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Abstract. Deep neural networks often have huge number of parameters,
which posts challenges in deployment in application scenarios with limited
memory and computation capacity. Knowledge distillation is one approach
to derive compact models from bigger ones. However, it has been observed
that a converged heavy teacher model is strongly constrained for learning
a compact student network and could make the optimization subject
to poor local optima. In this paper, we propose ProKT, a new model-
agnostic method by projecting the supervision signals of a teacher model
into the student’s parameter space. Such projection is implemented by
decomposing the training objective into local intermediate targets with
approximate mirror descent technique. The proposed method could be
less sensitive with the quirks during optimization which could result in a
better local optima. Experiments on both image and text datasets show
that our proposed ProKT consistently achieves superior performance
comparing to other existing knowledge distillation methods.

Keywords: Knowledge Distillation · Curriculum Learning · Deep Learning ·
Image Classification · Text Classification · Model Miniaturization

1 Introduction

Advanced deep learning models have shown impressive abilities in solving nu-
merous machine learning tasks [6,26,10]. However, the advanced heavy models
are not compatible with many real-world application scenarios due to the low
inference efficiency and high energy consumption. Hence preserving the model ca-
pacity using fewer parameters has been an active research direction during recent
years [25,38,12]. Knowledge distillation [12] is an essential way in the field which
refers to a model-agnostic method where a model with fewer parameters (student)
is optimized to minimize some statistical discrepancy between its predictions
distribution and the predictions of a higher capacity model (teacher).

Recently, it has been observed that employing a static target as the dis-
tillation objective would leash the effectiveness of the knowledge distillation
method [16,22] when the capacity gap between student and teacher model is
large. The underlying reason lies in common sense that optimizing deep learning
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models with gradient descent is favorable to the target which is close to their
model family [24]. To counter the above issues, designing the intermediate target
has been a popular solution: Teacher-Assistant learning [16] shows that within
the same architecture setting, gradually increasing the teacher size will promote
the distillation performance; Route-Constrained Optimization (RCO) [22] uses
the intermediate model during the teacher’s training process as the anchor to
constrain the optimization path of the student, which could close the performance
gap between student and teacher model.

One reasonable explanation beyond the above facts could be derived from
the perspective of curriculum learning [3]: the learning process will be boosted if
the goal is set suitable to the underlying learning preference (bias). The most
common arrangement for the tasks is to gradually increase the difficulties during
the learning procedures such as pre-training [32]. Correspondingly, TA-learning
views the model with more similar capacity/model-size as the easier tasks while
RCO views the model with more similar performance as the easier tasks, etc.

In this paper, we argue that the utility of the teacher is not necessarily fully
explored in previous approaches. First, the intermediate targets usually discretize
the training process as several periods and the unsmoothness of target changes in
optimization procedure will hurt the very property of introducing intermediate
goals. Second, manual design of the learning procedure is needed which is hard
to control and adapt among different tasks. Finally, the statistical dependency
between the student and intermediate target is never explicitly constrained.

To counter the above obstacles, we propose ProKT, a new knowledge distil-
lation method, which better leverages the supervision signal of the teacher to
improve the optimization path of student. Our method is mainly inspired by the
guided policy search in reinforcement learning [20], where the intermediate target
constructed by the teacher should be approximately projected on the student
parameter space. More intuitively, the key motivation is to make the teacher
model aware of the optimization progress of student model hence the student
could get the ”hand-on” supervision to get out of the poor minimal or bypass
the barrier in the optimization landscape.

The main contribution of this paper is that we propose a simple yet effective
model-agnostic method for knowledge distillation, where intermediate targets
are constructed by a model with the same architecture of teacher and trained by
approximate mirror descent. We empirically evaluate our methods on a variety of
challenging knowledge distillation setting on both image data and text data. We
find that our method outperforms the vanilla knowledge distillation approach
consistently with a large margin, which even leads to significant improvements
compared to several strong baselines and achieves state-of-the-art on several
knowledge distillation benchmark settings.

