Adversarial noise: generated by applying Adversarial
noise to numeric features. It’s a more subtle kind of noise, slightly changing
the features but inducing the primary model to switch its predicted class.

– Selection bias: generated by selecting samples with a probability dependent
on the sample features and implicitly dependent on the class, possibly over-
sampling by interpolation of existing observations.

The severity of those shifts is controlled by the parameters shown in Table 1.
Our experiments explore the effect of changing those parameters values generating
a total of 19 drifts, then averaging the outcome from the same shift type to build
the results for the 10 shifts types in Table 1.

The combination of different shift types is also relevant as it can occur in
real-life settings, for this reason the study of the detectors response to composite
shifts will be considered in future work.
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Table 1: Simulated shift types.
Category Shift type Parameters Description

Prior shift
Knock-out

s = 25% Remove s% of majority class.
s = 40%

Only-One Select only-one minority class.

Covariate shift

Small Gaussian

s = 50% f = 50% Small amount of Gaussian Noise applied on s% of samples
s = 50% f = 100% and f% of features.
s = 100% f = 50%
s = 100% f = 100%

Medium Gaussian

s = 50% f = 50% Medium amount of Gaussian Noise applied on s% of samples
s = 50% f = 100% and f% of features.
s = 100% f = 50%
s = 100% f = 100%

Adversarial ZOO
s = 25% Zeroth-order optimization black box adversarial attack
s = 50% on s% of samples [8] .

Adversarial Boundary
s = 25% Boundary black box adversarial attack
s = 50% on s% of samples [6].

Selection bias

Joint Subsampling
Keeps an observation with probability decreasing as points
are away from the samples mean.

Subsampling
f = 100% Subsample with low probability samples with low feature

values separately for f% features.

Under-sampling
s = 50% Keep s% of samples, selecting samples close to the

minority class (NearMiss3 heuristics).

Over-sampling
s = 50% Replace s% of samples with samples interpolated from

the remaining part.

4.2 Experiments

For each run of drift experiment, we test all the mentioned shift detection
approaches on subsets of the source and target datasets with number of samples
in [10, 100, 500, 1000, 2000]. The different detection approaches are reported using
the following labels:

– BBSDs: soft version of BBSD with Random Forest primary model and KS
test.

– BBSDh: hard version of BBSD with Random Forest primary model and χ2

test.
– Test X : KS test on input features.
– Test PCA: KS test on PCA-projected features.
– Test SRP : KS test on SRP-projected features.
– DC : Random Forest domain classifier with Binomial test.

The ensembling strategies are reported using the following labels:

– BBSDs + X : BBSDs and Test X with Bonferroni correction.
– BBSDs + DC : BBSDs and DC with Bonferroni correction.
– DC* : DC trained on both features and primary predictions.

For any detector, its adaptive variant using a significance level tailored to
the dataset (cf. Subsection 3.5) is referred to with the suffix (adapt), i.e. BBSDs
(adapt).
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Overall, we have collected p-values from shift detection experiments for 19
different drifts, run 5 times, for 5 different sizes, for each of the 21 datasets.
Furthermore the results over the different runs are averaged, as well as the results
from the same types of drift with different drift parameters to yield 210 (21
datasets ×10 shift types) detection results per dataset size per detector.

4.3 Metrics

The p-values of the detectors are averaged over multiple runs and when their
value is less than the significance level, we consider that a drift has been detected.
The significance level used in the non-adaptive version of the statistical test is
0.05.

Considering shift detectors as binary classifiers where one sample is one
comparison of source and target datasets, we can measure its accuracy and true
positive rate (TPR). When the accuracy is reported the evaluated shift scenarios
include a negative (no shift) situation per dataset.

To measure the data efficiency of a shift detector, we define an efficiency
score as the minimum size level required to detect the shift. As the detectors are
evaluated at different datasets sizes [10, 100, 500, 1000, 2000], they are assigned a
score from 5 to 1. A detector failing to find the shift at any size is assigned a
score of 0.

4.4 Statistical Comparison

In order to fairly compare the detection approaches, we use a Friedman test to
statistically assess whether the detectors have different performances. When the
conclusion is positive, a Nemenyi post-hoc test is used to determine pairwise
equivalence of the methods [9].

