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Abstract. Self-supervised representation learning has achieved promis-
ing results for downstream visual tasks in natural images. However, its
use in the medical domain, where there is an underlying human struc-
tural similarity, remains underexplored. To address this shortcoming, we
propose a self-supervised multi-task representation learning framework
for sequential 2D medical images, which explicitly aims to exploit the un-
derlying structures via multiple pretext tasks. Unlike the current state-
of-the-art methods, which are designed to only pre-train the encoder for
instance discrimination tasks, the proposed framework can pre-train the
encoder and the decoder at the same time for dense prediction tasks.
We evaluate the representations extracted by the proposed framework
on two public whole heart segmentation datasets from different domains.
The experimental results show that our proposed framework outperforms
MoCo V2, a strong representation learning baseline. Given only a small
amount of labeled data, the segmentation networks pre-trained by the
proposed framework on unlabeled data can achieve better results than
their counterparts trained by standard supervised approaches.

Keywords: Self-Supervised Learning · Multi-Task Learning · Medical
Image Segmentation.

1 Introduction

Fueled by recent success of convolutional neural networks (CNN), deep learn-
ing (DL) has led many breakthroughs in computer vision tasks, benefiting from
large-scale training data. However, under standard supervised learning (SL),
preparing a large training dataset requires extensive and costly human anno-
tation, especially in medical domain, where the annotation requires further do-
main expertise from the clinicians. To mitigate this data scarcity challenge in SL,
there is a renaissance of research on self-supervised learning (SSL) [33]. SSL aims
to learn meaningful representations from the unlabeled data in SSL and then
transfer the extracted representations for the downstream task with a small-scale
labeled data . For simplicity, we use the term self-supervised learning and the
term self-supervised representation learning interchangeably in this work. The
state-of-the-art (SOTA) SSL methods [19, 26, 6, 35, 8] have demonstrated that a
model trained with only unlabeled data plus a small amount of labeled data can
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achieve comparable performance on various downstream tasks with the same
model trained with a large amount of labeled data.

Although similar SSL techniques have been applied in medical tasks and have
achieved promising performance, several questions remain inconclusive. First,
SOTA SSL methods leverage instance-wise differences among the unlabeled data
by contrastive learning. For example, the models are pre-trained on ImageNet
[10] and fine-tune with PASCAL VOC [14] and MS COCO [23] for the down-
stream tasks. As shown in Fig. 1, compared with natural images from ImageNet
[10] which belong to particular categories, the medical images show clear differ-
ence: (1) a natural image usually has the single object of interest centered in the
image but a medical image usually contain more than one semantic class; (2) the
background (BG) in medical images usually contains more supportive semantic
information than natural images; (3) for a particular class, the instance-wise
difference is more obvious in natural images than medical images. For medical
images such as computerised tomography (CT) and magnetic resonance imag-
ing (MRI), a scan contains a series of slices for the same patient. The difference
between neighbored slices is commonly negligible by human eyes (see Fig. 2 for
example). Second, to utilize instance discrimination as the pretext task, SOTA
SSL methods can only pre-train the encoder for image classification tasks, due
to the nature of instance discrimination task. In contrast to image classification,
where an input image is mapped to a single label, dense prediction tasks are
expected to learn a pixel-wise mapping between the input and the output. For
downstream tasks such as depth estimation, edge detection, and surface normal
estimation, contrastive learning cannot learn representations for the decoder.
Third, medical datasets are usually much smaller than general-purpose datasets
such as ImageNet. This would limit the performance of contrastive learning
methods, which rely on large-scale training data to catch the instance-wise dif-
ference [19, 6]. Last but not least, directly applying SSL methods on medical
images does not utilize domain-specific knowledge that is particular to the med-
ical domain. Unlike general objects, medical objects such as human organs or
human structures usually share statistical similarities in terms of the location,
shape, and size among different patients [13]. There have been studies of utilizing
such a human structural similarity, as a free lunch, in medical image analysis [9,
12, 13, 29]. See Fig. 2 for the intuition of human structural similarity.

