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Abstract. We consider the task of feature selection for reconstruction
which consists in choosing a small subset of features from which whole
data instances can be reconstructed. This is of particular importance
in several contexts involving for example costly physical measurements,
sensor placement or information compression. To break the intrinsic com-
binatorial nature of this problem, we formulate the task as optimizing a
binary mask distribution enabling an accurate reconstruction. We then
face two main challenges. One concerns differentiability issues due to the
binary distribution. The second one corresponds to the elimination of re-
dundant information by selecting variables in a correlated fashion which
requires modeling the covariance of the binary distribution. We address
both issues by introducing a relaxation of the problem via a novel repa-
rameterization of the logitNormal distribution. We demonstrate that the
proposed method provides an effective exploration scheme and leads to
efficient feature selection for reconstruction through evaluation on several
high dimensional image benchmarks. We show that the method leverages
the intrinsic geometry of the data, facilitating reconstruction.

Keywords: Representation Learning · Sparse Methods

1 Introduction

Learning sparse representations of data finds essential real-world applications as
in budget learning where the problem is limited by the number of features avail-
able or in embedded systems where the hardware imposes computational limi-
tations. Feature selection serves similar objectives giving insights about variable
dependencies and reducing over-fitting [10]. Combined with a reconstruction ob-
jective, feature selection is a sensible problem when collecting data is expensive
which is often the case with physical processes. For example, consider optimal
sensor placement. This task consists in optimizing the location of sensors mea-
suring a scalar field over an area of interest (e.g pressure, temperature) to enable
truthful reconstruction of the signal on the whole area. It finds applications in
climate science [12,31], where key locations are monitored to evaluate the im-
pact of climate change on snow melt and Monsoon. These examples illustrate
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how feature selection for reconstruction may be critically enabling for large scale
problems where measurements are costly.

Common practices for feature selection involves a `1-regularization over the
parameters of a linear model to promote sparsity [36]. Initiated by [36], several
refinements have been developed for feature selection. For example, [41] em-
ploys a `2,1-norm in a linear auto-encoder. [13] impose a `1-penalty on the first
layer of a deep auto-encoder to select features from the original signal. Finally,
Group-Lasso methods extended lasso by applying the sparse `1-penalty over
precomputed chunks of variables to take prior knowledge into account while se-
lecting features. Theses approaches suffer from two main limitations: the design
of the groups for Group-Lasso methods and the loss of the intrinsic structure
of the data as both [41,13] treat the input signal as a vector. Moreover, non-
linear `1 based methods for feature selection and reconstruction are intrinsically
ill posed, see section 6.5. Like Group-Lasso methods, our proposition aims at
selecting variables in a correlated fashion, to eliminate redundant information,
while leveraging the structure of the data. We illustrate its efficiency on images
but it can be adapted to exploit patterns in other types of structured data as
graphs.

We propose a novel sparse embedding method that can tackle feature se-
lection through an end-to-end-approach. To do so, we investigate the learning
of binary masks sampled from a distribution over binary matrices of the size
of the image, with 1 indicating a selected pixel. We alleviate differentiability
issues of learning categorical variables by relying on a continuous relaxation of
the problem. The learned latent binary distribution is optimized via a stochastic
exploration scheme. We consider the dependency between the selected pixels and
we propose to sample the pixels in the mask in a correlated fashion to perform
feature selection efficiently. Accordingly, we learn a correlated logitNormal dis-
tribution via the reparameterization trick allowing for an efficient exploration
of the masks space while preserving structural information for reconstruction.
Finally, sparsity in the embedding is enforced via a relaxation of the `0-norm.
To summarize, we aim at learning a binary mask for selecting pixels from a
distribution of input signals x, with x ∈ Rn×n for images, enabling an accurate
reconstruction. We formulate our problem as learning jointly a parametric sam-
pling operator S which takes as input a random variable z ∈ Z ⊆ Rd and outputs
binary masks, i.e. S : Z → {0, 1}n×n. We introduce two ways to learn the sam-
pling operator S. For reconstruction, an additional operator denoted G learns to
reconstruct the data x from the sparse measurements s � x. Our proposed ap-
proach is fully differentiable and can be optimized directly via back-propagation.
Our main contributions are:

– We introduce a correlated logitNormal law to learn sparse binary masks,
optimized thanks to the reparameterization trick. This reparameterization
is motivated statistically. Sparsity is enforced via a relaxed `0-norm.

– We formulate the feature selection task for 2-D data as the joint learning of
a binary mask and a reconstruction operator and propose a novel approach
to learn the parameters of the considered logitNormal law.



Differentiable Feature Selection, a Reparameterization Approach 3

– We evidence the efficiency of our approach on several datasets: Mnist, CelebA
and a complex geophysical dataset.

2 Related Work

Our objective of learning binary mask lies in between a few major domains:
density modeling, feature selection and compressed sensing.

Density Modeling via Reparameterization Sampling being not differen-
tiable, different solutions have been developed in order to estimate the gradients
of the parameters of a sampling operator. Gradient estimates through score
functions [38,4] usually suffer from high variance or bias. Reparameterization
[22] provides an elegant way to solve the problem. It consists in sampling from
a fixed distribution serving as input to a parametric transformation in order to
obtain both the desired distribution and the gradient with respect to the param-
eters of interest. However, the learning of categorical variables remains tricky as
optimizing on a discrete set lacks differentiability. Continuous relaxation of dis-
crete variables enables parameters optimization through the reparameterization
trick. Exploiting this idea, [27,20] developed the concrete law as a reparameteri-
zation of the Gumbel max variable for sampling categorical variables [26]. Alter-
native distributions, defining relaxations of categorical variables can be learned
by reparameterization such as the Dirichlet or logitNormal distribution [8,24].
Nonetheless, most previous approaches learn factorized distribution, thus select-
ing variables independently when applied to a feature selection task. In contrast,
we rely on the logitNormal distribution to propose a reparameterization scheme
enabling us to sample the mask pixels jointly, taking into account dependencies
between them and exploiting the patterns present in 2-D data.