2 Related Work

In this section, we discuss several most related literature in model miniaturization
and knowledge distillation.
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Model Miniaturization. There has been a fruitful line of research dedicated
to modifying the model structure to achieve fast inference during the test time.
For instance, MobileNet [13] and ShuffleNet [41] modify the convolution operator
to reduce the computational burden. And the method of model pruning tries to
compress the large network by removing the redundant connection in the large
networks. The connections are removed either based on the weight magnitude or
the impact on the loss function. One important hyperparameter of the model
pruning is the compression ratio of each layer. [11] proposes the automatical
tuning strategy instead of setting the ratio manually which are proved to promote
the performance.

Knowledge Distillation. Knowledge distillation focuses on boosting the
performance while the small network architecture is fixed. [12,4] introduced
the idea of distilling knowledge from a heavy model with a relatively smaller
and faster model which could preserve the generalization power. To this end,
[4] proposes to match the logits of the student and teacher model, and [12]
tends to decrease the statistical dependency between the output probability
distributions of the student model and the teacher model. And [42] proposes the
deep mutual learning which demonstrates that bi-jective learning process could
boost the distillation performance. Orthogonal to output matching, many works
have been conducted on matching the student model and teacher by enforcing
the alignment on the latent representation [39,14,31]. This branch of works
typically involves prior knowledge towards the network architectures of student
and teacher model which is more favorable to distill from the model with the
same architecture. In the context of knowledge distillation, our method is mostly
related to TA-learning [22] and the Route-Constraint Optimization(RCO) [16]
which improved the optimization of student model by designing a sequence of
intermediate targets to impose constraint on the optimization path. Both of the
above methods could be well motivated in the context of curriculum learning,
while the underlying assumption indeed varies: TA-learning views the increasing
order of the model capacity implied a suitable learning trajectory; while RCO
considers the increasing order of the model performance forms a favorable learning
curriculum for student. However, there have been several limitations. For example,
the sequence of learning targets that are set before the training process needs to
be manually designed. Besides, targets are also independent of the states of the
student which does not enjoy all the merits of curriculum learning.

Connections to Other Fields. Introducing a local target within the training
procedure is a widely applied spirit in many fields of machine learning. [23]
introduce the guided policy search where a local policy is then introduced to
provide the local improved trajectory, which has been proved to be useful towards
bypassing the bad local minima. [9] augmented the training trajectories by
introducing the so called “coaching” distribution to ease the training burden
and similarity. [19] introduce a family of smooth policy classes to reduce smooth
imitation learning to a regression problem. [21] introduce an intermediate target
so-called mediator during the training of the auto-regressive language model,
while the information discrepancy between the intermediate target and the model
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is constrained through the Kullback-Leibler(KL) divergence. Moreover, [5] utilized
the interpolation between the generator’s output and target as the bridge to
alleviate data sparsity and overfitting problems of MLE training. Expect from the
distinct research communities and objectives, our method also differs from their
methods in both the selection of intermediate targets, i.e. learned online versus
designed by hands, and the theoretical motivation, i.e. the explicit constrain in
mirror descent guarantee the good property on improvement.

3 Methodology

In this section, we first introduce the background of knowledge distillation and
notations in Section 3.1. Then, in Section 3.2, we generalize and formalize the
knowledge distillation methods with intermediate targets. In Section 3.3, we
mainly introduce the details of our method ProKT.

3.1 Background on Knowledge Distillation

To start with, we introduce the necessary notations and backgrounds which are
most related to our work. Taking an K-class classification task as an example,
the inputs and label tuple is denoted as (x, y) ∈ X × Y and the label y is
usually in the format of a one-hot vector with dimension K. The objective in
this setting is to learn a parameterized function approximator: f(x; θ) : X −→ Y.
Typically, the function could be characterized as the deep neural networks. With
the logits output as u, the output distribution q of the neural network f(x; θ)
could be acquired by applying the softmax function over the logits output u:

qi = exp(ui/T )∑K
j=1 exp(uj/T )

, where T corresponds to the temperature. The objective of

knowledge distillation could be then written as:

LKD(θ) = (1− α)H (y, qs( θ)) + αT 2H(pt, qs(θ)). (1)

Here H denotes the cross entropy objective, i.e., H(p, q) =
∑K
i=1−pi log qi which

is the KL divergence between p and q minus the entropy of p (usually constant
when p = y). pt is the output distribution of a given teacher model and α is
the balanced weight between the standard cross entropy loss and the knowledge
distillation loss from teacher. T is the temperature. In the following formulations,
we omit the T by setting T = 1.