To bridge the methodological gaps discussed above, we propose a novel SSL
framework for medical images such as CT scans or MRI scans. We propose
two pretext tasks that can be formulated as two SSL problems by utilizing the
characteristics of the medical data. Concretely, for a single slice in a series of
medical images in a sequential order, we try to reconstruct two slices that have
a fixed distance to it on both sides. Given a CNN with an end-to-end pixel-wise
mapping (e.g. U-Net [32]), two pretext tasks are trained jointly in a multi-task
learning (MTL) formulation to learn domain-specific knowledge for the CNN.
Given limited data, we use MTL to improve the generalization of the CNN. If
a CNN can be decomposed into an encoder and decoder separately (e.g. FCN
[24] where the encoder can be viewed as a standard feature extractor for im-
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(a) (b) (c) (d)

Fig. 1: Visual Comparison between instance-wise difference. (a) and (b) are two
Golden Retrievers sampled from the ImageNet dataset [10]. (c) and (d) are two
slices sampled from two patients’ CT scans, which are collected in the CT-WHS
dataset [42].

(a) (b) (c) (d)

Fig. 2: A piece of sequential slices of a patient’s CT scan. The CT scan is collected
in the CT-WHS dataset [42].

age classification), we extend the proposed framework to integrate the instance
discrimination task for the encoder as the third pretext task. We evaluate the
proposed framework in medical image segmentation tasks where we pre-train a
segmentation network on unlabeled data first and then fine-tune the model with
a small-scale labeled data. The segmentation network pre-trained by the pro-
posed framework can outperform the same network pre-trained by MoCo [19],
the SOTA SSL method, in the whole heart segmentation tasks.

Our main contributions can be summarized as follows:

1. We propose a simple self-supervised learning framework for dense prediction
tasks on medical images with inherent sequential order.

2. We are the first to exploit human structural similarity to integrate multi-task
learning with self-supervised learning.

3. We extend the proposed framework to incorporate the concept of contrastive
learning.

2 Related Works

2.1 Self-Supervised Learning

First formulated in [33], self-supervised learning (SSL) is a form of unsuper-
vised learning where the learning process is not supervised by human-annotated
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(a) (b) (c) (d)

Fig. 3: Illustration of human structural similarity: (a) An axial CT image with
the ground truth annotation of the right atrium. (b) The label distribution
(normalized density heatmap) of right atriums in the CT-WHS dataset [41]. (c)
A sagittal MRI image with the ground truth annotation of the left ventricle. (d)
The label distributions of left ventricles in the MRI-WHS dataset [42].

labels. By observing how babies interacting with the new environment [17],
the concept of SSL originated from cognitive science. Meanwhile, representa-
tion learning aims to extract useful representations from data [2] in the context
of DL. An important application of SSL is to learn transferable representations
for downstream tasks, e.g. common downstream tasks for visual understanding
include image recognition [34, 20], object detection [31, 22], and semantic seg-
mentation [24, 5]. With this definition, SSL can also be understood as transfer
learning from unlabeled data [30].

Pretext Tasks In the recent renaissance of SSL in visual understanding tasks,
the role of SSL in each taget task is associated with the corresponding pretext
task. By solving a pretext task, the model extracts meaningful representations
for the target task. That is to say, the model is pre-trained on the pretext task
for the target task. For example, [11] utilizes two CNNs with shared weights to
predict the relative positions of two patches randomly cropped from the same
image. Similarly, for an image divided into a 3× 3 grid, [27] permutes the order
of 9 patches and predicted the index of the chosen permutation, just like solving
jigsaw puzzles.[39] colorizes the grayscale images by using the lightness channel
L as input to predict the corresponding a and b color channels of the image in the
CIE Lab colorspace. [16] randomly rotates the images by multiples of 90 degrees
and predicts the rotation. Designing a good pretext tasks requires extra effort
and is challenging, as a good self-supervised task is neither simple nor ambiguous
[27].

Contrastive Learning Contrastive learning was first developed as a learn-
ing paradigm for neural networks to identify what makes two objects similar or
different [1]. In the literature of SSL, contrastive learning utilizes the instance-
wise difference and systematically defines the pretext tasks as a simple instance
discrimination task [19]. Recently, state-of-the-art (SOTA) contrastive learning
methods [6, 19, 26, 35] have been proposed based on a contrastive loss, InfoNCE
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(a) Soft Parameter Sharing (b) Hard Parameter Sharing

Fig. 4: Two common MTL workflows for dense prediction tasks given the same
input. (a) Soft parameter sharing: The different tasks have separate models (in
different colors), where the parameters are communicated between models. (b)
Hard parameter sharing: The different tasks share the same encoder and network
backbone (in purple) but independent decoders.