Feature Selection Wrapper methods, [10,40,29] select features for a down-
stream task whereas filter methods [15,42,23] rank the features according to
tailored statistics. Our work belongs to the category of embedded methods, that
address selection as part of the modeling process. `1-penalization over parame-
ters, as for instance in Lasso and in Group Lasso variants [43,35,44], is a proto-
typical embedded method. `1-penalty was used for feature selection for example
in [45,41] learning a linear encoding with a `2,1-constraint for a reconstruction
objective. Auto-encoders [16] robustness to noise and sparsity is also exploited
for feature selection [37,28,33]. For example, AEFS [13] extends Lasso with non
linear auto-encoders, generalizing [45]. Another line of work learns embeddings
preserving local properties of the data and then find the best variables in the
original space to explain the learned embedding, using either `1 or `2,1 con-
straints [6,17]. Closer to our work, [1] learn a matrix of weights m, where each
row follow a concrete distribution [27]. That way each row of matrix m samples
one feature in x. The obtained linear projection m.x is decoded by a neural
network, and m is trained to minimize the `2-loss between reconstructions and
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targets. Because x is treated as a vector, here too, the structure of the data is
ignored and lost in the encoding process. Compared to these works, we leverage
the dependencies between variables in the 2-D pixel distribution, by sampling
binary masks via an adaptation of the logitNormal distribution.

Compressed Sensing Our work is also related to compressed sensing (CS)
where the objective is to reconstruct a signal from limited (linear) measurements
[7]. Deep learning based compressed sensing algorithms have been developed
recently: [5] use a pre-trained generative model and optimize the latent code to
match generated measurements to the true ones; The measurement process can
be optimized along with the reconstruction network as in [39]. Finally, [30] use a
CS inspired method based on the pivots of a QR decomposition over the principal
components matrix to optimize the placement of sensors for reconstruction, but
scales poorly for large datasets. Our approach differs from CS. Indeed, for CS,
measurements are linear combinations of the signal sources, whereas we consider
pixels from the original image. Thus, when CS aims at reconstructing from linear
measurements, our goal is to preserve the data structural information to select
a minimum number of variables for reconstruction.

3 Method

We now detail our framework to learn correlated sparse binary masks for feature
selection and reconstruction through an end-to-end approach. The choice of the
logitNormal distribution, instead of the concrete distribution [27], is motivated
by the simplicity to obtain correlated variables thanks to the stability of inde-
pendent Gaussian law by addition as detailed below. We experimentally show
in section 4 that taking into account such correlations helps the feature selec-
tion task. This section is organised as follows : we first introduce in section 3.1
some properties of the logitNormal distribution and sampling method for this
distribution. We detail in section 3.2 our parameterization for the learning of the
masks distribution. Finally, in section 3.3 we show how to enforce sparsity in our
learned distribution before detailing our reconstruction objective in section 3.4.

3.1 Preliminaries: logitNormal Law on [0, 1]

Our goal is to sample a categorical variable in a differentiable way. We propose to
parameterize the sampling on the simplex by the logitNormal law, introduced in
[3]. We detail this reparameterization scheme for the unidimensional case since
we aim at learning binary encodings. It can be generalized to learn k-dimensional
one-hot vector, see supplementary materials section 6.1. Let z ∼ N (µ, σ), and Y
defined as:

Y = sigmoid(z) (1)

Then Y is said to follow a logitNormal law. This distribution defines a probability
over [0, 1], admits a density and its cumulative distribution function has an
analytical expression used to enforce sparsity in section 3.3.



Differentiable Feature Selection, a Reparameterization Approach 5

This distribution can take various forms as shown in fig. 1 and be flat as
well as bi-modal. By introducing a temperature in the sigmoid so that we have,
sigmoidλ(z) = 1

1+exp−z/λ , we can polarize the logitNormal distribution. In Propo-

sition 1 we evidence the link between the 0-temperature logitNormal distribution
and Bernoulli distribution:

Proposition 1 (Limit Distribution). Let W ∈ Rn be a vector and b ∈ R
a scalar. Let Y = sigmoidλ(W.zT + b) , where z ∼ N (0, In), when λ decrease
towards 0, Y converges in law towards a Bernoulli distribution and we have:

lim
λ→0

P(Y = 1) = 1− Φ
( −b√∑

i w
2
i

)
(2)

lim
λ→0

P(Y = 0) = Φ
( −b√∑

i w
2
i

)
(3)

Where Φ is the cumulative distribution function of the Normal law N (0, 1),

The proof is available in supplementary, section 6.3. Proposition 1 characterizes
the limit distribution as the temperature goes down to 0, and Y defines a dif-
ferentiable relaxation of a Bernoulli variable. This proposition is used to remove
randomness in our learned mask distribution, see section 4.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4
: 0, : 1.78
: 0, : 3
: 2, : 1

Fig. 1: Density of the logitNormal law for various couple (µ, σ): (µ = 0, σ = 1.78)
(dashed line), (µ = 0, σ = 3) (dotted line) (µ = 2, σ = 1) (dotted and dashed).