3.2 Knowledge Distillation with Dynamic Target

In this section, we generalize and formalize the knowledge distillation methods
with intermediate targets. We propose that previous knowledge distillation meth-
ods, either with a static target (i.e., the vanilla KD) or with hand-crafted discrete
targets (i.e., Route-Constraint Optimization (RCO) [16]), cannot make full use
of the knowledge from teacher. Instead, a dynamic and continuous sequence of
targets is a better choice, and then we propose our method in the next section.
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Fig. 1: Mteacher and Mstudent refer to the output manifolds of student model
and teacher model. The lines between circles ( , ) to squares ( , ) imply the
learning trajectories in the distribution level. The intuition of ProKT is to avoid
bad local optimas (triangles ( )) by conducting supervision signal projection.

Firstly, we generalize and formalize the knowledge distillation methods
with intermediate targets, named as sequential optimization knowledge distilla-
tion (SOKD) methods. Instead of conducting a static teacher model in vanilla
KD, the targets to the student model of SOKD methods are changed during the
training time. Without loss of generality, we denote the sequence of intermediate
target distributions as Pt = [p1t , p

2
t , · · · , pmt , · · · ]. Starting from a random initial-

ized parameters θ0, the student model is optimized by gradient descent methods
to mimic its intermediate target pmt :

θm = θm−1 − β∇θLm(θm−1), (2)

Lm(θ) = (1− α)H(y, qs(θ)) + αH (pmt , qs(θ))) . (3)

One choice to organize the intermediate targets is to split the training process
into intervals and adopt a fixed target in each intervals, named as discrete
targets. For example, the Route-Constraint Optimization (RCO) [16] saves the
un-convergent checkpoints of teacher during the teacher’s training to construct
the target sequence. The learning target of student is changed every few epochs.

However, the targets are changed discontinuously in the turning points between
discrete intervals, which would incur negative effects on the dynamic knowledge
distillation. Firstly, switching to a target that is too difficult for the student
model would undermine the advantages of curriculum learning. If the target
is changed sharply to a model with large complexity improvement, it is hard
for student to learn. Besides, the ineligible gap between adjacent targets would
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make the training process unstable and hurt the convergence property during
the optimization [43].

Therefore, we propose to replace the discrete target sequence with a continuous
and dynamic one, whose targets are adjusted smoothly and dynamically according
to the status of student model. In continuous target sequence, targets in each
step are changed smoothly with ascending performance. In that case, if the
student learns the target well in current step, the target of the next step is
easier to learn because of the slight performance gap. The training process is
stable as well, because the training targets are improved smoothly. Specifically,
the optimization trajectories of the teacher model naturally offer continuous
supervision signals for the student. In our work, we propose to conduct the
optimization trajectories of teacher model as the continuous targets. Besides, to
ensure that intermediate teachers are kept easy to learn for students, we introduce
an explicit constraint in the objective of the teacher. This constraint dynamically
adjusts the updating path of the teacher according to learning progress of the
student. The key motivation of our method is illustrated in Fig. 1.

3.3 Progressive Knowledge Teaching

In this section, we firstly propose the SOKD adopting the optimization trajectories
of teacher as the continuous targets. The learning process is that every time the
teacher model updates one step towards the ground-truth, the student model
updates one step towards the new teacher. Then based on this, we propose the
Progressive Knowledge Teaching (ProKT), which modifies the updating objective
of the teacher by explicitly constraining it in the neighbourhood of student model.