[28], which is motivated by noise-contrastive estimation (NCE) [18]. By mini-
mizing InfoNCE, the model is expected to learn the invariant features shared by
a positive pair [26, 6, 35], where a positive pair is usually defined as two sarcasti-
cally augmented views from the same instance. Note, SOTA contrastive learning
methods usually rely on large-scale datasets, which are often unavailable in the
medical domain.

2.2 Multi-Task Learning

Multi-task learning (MTL) [4] is a learning paradigm inspired by human learn-
ing activities where the knowledge learned from previous tasks can help learn a
new task. MTL aims to improve the generalization performance of all the tasks
by leveraging useful information contained in multiple related tasks [37]. In the
era of DL, we use a model to map the input to the output, given a specific task.
In contrast to single-task learning, where each task is handled by an indepen-
dent model, MTL can reduce the memory footprint, increase overall inference
speed, and improve the model performance. Moreover, when the associated tasks
contain complementary information, MTL can regularize each single task. For
dense prediction tasks, a good example is semantic segmentation, where we al-
ways assume that the classes of interest are mutually exclusive. Depending on
the data modality of the input and the task affinity [36] between tasks, there are
various types of MTL. We depict the workflows for the situations that the tasks
share the same input in Fig. 4. Given the same input, pixel-level tasks in visual
understanding often have similar characteristics, which can be potentially used
to boost the performance by MTL [40].
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3 Method

3.1 Problem Formulation

Let X be an unlabeled set consisting of sequences of medical images for N
patients, i.e.X = {xi}Ni=1. Each example consists of a sequence of medical images

xi = {xji}
ni
j=1 for the patient i. For example, the sequences of medical images

could be CT scans or MRI scans. The goal is to learn meaningful representations
from X for a downstream dense prediction task, such as semantic segmentation
on medical images.

3.2 Self-Supervised Multi-Tasking Learning

Based on the empirical observation of human structural similarity, we assume
that each medical image xji follows an unknown distribution X . We aim to utilize
this similarity. Given a neural network backbone for a dense prediction task, we
create two pretext tasks which can be formulated in a MTL setting. Concretely,
given a sequence xi, we use an anchor image xji to predict the image t steps

before xj−ti and the image t steps behind xj+ti , where t is an integer. Formally,
let the neural network backbone we are interested (including the encoder and
the decoder) be fθ and the auxiliary task decoders be gφ− for xj−ti and gφ+ for

xj+ti respectively. The loss function is

Lpretext =
∑
i

||gφ−(fθ(x
j
i ))− x

j−t
i ||+ ||gφ+(fθ(x

j
i ))− x

j+t
i || (1)

, where || · || denotes a distance measure in Euclidean space. For simplicity, we
use a standard Euclidean distance (i.e. mean squared error). The overall learning
framework is illustrated in Fig. 5.

Intuitively, when we are learning the mappings from xji to xj−ti and xj+ti ,
the human structural similarity (e.g. the relative location, shape, and size of the
organs and structures) is extracted by the neural network backbone. For the
downstream tasks such as medical image segmentation, the extracted knowledge
should play an important role as there is an overlap of the semantic information
shared between the pretext tasks and the downstream tasks. Note, without the
regularization of MTL, i.e. if there is only one pretext task, the neural network
backbone could only memorize information for just one direction, which might be
a easy pretext task to learn and make the learned representations less meaningful
for the downstream tasks. Theoretically, we can have 2|T | pretext tasks for
t ∈ T . Here, we believe two pretext tasks are sufficient to learn meaningful
representations for the downstream tasks.

3.3 Integration with Instance Discrimination

As discussed in Sec. 2.1, contrastive learning can be viewed as a generalized pre-
text task in SSL. As contrastive learning has shown promising performance in
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Fig. 5: Illustration of the proposed self-supervised multi-task learning framework.
Given a sequence of medical images xi (e.g. a CT scan of a patient), randomly
sample xji from the sequence and get corresponding xj−ti and xj+ti if possible.
The architecture in purple is the neural network backbone that we are interested
in (i.e. fθ) and the two architectures in red and blue are two decoders for two
pretext tasks respectively (i.e. gφ− and gφ+).

SSL for the encoder of image classification tasks, it is natural to consider includ-
ing instance discrimination as the third pretext task in the MTL formulation
when the neural network backbone can be perfectly decomposed as an encoder
and a decoder. Here, we require that the encoder and the decoder can be trained
independently (although we train them jointly).