We relax the objective of learning of a binary mask in {0, 1} by learning in
[0, 1] using the logitNormal law. Let m ∈ N, be the dimension of the desired log-
itNormal variable Y . A simple solution for learning the logitNormal distribution
of the masks is via independent sampling.

Independent Sampling A common assumption is that the logitNormal sam-
ples originate from a factorized Normal distribution [24]. Thus, the learned pa-
rameters of the distribution are: the average µ ∈ Rm and the diagonal coefficients
of the covariance matrix σ ∈ Rm, according to:

Y = sigmoidλ(µ+ z � σ) (4)

where � is the element-wise product and Y ∈ Rm. Note that, for feature selection
on images, one aims at learning a binary mask and thus the latent space has the
same dimension as the images, i.e. m = n× n, then z ∈ Rn×n.
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This sampling method has two main drawbacks. First, the coordinates of z
are independent and so are the coordinates of Y , therefore such sampling scheme
does not take correlations into account. Also, the dimension of the sampling space
Z is the same as Y which might be prohibitive for large images.

We address both limitations in the following section, by considering the rela-
tions between the pixel values. In that perspective, Group-Lasso selects variables
among previously designed group of variables [43], reflecting different aspects of
the data. Similarly, we want to select variables evidencing different facets of the
signal to be observed. Indeed, finding the best subset of variables for the re-
construction implies to eliminate the redundancy in the signal and to explore
the space of possible masks. We propose to do so by selecting the variables in a
correlated fashion, avoiding the selection of redundant information.

Correlated Sampling: To palliate the limitations of independent sampling, we
model the covariance between latent variables by learning linear combinations
between the variables in the prior space Z. Besides, considering dependencies
between latent variables, this mechanism reduces the dimension of the sampling
space Z, allowing for a better exploration of the latent space. In order to generate
correlated variables from a lower dimensional space, we investigate the following
transformation: let z ∼ Nd(0, Id) ∈ Z = Rd with d << m, W ∈ Mm,d(R) a
weight matrix of size m× d and b ∈ Rm a real vector, then

Y = sigmoidλ(Wz + b) (5)

represents m-one dimension logitNormal laws due to the stability of independent
Gaussian laws by addition. However, the Normal law induced by Wz + b has
now a full covariance matrix and not only diagonal coefficient as in eq. (4). This
reparameterization provides a simple way to sample correlated (quasi)-binary
variables, even for high dimension latent space, i.e with m large.

Compared to [1], our proposition offers a significant advantage for feature
selection in images. Indeed, let G be the neural network aiming to reconstruct
data x from the selected variable. With our proposition G can access a sparse
version of the original signal Y � x and can thus leverage both the pixel values
and their position in the image for reconstruction. In [1] only the selected feature
values without structural information are available for the reconstruction.

3.2 Parameterizing logitNormal Variables for Feature Selection

Now we have established how to compute correlated logitNormal variables fol-
lowing eq. (5), we detail our parameterization for learning. Let S : Z → [0, 1]n×n

be our sampling operator that generates a binary mask from a random sample z.
We consider two approaches to parameterize S so that it follows a logitNormal
law. Our first proposition denoted vanilla parameterization directly optimizes W
and b from eq. (5), while our second approach proposes to explore and optimize
the spaces of linear combinations W and biases b.
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Recontruction Sampling

Fig. 2: Algorithmic flow of our framework for feature selection for reconstruction.
Sθ(z) has a correlated logitNormal distribution. We sample z ∼ N (0, 1). S̄θ(z)
defines the binary masks and Gφ estimate x from xobs = S̄θ(z)� x.

Vanilla Parameterization: A simple approach is to parameterize S as Sθ
according to eq. (5). Then, the optimized parameters are: θ = (W, b) with W ∈
Mn×n,d(R) and b ∈ Rn×n. This sampling process can be summarized by eq. (6):

Initialize W ∈Mn×n,d(R), b ∈ Rn×n

z ∼ N (0, Id)

Sθ(z) = sigmoid(W.z + b)

(6a)

(6b)

In that case each variable in Sθ(z) follows a logitNormal law. The selected
variables are indicated for Sθ = 1. The optimization process allows two degrees
of freedom (b and W ) for the control of the variance, of the covariance and
of the average of the variables of the masks. Note that, this parameterization
corresponds to a linear layer followed by a sigmoid activation so that besides
tractability for the distribution of Y , it presents the advantage of a simple im-
plementation. Unlike [1], our proposition preserves the structure of the data.

HyperNetworks Parameterization: Aiming to learn a matrix W and a bias
vector b that fully characterizes our logitNormal law as eq. (5), we leveraged
in eq. (6) the stability of independent Gaussian law by addition. However, the
space of the linear combinations to be learned is high dimensional and structured,
hence hard to learn. Also, the optimization of the parameterization as eq. (6) is
highly dependent on the initialization, as we optimizeW and b from a (randomly)
chosen start point. Therefore, we want to be able to reach a wider space of
parameters W, b. To do so, we build on [21] that successfully leverages latent
code pre-processing with neural network in the context of adversarial learning
for image generation, and [11] where a neural network generates the weights
of another neural network to facilitate learning. Therefore, instead of learning
directly W, b as in the vanilla approach we propose to learn to sample on the
space of linear combination W and biases b. The core idea is to leverage neural
networks expressivity to enrich the space of reachable matrices W and vectors
b compared to the vanilla approach. To do so we use the random sample z to
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extract a representation vector r ∈ Rk. This representation r serves as input
to neural networks Fb, FW providing estimates of W and b. To sum up, in the
HyperNetwork approach we learn a logitNormal law according to:

z ∼ N (0, Id), r = Frep(z) ∈ Rk,
W = FW (r) ∈Mn×n,d(R),

b = Fb(r) ∈ Rn×n, and finally:

Sθ(z) = sigmoid(Fb(r) + FW (r).z),

(7a)

(7b)

(7c)

(7d)

Note that as desired Sθ(z) follows a logitNormal law LN (Fb(r), FW (r)T .FW (r)).