Based on the efficiency score defined in Section 4.3, the average ranks for
each detector are computed across all datasets. The Friedman test then checks
whether the detectors average ranks are significantly different from the mean
rank expected under the null-hypothesis. When the former test rejects the null-
hypothesis, the Nemenyi test is used to seek for pairwise differences between
ranks.

In order to have independent observations from different datasets, we perform
these statistical tests separately for each of the 10 shift types. We use the library
autorank3 to perform this statistical comparison.

5 Results

We first give the experiment results comparing ensembled and base shift detectors
over all datasets and by shift types. We then highlight the complementarity of
feature- and prediction-based shift detectors motivating the ensembling strategy.
Finally, we present ablation studies comparing base detectors and ensembles to
their adaptive counterparts.

3 https://github.com/sherbold/autorank

https://github.com/sherbold/autorank


Ensembling Shift Detectors 9

Fig. 1: Shift detectors accuracy by
dataset size.
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Fig. 2: Shift detectors true positive
rate (TPR) by type of shift.

5.1 Ensembling Shift Detectors

When observing the average detection accuracy across datasets and shift types
for different dataset sizes (Figure 1) some simple detection approaches stand out
(Test X and DC ), although slightly less accurate than the adaptive ensemble
technique (BBSDs+X (adapt)). However the true positive rate for different shift
types for a fixed size of 1000 (Figure 2) reveals a more complex landscape, where
the performance of base shift detectors is not uniform. For an easier reading of
Figures 1 and 2, some detectors have been omitted and the various shifts have
been grouped by type (cf. Table 1), but all the detailed TPR and accuracy results
for individual shift detectors and shift types can be found in Tables 8 and 9 of
the Appendix.

In Tables 2 and 3 we report the mean accuracy by dataset size and mean
TPR by type of shift for the base detectors and the detectors ensembles with
adaptation of the significance level to the dataset. The ensemble BBSDs+X
(adapt) comes out as the most accurate shift detector overall.

In addition to be sensitive at lower sizes BBSDs+X (adapt) is also able
to capture alone most types of shifts. This approach represents a more robust
solution able to detect the shift situations missed by either of the base shift
detectors. It is interesting to notice that simpler ensembles BBSDs+X (adapt)
and BBSDs+DC (adapt) perform very similarly to DC*, while not requiring an
additional training. Ensembling feature- and prediction-based shift detectors is a
promising strategy for an effective and robust drift monitoring.

5.2 Comparison of Base Shift Detectors

In order to have a global comparison of the performance of base detectors, we
aggregate the results from different dataset sizes with the efficiency score and
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Table 2: Accuracy across all datasets by size (mean ± std). Best values and all
values within 95% confidence interval are in bold.

BBSDs Test X DC Ensembles (adapt)
Size DC* BBSDs+DC BBSDs+X

10 0.11 ± 0.03 0.10 ± 0.02 0.10 ± 0.02 0.20 ± 0.24 0.14 ± 0.03 0.22 ± 0.11

100 0.30 ± 0.10 0.45 ± 0.10 0.44 ± 0.09 0.46 ± 0.17 0.50 ± 0.10 0.54 ± 0.10

500 0.46 ± 0.14 0.65 ± 0.12 0.64 ± 0.10 0.63 ± 0.14 0.67 ± 0.12 0.73 ± 0.11

1000 0.54 ± 0.16 0.69 ± 0.11 0.66 ± 0.11 0.63 ± 0.13 0.72 ± 0.12 0.75 ± 0.12

2000 0.63 ± 0.19 0.75 ± 0.13 0.71 ± 0.14 0.67 ± 0.15 0.79 ± 0.12 0.83 ± 0.12

Table 3: TPR across all datasets by shift type at dataset size of 1000 (mean ±
std). Best values and all values within 95% confidence interval are in bold.