To construct the target sequence with continuous ascending target distribu-
tions, a natural selection is the gradient flow of the optimization procedure of the
teacher distribution. With the student qθs and teacher model pθt initialized at the
same starting point (e.g., qθ0s (y|x) = pθ0t (y|x) = Uniform(1,K)), we iteratively
update the teacher model and the student model according to the following loss
functions:

θm+1
t = θmt − ηt∇Lt(θmt ), Lt(θt) = H(y, pθt), (4)

θm+1
s = θms − ηs∇Ls(θs, pθm+1

t
), Ls(θs) = H(pθt , qθs). (5)

Here, the ηt and ηs are learning rates of student and teacher models, re-
spectively. Starting with the same initialized distribution, the teacher model is
updated firstly by running a step of stochastic gradient descent. Then, the student
model learns from the updated teacher model. In this process, the student could
learn from the optimization trajectories of the teacher model, which provides the
knowledge of how the teacher model is optimized from a random classifier to a
good approximator. Compared with the discrete case such as RCO, the targets
are improved progressively and smoothly.

However, simply conducting iterative optimization following Eq. 4 with gra-
dient descent could not guarantee the teacher would stay close to the student
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Algorithm 1 ProKT

1: Input: Initialized student model qθs and teacher model qθt . Data set D.
2: while not converged do
3: Sample a batch of input (x, y) from the dataset D.
4: update teacher by θt ← θt − ηt∇θtL̂θt .
5: update student by θs ← θs − ηs∇θsL(θs).
6: end while

model even with a small update step. The gradient descent step of teacher in
Eq. 4 is equivalent to solving the following formulation:

θm+1
t = arg min

θ
L (θmt ) +∇θL(θ)> (θ − θmt ) +

1

2
ηt ‖θ − θmt ‖

2
,

which only seeks the solution in the neighborhood of current parameter θmt in
terms of the Euclidean distance. Unfortunately, there is no explicit constraint
that the target distribution pθm+1

t
(y|x) stays close to pθmt (y|x). Besides, because

the learning process of teacher model is ignorant of how the student model has
been trained, it is probably that the gap between student model and teacher
model grows cumulatively.

Therefore, in order to constrain the target distribution to be easy-to-learn
for the student, we modify the training objective of teacher model in Eq. 4 by
explicitly bounding the KL divergence between the teacher distribution and
student distribution:

θm+1
t = min

θt
H(y, pθt) s.t. DKL(qmθs , pθt) ≤ ε. (6)

The ε controls the how close the teacher model for the next step to the student
model. In this case, we make an approximation that if the KL divergence of
target distribution and the current student distribution is small, this target is
easy for student to learn. By optimizing the Eq. 6, the teacher is chosen as the
best approximator of the teacher model’s family in the neighbour of student
distribution.

With slight variant of the Lagrangian formula of Eq. 6, the learning objective
of teacher model in ProKT is

L̂θt = (1− λ)H(y, pθt) + λH(qθs , pθt), (7)

in which the hyper-parameter λ controls the difficulty of teacher model compared
with student model. The overall algorithm is summarized in Algorithm 1. The
proposed method also ensemble the spirit of mirror descent [1] which we provide
a more detailed discussion in the Appendix.
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4 Experiments

In this section, we empirically test the validity of our method in both image
and text classification benchmarks. Results show that ProKT achieves significant
improvement in a wide range of tasks and model architectures.

4.1 Setup

In order to evaluate the performance of ProKT under different knowledge distil-
lation settings, we implement the ProKT in different tasks (image recognition
and text classification), different network architectures, and different training
objectives.

Image Recognition The image classification experiments are conducted in
CIFAR-100 [18] following [33].
Settings. Following the [33], we compare the performance of knowledge distilla-
tion methods under various architecture of teacher and student models. We use
the following models as teacher or student models: vgg [29], MobileNetV2 [28]
(with a width multiplier of 0.5), ShuffleNetV1 [41], ShuffleNetV2 [29], Wide Resid-
ual Network (WRN-d-w) [40] (with depth d and width factor w) and ResNet [10].
To evaluate the ProKT under different distillation loss, we conduct the ProKT
with standard KL divergence loss and contrastive representation distillation loss
proposed by CRD [33].
Baselines. We compare our model with the following baselines: vanilla KD [12],
CRD [33] and RCO [16]. Results of baselines are from the report of [33], except
for the RCO [16], which is implemented by ourselves.