This proposition presents several advantages. First, in eq. (6) W is a randomly
initialized weight matrix, then we only explore one trajectory of optimization
from this (randomly chosen) starting point. Also, instead of learning a distribu-
tion of masks, this parameterization learns a distribution of transport matrices
and biases. Therefore, both FW and Fb stochastically explore a direction for
each sample of z, providing more feedback with respect to the objective of fea-
ture selection for reconstruction. This parameterization of W and b offers a way
to explore efficiently the space of biases and linear combinations. Also, because
it rely on matrix multiplication, this procedure is computationally barely less
efficient than the naive one when FW and Fb are small neural networks.

We show experimentally the superiority of this approach in section 4.

3.3 Sparsity Constraint: `0-Relaxation

We detail our approach promoting sparsity. Frequently, sparsity in regression
settings is enforced thanks to a `1 penalty on the parameters. However, `1 ap-
proaches may suffer from a shrinking effect due to ill-posedness as detailed in
section 6.5. Consequently, we introduce an alternative approximation of the `0-
formulation better suited to our feature selection application: we minimize the
expected `0-norm, i.e the probability of each variable in our binary mask to be
greater than 0. Thus, we need a non zero probability of sampling 0 which is not
the case with the current scheme. Accordingly, we introduce a stretching scheme
to obtain a non-zero mass at points 0 and 1 while maintaining differentiability.

Stretched Distribution To create a mass at 0, we proceed as in [25]. Let Y ∈
[0, 1]m be a logitNormal variable, γ < 0 and η > 1 and HT be the hard-threshold
function defined by HT (Y ) = min(max(Y, 0), 1), the stretching is defined as:

Ȳ = HT{(η − γ)Y + γ} (8)

Thanks to this stretching of our distribution, we have a non zero probability to
be zero, i.e P(Ȳ = 0) > 0 and also P(Ȳ = 1) > 0. Further details are available in
supplementary section 6.6. We can now derive a relaxed version of the `0-norm
penalizing the probability of the coordinates of Ȳ to be greater than 0.
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Sparsity Constraint: Let L0(Ȳ ) the expected `0-norm of our stretched output
Ȳ . Using the notation in eq. (8), we have:

L0(Ȳ ) = E[`0(Ȳ )] =

m∑
i=1

P(Ȳi > 0) =

m∑
i=1

1− FY
( −γ
η − γ

)
, (9)

where FY denotes the cumulative distribution function (CDF) of Y . This loss
constrains the random variable Y to provide sparse outputs as long as we can
estimate FY in a differentiable way. In the case of the logitNormal law, we
maintain tractability as Y satisfies eq. (5) or eq. (4). Thus, for our m-dimensional
logitNormal law defined as in eq. (5), we have:

L0(Ȳ ) =
∑
i

1− Φ
( log(−γη )− b√∑

jW
2
j,i

)
, (10)

where Φ is the CDF of the unitary Normal law. Detailed computations are avail-
able in supplementary materials section 6.4. Minimizing eq. (10) promotes spar-
sity in the law of Y by minimizing the expected true `0-norm of the realisation of
the random variable Y . We have developed a constraint that promotes sparsity
in a differentiable way. Now we focus on how to learn efficiently the parameters
of our correlated logitNormal law.

3.4 Reconstruction for Feature Selection

We have designed a sparsity cost function and detailed our parameterization
to learn our sampling operator, we focus on the downstream task. Consider
data (xi, yi)i∈[1..N ], consisting in paired input x and output y. Feature selection
consists in selecting variables in x with a mask s, so that the considered variables:
s � x explain at best y. Let G be a prediction function and L a generic cost
functional, feature selection writes as:

min
s,f

Ex,y L
(
G(s� x), y

)
s.t ||s||0 < λ, (11)

In this work we focus on a reconstruction as final task, i.e y = x. Besides
the immediate application of such formulation to optimal sensors placement and
data compression, reconstruction as downstream task requires no other source
of data to perform feature selection. Naturally, this framework is adaptable to
classification tasks. As a sparse auto-encoding technique, feature selection with
a reconstruction objective aims at minimizing the reconstruction error while
controlling the sparsity. In this case Gφ : Rn×n → Rn×n is our reconstruction
network (of parameter φ) taking as inputs the sparse image. The feature selection
task with an `2-auto-encoding objective writes as:

min
θ,φ

Ex||Gφ(S̄θ(z)� x)− x||2 + λsparseL0(S̄θ(z)) (12)

A schematic view of our proposition, illustrating the sampling and the recon-
struction component is available in Figure 2. An algorithmic description in the
vanilla case (eq. (6)) is available in supplementary section 6.7.
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4 Experiments

We provide experimental results on 3 datasets: MNIST, CelebA and a geophys-
ical dataset resulting from complex climate simulations [18,34]. We use the tra-
ditional train-test split for MNIST and a 80-20 train-test split for the other
datasets. The geophysical dataset is composed of surface temperatures anoma-
lies (deviations between average temperature at each pixel for a reference period
and observations) and contains 21000 samples (17000 for train). The data have
both high (Gulf stream, circum-polar current ...) and low frequencies (higher
temperature in the equatorial zone, difference between northern and southern
hemispheres ...) that need to be treated accurately due to their influence on the
Earth climate. Accuracy in the values of reconstructed pixel is then essential
for the physical interpretation. These dense images represent complex dynam-
ics and allow us to explore our method on data with crucial applications and
characteristics very different from the digits and faces.