BBSDs Test X DC Ensembles (adapt)
Shift type DC* BBSDs+DC BBSDs+X

Knock-Out 0.23 ± 0.30 0.11 ± 0.24 0.00 ± 0.00 0.01 ± 0.05 0.25 ± 0.30 0.34 ± 0.40

Only-One 0.60 ± 0.46 0.55 ± 0.49 0.46 ± 0.47 0.51 ± 0.48 0.70 ± 0.44 0.73 ± 0.41

Small Gaussian 0.74 ± 0.37 0.96 ± 0.14 1.00 ± 0.00 0.95 ± 0.12 1.00 ± 0.00 0.99 ± 0.04

Medium Gaussian 0.87 ± 0.32 0.98 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.04 0.99 ± 0.04

Adv. ZOO 0.21 ± 0.40 0.43 ± 0.51 0.42 ± 0.50 0.47 ± 0.50 0.43 ± 0.51 0.45 ± 0.49

Adv. Boundary 0.72 ± 0.42 0.77 ± 0.35 0.70 ± 0.41 0.72 ± 0.40 0.74 ± 0.40 0.98 ± 0.06

Subsampling Joint 0.04 ± 0.08 0.20 ± 0.30 0.10 ± 0.19 0.30 ± 0.35 0.16 ± 0.26 0.34 ± 0.30

Subsampling 0.42 ± 0.41 0.71 ± 0.45 0.70 ± 0.44 0.17 ± 0.29 0.72 ± 0.43 0.72 ± 0.45

Under-sampling 0.44 ± 0.44 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Over-sampling 0.57 ± 0.40 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

show the global average ranks by type of shift in Table 4. A first observation is
that overall the feature-based detectors have lower rank, indicating that they
are more effective than other approaches, requiring less data to detect a drift
situation.

Indeed for all the types of shift the Friedman test at p = 0.05 reported that
the approaches are not statistically equivalent.

We thus look at the results of the post-hoc Nemenyi test, represented in
Figure 3 for the case of under-sampling shift. The Critical Distance (CD) between
the average ranks reveals two groups of different detectors, with feature-based
detectors outperforming the BBSD approaches. The Test PCA, Test X, DC
detectors have statistically higher efficiency than BBSDh and BBSDs. The
Nemenyi test at p = 0.05 is not powerful enough to draw conclusions about the
other detectors.

Overall the Nemenyi tests (Figure 4) highlight the following differences:

– Prior shift : prediction-based detectors perform better than other approaches
when the label distribution is affected, as we could expect by design.

– Gaussian noise: domain classifier and direct input features testings are more
effective than other approaches.

– Adversarial Boundary : BBSDs and direct feature testing perform slightly
better than domain classifier and significantly better than BBSDh. This
perturbation is too subtle to be spotted by the domain classifier, although
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123456

BBSDh
BBSDs

Test_SRP DC
Test_X
Test_PCA

CD

Fig. 3: Pairwise comparison of all detectors with the Nemenyi test for Under-
sampling shift.

Table 4: Average ranks of 6 shift detectors based on efficiency score.

Shift type BBSDs BBSDh Test X Test PCA Test SRP DC

Knock-Out 2.71 3.02 3.74 3.67 3.62 4.24
Only-One 2.64 3.07 3.45 3.90 3.90 4.02
Small Gaussian 2.93 5.43 1.95 4.93 4.26 1.50
Medium Gaussian 2.36 5.52 2.26 4.79 4.14 1.93
Adversarial ZOO 3.81 4.21 2.60 3.93 3.40 3.05
Adversarial Boundary 2.95 4.55 2.31 4.64 3.55 3.00
Joint Subsampling 3.98 3.98 3.26 2.52 3.29 3.98
Subsampling 4.12 4.86 2.69 3.10 3.00 3.24
Under-sampling 4.81 5.55 2.43 1.98 3.50 2.74
Over-sampling 4.90 5.69 2.26 2.14 3.52 2.48

All 3.54 4.63 2.63 3.58 3.65 2.96

its important impact on class distributions is easily detected by both BBSDs
and Test X.

– Subsampling, Under-sampling, Over-sampling : features-based detectors per-
form significantly better than prediction-based detectors on perturbations
simulating selection bias.

The previous findings highlight the complementarity of feature- and prediction-
based drift detectors on different drift scenarios, motivating the proposed ensem-
bling strategy (cf. Section 3.6).