Text Classification Text classification experiments are conducted following
the setting of [34] and [15] on the GLUE [36] benchmark.
Datasets. We evaluate our method for sentiment classification on SST-2 [30],
natural language inference on MNLI [37] and QNLI [27], and paraphrase similarity
matching on MRPC [8] and QQP1.
Settings. The teacher model is the BERT-base [7] fine-tuned in the training
set, which is a 12-layer Transformers [35] with 768 hidden units. Following the
setting of [34] and [15], a BERT of 6 layer Transformers and 786 hidden units
is conducted as the student model. We use the pretrained 6 layer BERT model
released by [34]2, and fine-tune it in the training set. For distillation between
heterogeneous architectures, we use a single-layer bi-LSTM with 300 embedding
size and 300 hidden size as student model. We did not pretrain the bi-LSTM
models. We implement the basic ProKT with standard KL divergence loss, and
combine our method with the TinyBERT [15] by replacing the second stage of

1 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.
2 https://github.com/google-research/bert
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Table 1: Top-1 test accuracy (%) of student networks distilled from teacher with
different network architectures on CIFAR100. Results except the RCO, ProKT
and CRD+ProKT are from [33].

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

KD∗ 67.37 67.35 73.81 74.07 74.45 74.83
RCO 68.42 68.95 73.85 75.62 76.26 75.53
ProKT 68.79 69.32 73.88 75.79 75.59 76.02

CRD 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD 69.94 69.54 74.58 75.12 76.05 76.27
CRD+ProKT 69.59 69.93 75.14 76.0 76.86 76.76

fine-tuning TinyBERT with our ProKT. To fair comparison, we use the pre-
trained TinyBERT released by [15] when combing our ProKT with TinyBERT.
More experimental details are listed in the supplementary materials.
Baselines. We compare our method with following baselines: (1) BERT +
Finetune, fine-tune the BERT student on training set; (2) BERT/bi-LSTM +
KD, fine-tune the BERT student or train the bi-LSTM on training set using
the vanilla knowledge distillation loss [12]; (3) Route Constrained Optimization
(RCO) [16], use 4 un-convergent teacher checkpoints as intermediate training
targets; (4) bi-LSTM: train bi-LSTM in training set; (5) TinyBERT [15]: match
the attentions and representations of student model with teacher model on
the first stage and then fine-tune by the vanilla KD loss on the second stage.
For vanilla KD methods, we set the temperature as 1.0 and only use the KL
divergence with teacher outputs as loss. We also compare our method with the
results reported by [31] and [34].

4.2 Results

Results of image classification on CIFAR100 are shown in Tab. 1. The performance
is evaluated by top-1 accuracy. Results of text classification are shown in Tab. 2.
The accuracy or f1-score on test set are obtained by submitting to the GLUE [36]
website. Results on both text and image classification tasks show that ProKT
achieves the best performance under almost all model settings.

Results show that the continuous and dynamic targets are helpful to take
advantage of the knowledge from the teacher. Although adopting discrete targets
in RCO could improve the performance to vanilla KD, our ProKT with continuous
and dynamic targets is more effective in teaching student. To further show the
effectiveness of continuity and adaptiveness (i.e., the KL divergence term to
student in the update of teacher) in ProKT respectively, we test the results of
ProKT with λ = 0, in which the targets are improved smoothly but without the
adjustment towards the student. As shown in Tab. 2, the continuous targets are
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Table 2: Test results of different knowledge distillation methods in GLUE.