4.1 Experimental and Implementation Details

Baselines Besides our models Vanilla logitNormal, denoted VLN, and its hyper-
networks couterpart denoted HNet-LN, we consider as competing methods the
following approaches:

1. Concrete-Autoencoder [1] denoted CAE.
2. To assess the relevance of our correlated proposition, we investigate a binary

mask approach based on the independent logitNormal mask that corresponds
to equation eq. (4) denoted ILN,

3. Another independent binary mask method based on the concrete law [27],
see supplementary materials section 6.10, denoted SCT.

Implementation Details For all binary mask based methods, we use a Resnet
for Gφ, [14] following the implementation of [19]. Frep, FW and Fb are two layers
MLP with leaky relu activation. For CAE, because the structure of the data is
lost in the encoding process, we train Gφ as a MLP for MNIST and a DcGAN for
geophysical data and CelebA. Thorough experimental details are available in sec-
tion 6.11. The code is available at: https://github.com/JeremDona/feature_
selection_public

Removing Randomness: All masked based algorithms learn distributions of
masks. To evaluate the feature selection capabilities, we evaluate the different
algorithms using fixed masks. We rely on proposition 1 to remove the randomness
during test time. Let S0

θ be the 0-temperature distribution of the estimated
Sθ. We first estimate the expected `0-norm of the 0-temperature distribution:

L0(S0
θ ). We then estimate two masks selecting respectively the 10 × bL0(S

0
θ)

10 c
and 10 × dL0(S

0
θ)

10 e most likely features (rounding L0(S0
θ ) up and down to the

nearest ten). This method has the advantage of implicitly fixing a threshold in

https://github.com/JeremDona/feature_selection_public
https://github.com/JeremDona/feature_selection_public
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the learned mask distribution to select or reject features. More details on the
method are available in section 6.9.

We now illustrate the advantage of selecting features in a correlated fashion.

4.2 Independent vs Correlated Sampling Scheme:

Is a Covariance Matrix Learned ? Because we model the local dependencies
in the sampling by learning linear mixing of latent variables z, we first verify
the structure of the covariance matrix. Figure 3 reports the learned covariance
matrix of the sampling for MNIST dataset using eq. (6) method. Besides the
diagonal, extra-diagonal structures emerge, revealing that local correlations are
taken into account to learn the sampling distribution.

Fig. 3: Covariance matrix learned with eq. (6), with ≈ 30 pixels selected. Yellow
values indicates high positive covariance, blue ones low negative covariance

Independent Sampling Does not Choose We show in fig. 4 the empirical
average of the sampled masks for each masked base competing algorithm where
all algorithms were trained so that at L0(S0

θ ) ≈ 30. Figure 4 clearly shows that
concrete base algorithm (SCT) and in a lesser sense (ILN) do not select features,
but rather put a uniformly low probability to sample pixels in the center of the
image. This means that both algorithms struggle at discriminating important
features from less relevant ones. On the other hand, our correlated propositions,
Vanilla logitNormal (V-LN, eq. (6)) and particularly the hyper-network approach
(HNetL, eq. (7)) manage to sparsify the distribution prioritizing the selection of
important pixels for reconstruction.

4.3 Feature Selection and Reconstruction

We now quantitatively estimate the impact of our choices on the reconstruc-
tion error on the various datasets. First, the mean squared error reconstruction
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SCT ILN V-LN HNetLN

Fig. 4: Masks empirical distribution for competing binary masks algorithms on
the MNIST datasets for about 30 features in the sampled mask

results from table 1 tells us that considering the spatial structure of the data
enhances reconstruction performance. Indeed, mask based methods consistently
over-perform CAE where the data structure is linearized in the encoding process.
Furthermore for mask based method, correlated sampling (row V-LN and HNet-
LN) also consistently improves over independent sampling based method (row
ILN and SCT). Finally, our hyper-network HNet-Ln proposition also improves
over the vanilla approach validating our proposition. Samples for all datasets are
available in supplementary section 6.12

Table 1: Average Reconstruction Error (MSE) on MNIST, Climate and CelebA
datasets for all considered baselines

MNIST Climat CelebA

# Features 20 30 50 100 200 300 100 200 300

CAE 3.60 3.05 2.40 2.07 1.98 1.96 7.65 6.42 5.7

ILN 3.67 2.41 1.41 1.44 1.05 0.83 7.1 2.56 1.87
SCT 3.72 3.61 2.60 2.20 1.89 1.51 7.99 3.31 2.44
VLN (Ours) 3.22 2.19 1.33 1.11 0.93 0.79 3.11 1.96 1.50
HNet-Ln (Ours) 2.15 1.53 1.06 1.78 0.96 0.60 2.81 1.7 1.46

4.4 Quality of the Selected Features: MNIST Classification

We now assess the relevance of the selected features of our learned masks on
another task. To do so, for each learned distribution we train a convolutional
neural network, with a DcGAN architecture on MNIST classification task. Here
also, the randomness in test set is removed. For each mask we run 5 experiments
to account for the variability in the training. Classification results reported in
table 2 indicate that both our correlated logitNormal propositions consistently
beat all considered baselines, validating our choices to learn a sampling scheme
in a correlated fashion. Indeed, our propositions systematically reach the lowest
minimum and average classification error.
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Table 2: Classification error in percent for MNIST on test set for all considered
baselines. Minimum and average are taken over 5 runs.