The individual results from each drift scenario per dataset are available in
the paper repository 4 for full inspection.

5.3 Impact of Dataset-Adaptive Significance Level

The dataset-adaptive significance level in BBSDs is consistently higher than
the Bonferroni-corrected significance level of α/k. For instance, for all binary

4 https://github.com/dataiku-research/drift detectors benchmark/disaggregated
results.md

https://github.com/dataiku-research/drift_detectors_benchmark/disaggregated_results.md
https://github.com/dataiku-research/drift_detectors_benchmark/disaggregated_results.md
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(j) Over-sampling shift

Fig. 4: Nemenyi post-hoc tests for the different types of drift.

classification datasets in Table 7 of the Appendix, the standard Bonferroni-
corrected significance level is α/2 = 0.025, while on average the computed adaptive
level is 0.089: this gap shows the margin to improve the test’s power, keeping
the Type-I error below 5%. This is illustrated in Figure 5 on the MagicTelescope
dataset, showing the BBSD detector as a binary classifier on all (positive) shift
detection tests at size 2000 described in the experiments and additional 100
(negative) shift detection tests on randomly sampled validation and test sets of
the same size, on which no shift is applied.
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In order to analyze the improvement achieved by adapting the significance
level of the statistical tests as described in Section 3.5, we compare the regular and
adaptive versions of the top-3 base shift detectors through Friedman and Nemenyi
post-hoc test. Table 5 and Figure 7 (in the Appendix) highlight the improved
sensitivity of the adaptive detectors. The enhancement is more important for
the prediction-based technique because of the conservative Bonferroni correction.
The sensitivity is also improved for Test X, where the correction is conservative
because of features correlation. This adaptation of the significance level reduces
the gap between the two approaches, bringing closer prediction-based and feature-
based shift detectors.

As an ablation study we investigate the improvements of the detectors en-
sembles due to the adaptation of the significance level and confirm the benefit of
this technique as shown in Table 6.

Table 5: Average ranks of 3 shift detectors based on efficiency score, comparing
fixed and adaptive significance levels. The best values between regular and
adaptive versions of the same shift detector are in bold, while the best values
overall are underlined.

Shift type BBSDs BBSDs (adapt) DC DC (adapt) Test X Test X (adapt)

Knock-out 3.17 2.12 4.43 4.43 4.02 2.83
Only-One 3.10 2.29 4.50 4.36 3.95 2.81
Small Gaussian 5.29 3.67 3.10 2.64 3.98 2.33
Medium Gaussian 4.38 2.93 3.76 3.40 4.31 2.21
Adv. ZOO 4.40 3.64 3.76 3.64 3.10 2.45
Adv. Boundary 4.02 2.83 4.38 4.24 3.64 1.88
Joint Subsampling 4.02 3.50 4.02 3.86 3.29 2.31
Subsampling 4.60 3.98 3.81 3.57 3.19 1.86
Under-sampling 5.38 4.50 3.17 3.17 2.81 1.98
Over-sampling 5.67 4.60 3.02 2.69 2.81 2.21

5.4 Impact of Model Quality on BBSDs

To confirm the limitations of BBSDs on the primary model performance (cf.
Section 3), we apply a random perturbation to the primary model with probability
p, yielding a primary model with quality 1− p in [0.5, 1.0] and evaluate the power
of the BBSDs test. As illustrated in Figure 6, showing the average TPR across 21
datasets with size of 1000 samples, the power decreases with the primary model
quality, along with the variance of the results across the datasets. More difficult
shifts (such as low intensity or a small amount of drifted samples) require a
better primary model for the BBSDs test power to hold (shift-specific details
in Table 10 of the Appendix). Regardless of the model quality, BBSDs is also
less adequate in detecting some types of selection bias, as already observed in
Figure 2.
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Table 6: Average ranks of 3 ensemble shift detectors based on efficiency score,
comparing fixed and adaptive significance levels. The best values between regular
and adaptive versions of the same shift detector are in bold, while the best values
overall are underlined.