For STOA contrastive learning methods, a positive pair is defined as two
augmented views from the same instance and a negative pair is defined as two
augmented views from two different instance. The common data augmentation
policies include the combinations of cropping, resizing, flipping, color distortion
by grayscale conversion, color distortion by jittering, cutout, Gaussian noise,
Gaussian blurring, rotation, and Sobel filtering [6]. However, most of these data
augmentation policies can not be applied to medical images directly for three
reasons. First, medical images tend to be grayscale images or can only be trans-
formed to grayscale images. Second, medical images are sensitive to local tex-
ture, which may be changed by the data augmentation. Third, unlike the random
crops that contrastive learning methods usually work on, dense prediction tasks
for medical images usually require the whole image as the input.

As discussed in Sec. 1, medical images share more similarities in the objects
of interest than general objects in natural images due the human structural sim-
ilarity. Instead of defining negative pairs, we only define positive pairs, inspired
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by Siamese networks [3, 8]. Based on the human structural similarity, we pro-
pose to define two slices from the same scan as a positive pair. Intuitively, we are
using two natural variants of the same instance rather than synthetic variants
(i.e. augmented views) of the same instance. For example, Fig. 2(a) and Fig. 2(d)
can be viewed as a natural positive pair.

Formally, given an anchor image xji , we define xki as the variant of xji . To avoid

trivial solutions, we want xji and xki to be moderately different to increase the
learning difficulty. We randomly sample k where we define k ∈ {j−2t, · · · , j−t−
1}∪{j+t+1, · · · , j+2t}. Let q denote the encoder which projects the input image
to a feature vector. Here, the encoder could be a standard feature extractor used
in image classification tasks, such as a ResNet feature extractor [20]. Following
[8], two input images share the same encoder. Let h be a multi-layer perceptron
(MLP), which further projects the encoded xki to match the encoded xji . Note,
we use the stop gradient technique [19, 8] when encoding xki . That is to say, we
do not update the encoder when the loss backpropagates through q(xki ), i.e. we

use fixed weights for q(xki ). By updating q(xji ) alone, three pretext tasks can

be optimized simultaneously. Given a positive pair xji and xki , we minimize the
negative cosine similarity

Lsim = − q(xki )

||q(xki )||2
· h(q(xji ))

||h(q(xji ))||2
(2)

, where each encoded feature vector is normalized by its l2 norm. The motivation
here is to learn the invariance between two images. Given two slices from the
same patient, the invariance shared between two images is the general knowledge
of human structures for the region of interest.

The final optimization object for the self-supervised MTL is to minimize the
total loss of three pretext tasks. We have

Lself = Lpretext + λLsim (3)

, where λ is the hyperparameter to control the weight of Lsim. In this work, to
balance the weights among three pretext tasks, we use set λ = 1 1. The complete
learning framework is present in Fig. 6. Note, for Sec. 3.2, there is no assumption
of the architecture of the neural network, i.e. the learning framework should
apply to any dense prediction task. However, for Sec. 3.3, we assume that the
encoder should be the standard feature extractor for image classification tasks.
We will empirically evaluate both frameworks in Sec. 4.

4 Experiments

We evaluate the proposed SSL frameworks on the whole heart segmentation
(WHS) task. Unlike general semantic segmentation tasks that commonly take

1 Task balancing is a topic of active research in MTL, which is beyond the scope of
discussion in this work. We refer the interested readers to [37] for details.



Title Suppressed Due to Excessive Length 9

Fig. 6: Illustration of the proposed self-supervised multi-task learning framework
with the additional instance discrimination pretext task. In addition to Fig. 5,
we minimize the similarity between the encoded xji and the encoded xki , where

two images share the same encoder. Note, we only update q(xji ), the branch with
the MLP in the MTL formulation. The neural network backbone that we are
interested in includes an encoder (the architecture in yellow) and a decoder (the
architecture in purple). The auxiliary MLP (the architecture in green) will not
be used in the downstream tasks.

standard RGB images as input, WHS could have different source domains,
namely CT scans and MRI scans. CT scans and MRI scans show variations
in data modalities, which can be viewed in Fig. 3. The purposes of the experi-
ments are twofold. First, we want to validate the theoretical advantages of the
proposed framework. Second, we want to show that the proposed framework can
extract meaningful representations on different type of data.