# Features 20 30 50

Metric Min Mean Min Mean Min Mean

CAE 24.4 31.64 8.89 19.60 5.45 6.65
ILN 21.58 28.26 7.96 16.63 4.17 5.33
SCT 20.88 32.79 9.49 18.22 4.11 6.77
VLN (Ours) 12.15 24.74 6.38 15.07 3.32 4.67
HNet-LN (Ours) 19.23 25.07 7.24 17.80 2.84 6.45

4.5 Extension: cGAN

Fig. 5: Examples of masks (first row), reconstructions (second row) and true data
(last row) for CelebA dataset using either a cGAN (4 first columns) or simple
auto-encoding (4 last columns) for 200 selected features. Best viewed in color.

We detailed in the previous experiments feature selection results obtained
thanks to an `2-auto-encoding approach. This choice was motivated because
in physical measurement all points are equals: we don’t want to favor the re-
construction of some part of the image while neglecting another. However, for
images such as CelebA all points are not equal: the face part of the image be-
ing more interesting than the background. Indeed, a realistic reconstruction can
be preferred to a well reconstructed background. Moreover, `2-auto-encoding
suffers from blur in the reconstruction. In that perspective, we can leverage con-
ditional generative adversarial networks (cGAN) approaches [32,19] that solves
the blurriness occurring in `2-decoding. We implement the cGAN approach of
[19]. Figure 5 illustrates that despite both method show good reconstruction, the
cGAN approach on CelebA enables a stronger focus on faces facilitating realistic
reconstruction. We refer to section 6.13 for more details and samples.
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5 Conclusion

In this work, we formulate the feature selection task as the learning of a binary
mask. Aiming to select features in images for reconstruction, we developed a
novel way to sample and learn a correlated discrete variable thanks to a repa-
rameterization of the logitNormal distribution. The proposed learning framework
also preserves the spatial structure of the data, enhancing reconstruction per-
formance. We experimentally show that our proposition to explore the space of
covariance matrices and average vectors as in eq. (7) is efficient providing us
with a sampling with lower variance. Finally, we experimentally evidenced the
advantage of learning a correlated sampling scheme instead of independent ones.
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6 Supplementary Material

6.1 The logitNormal Distribution:

The logitNormal distribution defines a probability distribution over the simplex,
see [3] Initially introduced to describe compositional data [2], it is defined has:

Definition 2. LogitNotmal Let X be random variable defined over Rn such that
X ∼ N (µ, σ). Then, consider the following transformation:

Y−n = eX/(1 +

n∑
j=1

eXj ), and Yn+1 = 1−
n∑
j=1

Yj

Then the vector Y = (Y1, ...Yn+1) follows a logitNormal distribution denoted
LN (µ, σ) and is defined over the Rn+1 simplex. Moreover, Y admits a density
and can be found in [3].

If Y ∼ LN (µ, σ), it defines a probability distribution over the simplex which
makes it practical to model compositional data, i.e “data where the involved
data forms some sort of proportion of a whole” [2].

6.2 Reparametrizing the logitNormal Distribution:

Using Definition 2 of the logitNormal distribution, we can use the reparameter-
ization trick in order to learn the parameters of a logitNormal law from samples
of Normal law.

Theorem 3. Reparameterization: Let X = (Xi)i≤n such that Xi ∼ N (0, 1) and
all Xi are iid (X ∈ Rn), W ∈Mm×n(R), and b ∈ Rm, then :

Y−n = exp(WX + b)/(1 +
∑
i

exp(Wi.X + bi))

Y = (Y−n, 1−
n∑
j=1

Yj) (13)

Y ∼ LN (b,Σ) (14)

This comes from the simple fact that an affine transformation of i.i.d. N (0, 1)
follows also a Normal law, which co-variance matrix can be expressed through the
matrix of linear weights. Moreover, this advantageously correspond to a neural
network layer with an extended sigmoidal function.

6.3 Proof For 0-Temperature

Here we prove the convergence of the reparameterization of the logitNormal law
for the zero temperature.
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Proof. Let (λn)n≥0 be a positive sequence decreasing towards 0. We prove the 0-
temperature convergence for z ∼ N (µ, σ). Let Yn = sigmoidλn(z). We investigate
the convergence in distribution of Yn towards a Bernoulli distribution. Let f be
a continuous bounded function. We have:

E(f(Yn)) =

∫ 1

0

f(Yn)dPYn =

∫
R
f(sigmoidλn(z))dPz

=

∫
R
f(sigmoidλn(z))

1√
2πσ

exp−
1
2 (
z−µ
σ )2 dz

We first have point-wise convergence of the sequence of function inside the inte-
gral. Indeed,

If z > 0, limn→∞ sigmoidλn(z) = 1.