Shift type BBSDs+X BBSDs+X (adapt) BBSDs+DC BBSDs+DC (adapt) DC* DC* (adapt)

Knock-out 3.55 1.95 3.43 2.93 4.57 4.57
Only-One 3.55 2.62 3.40 2.83 4.36 4.24
Small Gaussian 4.29 2.26 3.40 2.62 4.36 4.07
Medium Gaussian 4.19 2.21 3.98 2.24 4.50 3.88
Adv. ZOO 3.24 2.57 3.81 3.52 3.85 3.85
Adv. Boundary 3.21 1.88 3.86 3.17 4.62 4.15
Joint Subsampling 3.24 2.43 3.79 3.55 4.00 4.00
Subsampling 2.67 2.19 3.31 2.79 5.02 5.02
Under-sampling 3.43 2.57 4.00 3.57 3.71 3.71
Over-sampling 3.60 2.88 3.88 3.17 3.65 3.65

6 Conclusion

In this paper we propose a shift detectors ensembling technique capable of
addressing all different types of studied drift scenarios. The key components of
the proposed approach are the combination of complementary base detectors,
designed to address different types of shift, and the adaptation of the significance
level of the detectors statistical tests to the specific dataset under study.

The improved robustness of our approach is validated by a large-scale bench-
mark study comparing it to state-of-the-art shift detectors on 21 structured
real-world datasets. For this purpose we simulate drifts with 10 different types
of perturbations, including shift types not studied in previous works for tabular
datasets, such as adversarial noise and sample selection bias. Our benchmark
study highlights the complementarity of base drift detectors on different drift
scenarios, motivating our ensembling approach. This benchmark also includes
ablation studies showing that the dataset-adaptive significance level provides
both base and ensembled shift detectors with higher detection power, while
preserving the desired false positive rate.

Throughout our experiments, we observe that adaptive shift detectors ensem-
bling represents the strongest strategy, robust to the various shift types, making
this approach a natural choice for monitoring models in production in real-life
settings, where the possible drift scenario is unknown.

A Appendix

A.1 Proof from Subsection 3.5

Proof (There exist prior shifts such that the smaller the predictive power of the
model is, the higher the p-values of the BBSD test are). The true and predicted
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Fig. 5: ROC curve of BBSDs as a
binary classifier on all positive and
negative drift experiments for the
MagicTelescope dataset.
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Fig. 6: Average TPR with standard
deviation from the BBSDs test with
perturbed primary model. Higher
corruption probability degrades the
model performances.

class distributions in the source (resp. target) domain are denoted by pS and p̂S

(resp. pT and p̂T ).
Let us take a model f : X → Y solving a classification task with an ill-

conditioned but still invertible confusion matrix C, with eigenvalues λi and
eigenvectors vi. Its minimum eigenvalue in absolute value is λmin and the
corresponding eigenvector is vmin.

First, we make clear the connection between the model’s predictive perfor-
mance and the norm of the minimum eigenvalue. We perturb the primary model
f prediction’s by predicting random labels with probability p. The new model is
denoted by f̃ . As the perturbation p tends to 1, the eigenvalue λmin(f̃) tends to
0. We then consider the family of prior shift pT = pS + α · vmin(f̃) indexed by
α such that pT is a probability measure on Y .

By Lemma 1 of [14] under the prior shift assumption and by the law of total
probability we have that the following equation holds for both the source and
the target domain:

P(ŷ) =
∑
y∈Y

P(ŷ|y)P(y)

Considering the column-normalized confusion matrix C as an estimator for
P(ŷ|y), we can write in matrix form:

p̂S = C · pS p̂T = C · pT

Let us assume pS 6= pT with pT = pS +α ·vmin with α ∈ [αmin, αmax], such
that pTi ∈ [0, 1]∀i. Note that αmin is always non positive and αmax is always
non negative.
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For the target distribution we have that:

p̂T = C · pT = C · pS + C · α · vmin

= p̂S + α · λmin · vmin ≈ p̂S

Thus p̂S ≈ p̂T while pS 6= pT .
In particular:

‖p̂S − p̂T ‖2 = |α · λmin| ≈ 0

‖pS − pT ‖2 = |α|

with |α| ∈ [0,max{|αmin|, αmax}].
This shows that as the perturbation p tends to 1, the `2 norm ‖p̂S − p̂T ‖2

tends to 0 while ‖pS − pT ‖2 = α. As the χ2 statistic is controlled by `2-norm,
this means BBSD power is limited by the strength of the perturbation.