4.1 Datasets

We use two public benchmark datasets for WHS 2. See Table 1 for the statistics
of the datasets. Each dataset contains manual segmentation masks of 7 sub-
structures of the heart for 20 patients: the left ventricle blood cavity, the right

2 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/



10 Anonymous

Table 1: Dataset description.
dataset axial frontal sagittal # scans # slices per scan resolution

CT-WHS 3 7 7 20 [177, 363] 512 × 512

MRI-WHS 7 7 3 14 [120, 180] [256, 340] × [256, 340]

ventricle blood cavity, the left atrium blood cavity, the right atrium blood cavity,
the myocardium of the left ventricle, the ascending aorta, and the pulmonary
artery. See Table 1 for the description of the datasets.
CT-WHS The CT-WHS dataset [42] is a benchmark dataset in WHS, which
contains CT scans for 20 patients. CT-WHS has have axial views for all the
patients. Each CT scan is represented as a 3D array and each slice of the scan is
converted to a 2D image by mapping Hounsfield units to grayscale pixel values.
CT-WHS The number of slices per patients differs across patients. Each slice
has a fixed resolution 512× 512.
MRI-WHS The MRI-WHS dataset [41] is a benchmark dataset in WHS, which
contains MRI scans for 20 patients. Unlike CT-WHS, MRI-WHS have either
frontal or sagittal views for each patient. Each scan is represented as a 3D array
and each slice of the scan is converted into a 2D image by mapping MRI intensity
values to grayscale pixel values. The image size and the number of slices per
patients differs across patients.

4.2 Experimental Setup

Implementation For Sec. 3.2, we use a standard U-Net [32] as the neural
network backbone. For simplicity, we replace the last convolutional layer of U-
Net as two 1 convolutional layers with 64 channels for the input and 1 channel
for the output. That is to say, we maximally shared the neural network backbone
in MTL. For Sec. 3.3, as we need to decompose the neural network backbone into
an encoder and a decoder, we choose FCN [24] as the neural network backbone.
We use the ResNet50 [20] as the encoder. More precisely, the ResNet50 in this
work denotes the ResNet50 architecture without the final fully-connected layer.
The MLP consists of 2 fully-connected layers, whose number input channels and
output channels are 2048 7→ 512 and 512 7→ 2048. The decoder is trained in the
same way in Sec. 3.2. There is limited literature for utilizing human structural
similarity in self-supervised multi-task learning for dense prediction tasks on
medical images. For the baseline model, we use the SOTA contrastive learning
framework MoCo V2 [7] 3. For a fair comparison, we also use ResNet50 as the
encoder. When fine-tuning with the downstream task, the decoder is randomly
initialized. All models are implemented by PyTorch in a NVIDIA Tesla V100
GPU.
Hyperparameters For a fair comparison, we use the same set of hyperparam-
eters for all models and all models are initialized with the same random seed.

3 https://github.com/facebookresearch/moco
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We use an Adam optimizer [21] with a fixed learning rate 10−3 across all exper-
iments. The batch size is 16. Note, we do not use any data augmentation on the
proposed framework. For MoCo V2, we use the default hyperparameters except
K and the stochastic data augmentation policy. We set K as 1024 because we
have much smaller datasets than ImageNet 4. As discussed in Sec. 3.3, data aug-
mentation plays an important role in SOTA contrastive learning frameworks.
The original data augmentation policy is designed for RGB images instead of
grayscale images. Here, we therefore use random flipping and stochastic Gaussian
blurring as proposed in MoCo V2 [7].
Training and Evaluation For consistency among the datasets, all images and
corresponding annotations are resized to 256×256. The resizing is also important
for the baseline MoCo V2. The encoder for MoCo V2 is designed for standard
ImageNet image size i.e.224× 224. Each image is pre-processed by instance nor-
malization. For the cardiac segmentation tasks on CT scans, we use all slices of
20 patients for the self-supervised pre-training. All models are pre-trained for the
same of epochs as a fair comparison. In terms of the evaluation, the benchmark
linear classification protocol [38, 6, 19, 26, 7] only applies to image classification
tasks. Instead, we use the performance of supervised semantic segmentation as
a proxy measurement for the quality of the learned representations. We choose
four classes of interest in the cardiac segmentation task: the left ventricle blood
cavity (LV), the right ventricle blood cavity (RV), the left atrium blood cavity
(LA), and the right atrium blood cavity (RA). We split 20 patients into a train-
ing set of 5 CT scans and a test set of 15 CT scans. As in practical situations, the
clinical annotators will only annotate a small amount of slices for each scan. We
randomly sampled 20 annotated slices from each scan, with a total 100 slices as
the training data. We use such as small training data to simulate the challeng-
ing data scarcity situation and also demonstrate the efficiency of the proposed
framework. Given the self-supervised pre-trained neural network backbone, we
fine-tune the model with the small training set and report the Intersection-Over-
Union (IOU) of each class of interest and the mean IOU (mIOU) on the test
set. The same training strategy applies for MRI scans. However, we only use 14
MRI scans with sagittal view as the self-supervised pre-training data. For the
evaluation, we split 14 patients into a training set of 4 MRI scans and a test set
of 10 MRIs. Similarly, we randomly sampled 25 annotated slices from each scan
as the training images.