If z < 0, limn→∞ sigmoidλn(z) = 0. We have:

lim
n→∞

f(sigmoidλn(z))
1√
2πσ

exp−
1
2 (
z−µ
σ )2 =

1√
2πσ

f(δz>0) exp−
1
2 (
z−µ
σ )2

The domination is verified using the function:

g(z) =
1√
2πσ
||f ||∞ × exp−

1
2 (
z−µ
σ )2

We can finally apply the theorem of dominated convergence:

lim
n→∞

E(f(Yn)) = E( lim
n→∞

f(Yn))

=

∫
1√
2πσ

f(δz>0) exp−
1
2 (
z−µ
σ )2 dz

=
1√
2πσ

f(0)

∫ 0

−∞
exp−

1
2 (
z−µ
σ )2 dz +

1√
2πσ

f(1)

∫ +∞

0

exp−
1
2 (
z−µ
σ )2 dz

= f(0)Φ(−µ
σ

) + f(1)(1− Φ(−µ
σ

))

= Eb∼B(1−Φ(−µ
σ ))f(b),

where B denotes Bernoulli distribution. Finally, we can conclude that Yn con-
verges in law towards a Bernoulli distribution such that: Yn → B

(
1− Φ(−µσ )

)
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6.4 Proof L0-logitNormal:

L0(Sθ(z)) =
∑
i

1− P(z̄ ≤ 0)

=
∑
i

1− P(sigmoid(Wz + b) ≤ −γ/(η − γ))

=
∑
i

1− P(Wi.z ≤ log(
−γ
η

)− b)

as Wi.z has a normal law N (0,

√∑
j

w2
j,i)

=
∑
i

1− Φ(
log(−γη )− b√∑

jW
2
j,i

)

6.5 Ill poseness of the `1-formulation:

Consider the auto encoding setting with a `1-norm instead of the derived L0.
The optimization problem is:

L`2 = λ`2Ex∼px ||x−Gφ(Sθ(z)� x)||2 + λs.L1(Sθ) (15)

Let (G∗φ, S
∗
θ ) be an optimal solution, i.e that realizes the minimum of the

above optimization cost function. Then, consider: S2 = S∗θ/2 and G2 defined as
G2(x) = G∗θ(2 ∗ x). Then the MSE term of eq. (15) for the couple (G2, S2) is
equivalent as the one with (G∗φ, S∗θ), however the `1-norm of (S2) is lower.
Therefore (G∗φ, S

∗
θ ) is not optimal and the problem of eq. (15) is ill-posed. How-

ever, note that, in the case of binary vectors, `0-norm and `1-norm are equals.

6.6 On the Stretching Scheme:

We initially start from a distribution p that lives in [0, 1] and need to transform
it in order to obtain a non zero probability of sampling 0 while maintaining both
tractability and differentiability. We denote this function f . We need f−1(0) to
be a non-zero measure set of the original support. In other words, we need f to
be a surjection, and f−1(0) to be Lebesgue measurable with a non zero mass.
Instead of the HT function we could have used a stretched relu function. One
significant advantage of the chosen function is that it also creates a non-zero
probability of sampling 1 therefore enforcing the binary behaviour of our masks.
Unbalanced binary scheme can also be investigated in future works. Indeed one
can think of creating a higher portion of the stretched distribution above one,
enforcing the binary behaviour of the mask.

6.7 Algorithm

We present here the algorithm for the proposed logitNormal based feature selec-
tion algorithm.
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Algorithm 1 Differentiable Feature Selection

Result: Converged S Gφ
Initialize θ = (W, b) and Gφ
while Convergence not reached do

sample batch x = (x1, ...xn) and z = (z1, ..., zn), such that zi ∼ N (0, Id)
Compute Sθ(z) = sigmoidλ(Wz + b) and the observations xobs = S̄θ(z)� x
Estimate reconstruction x̂ = Gφ(xobs)
L = ||x− x̂||2 + λsparseL0(S̄θ(z))
Update φ and θ:

φ← φ− ∂L

∂φ

θ ← θ − ∂L

∂θ

end

6.8 Practical Consideration on the Temperature:

As duely noted by [27], the temperature in sigmoid activation plays a crucial
role in the training. This remark holds for our work. Indeed, in our work de-
creasing the temperature in the sigmoid, amounts to increase the variance and
the absolute value of the average of the initial Gaussian distribution.

Also aiming at approximating binary distribution, we don’t want any interior
mode as in the green curve depicted in fig. 1: LN (0, 1) has an interior maximum
point. This case is not acceptable for the approximation of Bernoulli random
variable as, it could allow a leakage of information, i.e the distribution is not
approximating a binary distribution anymore. Therefore, during training one
should ensure that the learned distribution has no interior maxima. Fortunately,
it suffices to sufficiently decrease the temperature λ of the sigmoid in order to
recover two modes at 0 and 1. Indeed, decreasing sufficiently the temperature
in the sigmoid pushes the interior maximum towards the edges. In practice, we
observe that initializing our W so that W.z with a variance higher than 0.5 with
a temperature of λ = 0.3 suffices.

6.9 Removing the Randomness

Both our propositions of eq. (6) or eq. (7) estimates distribution in the spaces of
binary variables. To collapse the distribution, one can take advantage of propo-
sition 1 and select the K desired number of features. One can also, empirically
select the K features the mask with the highest probability to be selected. Both
approaches lead to similar results in practice. Note that in both cases, if K is
far from the observed number of pixel, the selected features may not be the best
subset of the learned distribution.

In practice, we chose to collapse the distribution using Proposition 1: We
first estimate the expected `0-norm of the distribution, which equals to

∑
(1 −

φ(−µiσi )). Let L0 be the value of the expected `0-norm of our learned distribution.
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We then select two masks made of the most likely features to be selected: the
first one has L0 rounded down to the nearest ten pixels. The other one has L0

rounded up to the nearest ten selected pixels. Note that, for SCT baseline, we
use a property similar to Proposition 1 for the concrete distribution, available
in [27].

6.10 Concrete Law

Introduced by [27] to approximate discrete variables, binary concrete random
variable is defined as follows:

u ∼ U([0, 1])

G = log(u)− log(1− u)

X = sigmoid
( log(α) +G

λ

)
,

And X follows a relaxed binary concrete law.