A.2 Experiments Details

Datasets Details on the 21 OpenML5 and Kaggle 6 structured classification
datasets are available in Table 7.

Preprocessing and Algorithms Hyperparameters For each dataset (see
Table 7), a fixed training set of 1000 samples is randomly selected. The remainder
of each dataset is then randomly split into a validation set and test set of 2000
samples each. The former is used as source dataset, while the latter is perturbed
by applying a particular type of drift and constitutes the target dataset. Apart
from simple imputation of missing values and one-hot encoding of categorical
features, no preprocessing is performed. The training set is used to fit PCA and
SRP parameters, as well as to train the primary model, a Random Forest, with
default sklearn hyper-parameters. Random Forest is an industry standard model,
extensively employed in enterprise machine learning for its performance and
interpretability. The number of dimensions of PCA- and SRP-processed features
is set to the same value corresponding to a variance retention rate in PCA of
0.8. The validation-test split is repeated over 5 random seeds so that each drift
detection experiment is repeated 5 times.

Reproducibility We leveraged various open source librairies to generate those
shifts in our experiments: the prior and Gaussian shifts rely on the library
provided in the Failing Loudly github repository7, the adversarial shifts are
generated using the Adversarial Robustness Toolbox8, while the under-sampling

5 www.openml.org
6 www.kaggle.com
7 https://github.com/steverab/failing-loudly
8 https://github.com/IBM/adversarial-robustness-toolbox

https://github.com/steverab/failing-loudly
https://github.com/IBM/adversarial-robustness-toolbox
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Table 7: Classification datasets from OpenML and Kaggle (denoted by a *).

Dataset classes features size % minority
class

adult 2 14 48842 23.9
Amazon employee access 2 9 32769 5.8
Artificial characters 10 7 10218 5.9
Click prediction small 2 9 39948 16.8
codrna 2 8 488565 33.3
creditcard 2 30 284807 0.17
electricity 2 8 45312 42.5
higgs 2 29 98050 47.1
homesite-quote-conversion* 2 298 260753 18.8
JapaneseVowels 9 14 9961 7.9
jm1 2 21 10885 19.3
letter 26 16 20000 3.7
MagicTelescope 2 10 19020 35.2
mc1 2 38 9466 0.72
mozilla4 2 5 15545 32.9
optdigits 10 64 5620 9.9
otto-group-product-classification* 9 94 61878 3.1
pc2 2 36 5589 0.41
phoneme 2 5 5404 29.3
santander-customer-satisfaction* 2 370 76020 4.0
waveform 5000 3 40 5000 33.1

and over-sampling shifts rely on techniques from imbalanced-learn9. For the sake
of completeness and reproducibility, all the code used to generate the shifts and
to perform drift experiments is accessible in a public repository10.

A.3 Detailed Results from Subsections 5.2, 5.3 and 5.4

Values are reported with mean ± std. Best values and all values within 95%
confidence interval are in bold.

Table 8: Accuracy across all datasets by size.

Size BBSDh BBSDs DC Test PCA Test SRP Test X

10 0.10 ± 0.02 0.11 ± 0.03 0.10 ± 0.02 0.13 ± 0.03 0.11 ± 0.03 0.10 ± 0.02

100 0.15 ± 0.06 0.30 ± 0.10 0.45 ± 0.09 0.36 ± 0.06 0.29 ± 0.10 0.45 ± 0.10

500 0.22 ± 0.11 0.46 ± 0.14 0.64 ± 0.10 0.47 ± 0.11 0.47 ± 0.14 0.65 ± 0.12

1000 0.27 ± 0.15 0.54 ± 0.16 0.66 ± 0.11 0.51 ± 0.13 0.54 ± 0.16 0.69 ± 0.11

2000 0.33 ± 0.19 0.63 ± 0.19 0.71 ± 0.14 0.55 ± 0.20 0.60 ± 0.19 0.75 ± 0.13

9 https://github.com/scikit-learn-contrib/imbalanced-learn
10 https://github.com/dataiku-research/drift detectors benchmark

https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/dataiku-research/drift_detectors_benchmark
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Table 9: TPR across all datasets by shift type at dataset size of 1000.