Model SST-2 MRPC QQP MNLI QNLI
(acc) (f1/acc) (f1/acc) (acc m/mm) (acc)

BERT12 (teacher) 93.4 88.0/83.2 71.4/89.2 84.3/83.4 91.1

PF [34] 91.8 86.8/81.7 70.4/88.9 82.8/82.2 88.9
PKD [31] 92.0 85.0/79.9 70.7/88.9 81.5/81.0 89.0

BERT6 + Finetune 92.6 86.3/81.4 70.4/88.9 82.0/80.4 89.3
BERT6 + KD 90.8 86.7/81.4 70.5/88.9 81.6/80.8 88.9
BERT6 + RCO 92.6 86.8/81.4 70.4/88.7 82.3/81.2 89.3
BERT6 + ProKT (λ = 0) 92.9 87.1/82.3 70.7/88.9 82.5/81.3 89.4
BERT6 + ProKT 93.3 87.0/82.3 70.9/88.9 82.9/82.2 89.7

TinyBERT6 [15] 93.1 87.3/82.6 71.6/89.1 84.6/83.2 90.4
TinyBERT6 + ProKT 93.6 88.1/83.8 71.2/89.2 84.2/83.4 90.9

bi-LSTM 86.3 76.2/67.0 60.1/80.7 66.9/66.6 73.2
bi-LSTM + KD 86.4 77.7/68.1 60.7/81.2 68.1/67.6 72.7
bi-LSTM + RCO 86.7 76.0/67.3 60.1/80.4 66.9/67.6 72.5
bi-LSTM + ProKT (λ = 0) 86.2 80.1/71.8 59.7/79.7 68.4/68.3 73.5
bi-LSTM + ProKT 88.3 80.3/71.0 60.2/80.4 68.8/69.1 76.1

better than discrete targets (i.e., RCO), while incorporating the constraint from
student when updating teacher could further improve the performance.

ProKT is effective as well when it is combined with different objective of
knowledge distillation. When combined with contrastive representation learning
loss in CRD, as shown in Tab. 1, and combined with TinyBERT in Tab. 2, ProKT
could further boost the performance and achieves the state-of-the-art results in
almost all settings.

ProKT is especially effective when the student is of different structure with
teacher. As shown in Tab. 2, when the student is bi-LSTM, directly distilling
knowledge from a pre-trained BERT has a minor effect. ProKT could improve a
larger margin for bi-LSTM than small BERT when distilled from BERT-base.
Since learning from a heterogeneous teacher is more difficult, exposing teacher’s
training process to student could offer better guidance to the student.

4.3 Discussion

Training dynamics To visualize the training dynamics of teacher model and
student model, we show the training loss of student model and the training
accuracy of teacher model in Fig. 2. The training losses are calculated by the KL
divergence between the student model and their intermediate targets. Fig. 2a
shows that the divergence between student and teacher in ProKT (i.e., the
training loss for ProKT) is smooth and well bounded to a relative small value.
For discrete targets in RCO, the divergence is bounded well in the beginning
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Fig. 2: Training loss and accuracy for MobileNetV2 distilled from ResNet50 on
CIFAR 100.

of training. However, at the target switching points, there are impulses in the
training curve and then the loss is kept to a relative larger value.

Then, we examine the performance of teacher model in Fig. 2b. ResNet50
refers to the teacher model which is trained by vanilla loss. While the ProKT-T
denotes the teacher model which updated by the ProKT loss. It could be found
that the performance of teacher model in ProKT deteriorates because of the
“local” constraint from student. However, the lower training accuracy for teacher
model does not affect the training performance of the student model as illustrated
in the Tab. 1. These results show that a better teacher could not guarantee a
better student model, which further justifies our intuition that involving local
targets is beneficial for the learning of the student model.

Ablation study To test the impact of the constraint from student in Eq. 6, test
and valid accuracy with respect to different λ for image and text classification
tasks are shown in Fig. 3. It is illustrated that the performance is improved in
an appropriate range of λ, which means that the constraint term is helpful to
provide appropriate targets. However, when the λ is too large, the regularization
from student will heavily damage the training of teacher and the performance of
student will drop.