6.11 Experimental Details

All experiments were trained on Titan XP GPU via using Pytorch framework
and mixed precision training. For all experiments the expected `0-norm is nor-
malized by the number of pixels in the signal. Also for all algorithms trained using
correlated logitNormal approach, the dimension of z is 16, i.e. z ∼ N (0, I16).

For all mask based methods, Gφ is a resent following the implementation of
[19] with 2 residual blocks and 16 filters.

Mnist All masked based algorithms were trained using ADAM optimizer with
β = (0.9, 0.99) and a learning rate of 2.10−4 for 550 epochs with batch size 256.
CAE method was trained for 1400 epochs with a temperature decreasing form
10 to 0.01 following recommendation of the authors.

Climate Data All masked based algorithms were trained using ADAM opti-
mizer with β = (0.9, 0.99) and a learning rate of 2.10−4 for 550 epochs with
batch size 128. CAE method was trained for 1400 epochs with a temperature
decreasing form 10 to 0.01 following recommendation of the authors.

CelebA All masked based algorithms were trained using ADAM optimizer with
β = (0.9, 0.99) and a learning rate of 2.10−4 for 140 epochs with batch size 128.
CAE method was trained for 400 epochs with a temperature decreasing form 10
to 0.01 following recommendation of the authors.
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Hyperparameters Search Except for CAE where the number of selected
features is a structural constraint, we search the hyperparameter space by sam-
pling from the interval [10−2; 1] discretized by steps of 3.10−2. For all dataset,
the CAE method was trained with a decreasing temperature from 10 to 0.01
following the guidelines of the authors [1]. For the mask method based on the
concrete distribution the temperature of the sigmoid was set to λ = 2/3 following
the recommendation of [27]. For logitNormal based algorithm, the temperature
was fixed to λ = 0.3.

Initialization For all mask based methods, we chose the initialization param-
eters so that the resulting distribution of the each variable in the mask is sym-
metrical, with as many chances to be sampled than to be rejected, i.e. for all
variable i in the masks: P(Sθ(z)i < ε) ≈ P(Sθ(z)i > 1 − ε) ≈ 0.2. That way,
all distribution can explore the space of binary masks. Also, in order to ver-
ify whether a covariance matrix is learned during training for the logitNormal
sampling method of eq. (6), W is initialized with using an uniform law.

6.12 Additional Samples:

Fig. 6: Sample of masks (first row), Reconstruction (second row) and True Data
(Last row) for CelebA dataset on all considered algorithms for 200 features with
`2-encoding

6.13 cGAN Details and Samples

Simply speaking, a cGAN has two main learnable functions: a discriminator net-
work with parameters ψ named Dψ trained to differentiate ”true” data labeled
as 1 from data generated by Gφ labeled as 0. A generative network with param-
eter φ denoted Gφ. Gφ : Rp × Rn×n → Rn takes as input a random variable
γ ∈ Rp and our conditional information xobs = S̄θ(z) � x ∈ Rn×n, and aims at
fooling Dψ, making it classify the conditionally generated images as true. For our
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Fig. 7: Sample of masks (first row), Reconstruction (second row) and True Data
(Last row) for Mnist dataset on all considered algorithms for 20 selected features
with `2-encoding

Fig. 8: Sample of masks (first row), Reconstruction (second row) and True Data
(Last row) for the Geophysical Dataset on all considered algorithms for 200
features with `2-encoding

experiments we used the cGAN implementation of [19] optimizing the following
loss, with xobs = x� S̄θ(z):

min
φ,θ

max
ψ

Ez,x logDψ

(
x, xobs

)
+ Ez,x log

{
1−Dψ

(
Gφ(xobs), xobs

)}
+ λsparse × `0(S̄θ(z)) + λrec × `1(x−Gφ(xobs)), (16)

Consider Sθ fixed, one interesting advantage about the cGAN approach
is that we can prove that the optimal distribution pGφ for Gφ is given xobs:

pGφ(x, xobs) = px∼data(x|xobs) which means that Gφ will sample according to
the observed data distribution.

Proof. To lighten notation, we will use the notation y = x�S̄θ(z) as conditioning
variable, giving the following game value function:

V (G,D) = Ex,y logD(x, y) + Ez,y log{1−D(G(z, y), y)}
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Mask

Reconstruction

Truth

Fig. 9: Samples of masks (first row), reconstruction (second row) and true data
(last row) for Mnist dataset obtained using a cGAN approach following [19],
i.e including a `1+Gan loss as reconstruction objective for approximately 15
sampled pixels (λs = 100)

Mask

Reconstruction

Truth

Fig. 10: Samples of masks (first row), reconstruction (second row) and true data
(last row) for CelebA dataset obtained using a cGAN approach following [19],
i.e including a `1+Gan loss as reconstruction objective for approximately 1.7%
sampled pixels (λs = 100)
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Following [9], we can write:

V =

∫
x,y

logD(x, y)px(x, y)dxdy +

∫
z,y

log{1−D(G(z, y), y)}pz(z)py(y)dzdy

if G induce a distribution pg,

V =

∫
x,y

[logD(x, y)px(x|y)py(y) + log{1−D(x, y)}pg(x|y)py(y)dxdy]

=

∫
y

(∫
x

logD(x, y)px(x|y) + log{1−D(x, y)}pg(x|y)
)
py(y)dy

Then classically the maximal value of x → a log(x) + b log(1 − x) is reached in
a
a+b Thus, given y, the optimal distribution followed by D:

pD(x, y) =
px(x|y)

px(x|y) + pG(x|y)

The optimal distribution of G is completely doable at y fixed following the
original reasoning of [9]
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