Shift type BBSDh BBSDs DC Test PCA Test SRP Test X

Knock-Out 0.15 ± 0.27 0.23 ± 0.30 0.00 ± 0.00 0.06 ± 0.18 0.09 ± 0.21 0.11 ± 0.24

Only-One 0.50 ± 0.52 0.60 ± 0.46 0.46 ± 0.47 0.36 ± 0.43 0.47 ± 0.48 0.55 ± 0.49

Small Gaussian 0.04 ± 0.14 0.74 ± 0.37 1.00 ± 0.00 0.24 ± 0.33 0.41 ± 0.45 0.96 ± 0.14

Medium Gaussian 0.28 ± 0.33 0.87 ± 0.32 1.00 ± 0.00 0.49 ± 0.45 0.66 ± 0.45 0.98 ± 0.06

Adv. ZOO 0.14 ± 0.36 0.21 ± 0.40 0.42 ± 0.50 0.22 ± 0.40 0.32 ± 0.47 0.43 ± 0.51

Adv. Boundary 0.47 ± 0.45 0.72 ± 0.42 0.70 ± 0.41 0.33 ± 0.38 0.53 ± 0.45 0.77 ± 0.35

Subsampling Joint 0.00 ± 0.00 0.04 ± 0.08 0.10 ± 0.19 0.38 ± 0.39 0.20 ± 0.28 0.20 ± 0.30

Subsampling 0.29 ± 0.35 0.42 ± 0.41 0.70 ± 0.45 0.66 ± 0.41 0.70 ± 0.41 0.71 ± 0.45

Under-sampling 0.04 ± 0.13 0.45 ± 0.45 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.45 1.00 ± 0.00

Over-sampling 0.02 ± 0.06 0.57 ± 0.40 1.00 ± 0.00 1.00 ± 0.00 0.81 ± 0.35 1.00 ± 0.00

Table 10: BBSDs TPR across all datasets by quality and shift at 1000 samples.

Quality 0.5 0.6 0.7 0.8 0.9 1.0
(mean accuracy) (40%) (44%) (52%) (63%) (75%) (87%)
Shift type

Knock-Out 0.00 ± 0.00 0.03 ± 0.07 0.13 ± 0.09 0.05 ± 0.08 0.15 ± 0.23 0.28 ± 0.31

Only-One 0.00 ± 0.00 0.08 ± 0.10 0.39 ± 0.29 0.51 ± 0.49 0.57 ± 0.50 0.59 ± 0.49

Small Gaussian 0.00 ± 0.00 0.05 ± 0.07 0.42 ± 0.27 0.70 ± 0.34 0.76 ± 0.35 0.82 ± 0.34

Medium Gaussian 0.00 ± 0.00 0.10 ± 0.12 0.68 ± 0.29 0.88 ± 0.30 0.88 ± 0.31 0.95 ± 0.18

Adv. ZOO 0.00 ± 0.00 0.03 ± 0.07 0.17 ± 0.15 0.15 ± 0.31 0.19 ± 0.35 0.21 ± 0.39

Adv. Boundary 0.00 ± 0.00 0.02 ± 0.04 0.33 ± 0.19 0.57 ± 0.36 0.67 ± 0.36 0.73 ± 0.37

Subsampling Joint 0.00 ± 0.00 0.03 ± 0.07 0.13 ± 0.10 0.03 ± 0.07 0.00 ± 0.00 0.04 ± 0.08

Subsampling 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.10 0.03 ± 0.07 0.04 ± 0.10 0.10 ± 0.15

Under-sampling 0.00 ± 0.00 0.04 ± 0.08 0.14 ± 0.11 0.18 ± 0.32 0.20 ± 0.34 0.45 ± 0.45

Over-sampling 0.00 ± 0.00 0.04 ± 0.08 0.16 ± 0.10 0.23 ± 0.35 0.36 ± 0.38 0.52 ± 0.42
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