Training Cost In our ProKT, the teacher model should be trained as well as
the student models, which brings extra training cost compared with directly
training the student models. Taking the distillation from BERT12 to BERT6 as
an example, the time multiples of training by ProKT relative to training vanilla
KD is listed in Tab. 3. On average, the training time for ProKT is about 2x to
vanilla KD. However, the training time is not a bottleneck in practice. Because
the model is trained once but runs unlimitedly, inference time is the main concern
in the deployment of neural models. Our model has the same inference complexity
as vanilla KD.
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Fig. 3: Test/valid accuracy with different value of λ for teacher and student model
in ProKT.

Table 3: The time multiples of training by ProKT relative to training vanilla KD.

Dataset SST-2 MRPC QQP MNLI QNLI

Time cost of ProKT 2.1x 2.0x 1.8x 1.7x 1.8x

5 Conclusion

We propose a novel model agnostic knowledge distillation method, ProKT. The
method projects the step-by-step supervision signal on the optimization procedure
of student with an approximate mirror descent fashion, i.e., student model learns
from a dynamic teacher sequence while the progressive teacher is aware of the
learning process of student. Experimental results show that ProKT achieves good
performance in knowledge distillation for both image and text classification tasks.
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A Appendix

A.1 Experimental details for text classification

We use the pre-trained BERTs released by [34] except for TinyBERTs. For
TinyBERTs, we use the pre-trained model released by [15]3. We fine-tune 4
epoch for non-distillation training and 6 epoch for distillation training. Adam [17]
optimizer with learning rate 0.001 is used for biLSTM and with a learning rate
from {3e-5, 5e-5, 1e-4} is used for BERTs. The hyper-parameter of λ in Eq. 6
is chosen according to the performance in the validation set. For ProKT in
TinyBERT, we use the data argumentation following [15].

A.2 Full comparison of KD in image recognition sec Experiment
results of homogeneous architecture KD in image recognition

We provide the full comparison of our method with respect to several additional
knowledge distillation methods as extension in the Table. 4.

Table 4: Top-1 test accuracy (%) of student networks distilled from teacher with
different network architectures on CIFAR100. Results except the RCO, ProKT
and CRD+ProKT are from [33].

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

KD∗ 67.37 67.35 73.81 74.07 74.45 74.83
FitNet∗ 64.14 63.16 70.69 73.59 73.54 73.73
AT 59.40 58.58 71.84 71.73 72.73 73.32
SP 66.30 68.08 73.34 73.48 74.56 74.52
CC 64.86 65.43 70.25 71.14 71.29 71.38
VID 65.56 67.57 70.30 73.38 73.40 73.61
RKD 64.52 64.43 71.50 72.28 73.21 72.21
PKT 67.13 66.52 73.01 74.10 74.69 73.89
AB 66.06 67.20 70.65 73.55 74.31 73.34
FT∗ 61.78 60.99 70.29 71.75 72.50 72.03
NST∗ 58.16 64.96 71.28 74.12 74.68 74.89
RCO 68.42 68.95 73.85 75.62 76.26 75.53
ProKT 68.79 69.32 73.88 75.79 75.59 76.02

CRD 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD 69.94 69.54 74.58 75.12 76.05 76.27
CRD+ProKT 69.59 69.93 75.14 76.0 76.86 76.76

3 https://github.com/huawei-noah/Pretrained-Language-
Model/tree/master/TinyBERT
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A.3 ProKT as Approximate Mirror Descent

Following the assumption that supervised learning could globally solve a convex
optimization problem, it could be shown the proposed method corresponds
to a special case of mirror descent [2] with the objective as H(y, qθs). Note
the optimization procedure is conducted on the output distribution space, the
constraint is the solution must lie on the manifold of output distributions which
could be characterized in the same way as the student model. We use Qθs to
denote the possible output distribution family with the same parameterization
as the student model.

Proposition 1. The proposed ProKT solves the optimization problem:

qθs ←− arg min
qθs∈Qθs

H(y, qθs)

with mirror descent by iteratively conducting the following two step optimization
at step m:

qmθt ← arg min
qθt

H(y, qθt) s.t. DKL

(
qmθs , q

m
θt

)
≤ ε, qm+1

θs
← arg min

qθs∈Qθs
DKL

(
qmθt , qθs

)
(8)

The first step is to find a better output distribution which minimizes the classifi-
cation task and is close to the previous student distribution qmθs under the KL
divergence. While the second step projects the distribution in the distribution
family Qθs in terms of the KL divergence. The monotonic property directly
follows the monotonic improvement in mirror descent [2].
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4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 535–541 (2006)

5. Chen, W., Li, G., Ren, S., Liu, S., Zhang, Z., Li, M., Zhou, M.: Generative bridging
network in neural sequence prediction. arXiv preprint arXiv:1706.09152 (2017)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)



Follow Your Path: a Progressive Method for Knowledge Distillation 15

8. Dolan, W.B., Brockett, C.: Automatically constructing a corpus of sentential
paraphrases. In: Proceedings of the Third International Workshop on Paraphrasing
(IWP2005) (2005)

9. He, H., Eisner, J., Daume, H.: Imitation learning by coaching. In: Advances in
Neural Information Processing Systems. pp. 3149–3157 (2012)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

11. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 784–800 (2018)

12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

14. Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., Liu, Q.: Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351
(2019)

15. Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., Liu, Q.: Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351
(2019)

16. Jin, X., Peng, B., Wu, Y., Liu, Y., Liu, J., Liang, D., Yan, J., Hu, X.: Knowl-
edge distillation via route constrained optimization. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 1345–1354 (2019)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

19. Le, H.M., Kang, A., Yue, Y., Carr, P.: Smooth imitation learning for online sequence
prediction. arXiv preprint arXiv:1606.00968 (2016)

20. Levine, S., Koltun, V.: Guided policy search. In: International Conference on
Machine Learning. pp. 1–9 (2013)

21. Lu, S., Yu, L., Feng, S., Zhu, Y., Zhang, W., Yu, Y.: Cot: Cooperative training for
generative modeling of discrete data. arXiv preprint arXiv:1804.03782 (2018)

22. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge
distillation via teacher assistant: Bridging the gap between student and teacher.
arXiv preprint arXiv:1902.03393 (2019)

23. Montgomery, W.H., Levine, S.: Guided policy search via approximate mirror descent.
In: Advances in Neural Information Processing Systems. pp. 4008–4016 (2016)

24. Phuong, M., Lampert, C.: Towards understanding knowledge distillation. In: Inter-
national Conference on Machine Learning. pp. 5142–5151 (2019)

25. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and
quantization. arXiv preprint arXiv:1802.05668 (2018)

26. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/researchcovers/languageunsupervised/language understanding
paper. pdf (2018)

27. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)



16 W. Shi et al.

28. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 4510–4520 (2018)

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

30. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.:
Recursive deep models for semantic compositionality over a sentiment treebank.
In: Proceedings of the 2013 conference on empirical methods in natural language
processing. pp. 1631–1642 (2013)

31. Sun, S., Cheng, Y., Gan, Z., Liu, J.: Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355 (2019)

32. Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal restricted boltz-
mann machine. In: Advances in neural information processing systems. pp. 1601–
1608 (2009)

33. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv
preprint arXiv:1910.10699 (2019)

34. Turc, I., Chang, M.W., Lee, K., Toutanova, K.: Well-read students learn better: On
the importance of pre-training compact models. arXiv preprint arXiv:1908.08962
(2019)

35. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

36. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

37. Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426 (2017)

38. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 4820–4828 (2016)

39. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4133–4141 (2017)

40. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

41. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 6848–6856 (2018)

42. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
4320–4328 (2018)

43. Zhou, Z., Zhang, Q., Lu, G., Wang, H., Zhang, W., Yu, Y.: Adashift: Decorrelation
and convergence of adaptive learning rate methods. arXiv preprint arXiv:1810.00143
(2018)


	Follow Your Path: a Progressive Method for Knowledge Distillation