4.3 Results

We first evaluate the proposed framework in Sec. 3.2 on CT scans and MRI
scans. We pre-train the U-Net on CT scans for 100 epochs and on MRI scans
for 400 epochs as CT scans have around 3 times more slices than CT scans.
As discussed in Sec. 4.2, we use the downstream task cardiac segmentation as
a proxy evaluation. For CT scans, the models are trained with 100 labeled CT
slices until convergence and tested with 4080 CT slices. For MRI scans, the

4 K is originally 65532.
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Table 2: Proxy evaluation of self-supervised multi-task learning on axial CT
scans with U-Net as the neural network backbone.

Method LV RV LA RA mIOU

w/o pre-training 0.445 0.378 0.427 0.429 0.420

SSMTL (t=5) 0.656 0.496 0.657 0.537 0.586

SSMTL (t=10) 0.571 0.478 0.545 0.558 0.537

SSMTL (t=15) 0.590 0.499 0.541 0.479 0.527

Table 3: Proxy evaluation of self-supervised multi-task learning on sagittal MRI
scans with U-Net as the neural network backbone.

Method LV RV LA RA mIOU

w/o pre-training 0.447 0.491 0.260 0.267 0.354

SSMTL (t=5) 0.552 0.489 0.297 0.371 0.427

SSMTL (t=10) 0.600 0.509 0.257 0.271 0.409

SSMTL (t=15) 0.640 0.509 0.283 0.234 0.417

number of training and test slices are 100 and 1480 respectively. The results of
the segmentation performance are reported in Table 2 and Table 3. We denote
the proposed framework as SSMTL. The U-Net pre-trained with SSMTL out-
performs the U-Net without pre-training by a large margin on both datasets. In
fact, this large margin is caused by the data scarcity. With insufficient labeled
images, which is quite common in medical domain, traditional supervised ap-
proaches could easily fail. The proposed framework could be an efficient solution
for this challenge. t = 5 gives the overall best performance in both tables, but
in practice, the choice of t depends on the thickness of the slice. It is worth
mentioning that the length of the sequence and the shape of the structure would
influence the performance of representation learning. As shown in Table 2 and
Table 3, the pre-training leads to more performance gain for scans with more
sequential slices and larger structures. We also perform an ablation study for
the number of pre-training epochs in Fig. 7. More pre-training epochs might not
always help because the model could overfit the pretext tasks. This also leads to
an interesting research question about how to measure the task affinity between
pretext tasks and downstream tasks, which left as future work.

We repeat the previous experiment to evaluate the extended framework pro-
posed in Sec. 3.3. We denote this extension of SSMTL as SSMTL+. We use t = 5.
This time, we use a FCN with a ResNet50 encoder. The results are present in
Table 4 and Table 5. Surprisingly, although a ResNet-FCN without pre-training
shows much better results than its U-Net counterpart, U-Net pre-trained with
SSMTL outperforms ResNet-FCN pre-trained with SSMTL+. Another interest-
ing phenomenon is that ResNet-FCN pre-trained with SSMTL has a decreased
performance. Both phenomena can be explained by the relationship between the
network architecture and the target task. Note, there is a structural difference
between U-Net and FCN, where U-Net has a balanced architecture between the
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Fig. 7: The learning goal for pretext tasks might not be well-aligned with the
learning goal for downstream tasks: more pre-training epochs do not always
help the downstream tasks.

Table 4: Proxy evaluation of self-supervised multi-task learning on CT scans
with ResNet-FCN as the neural network backbone.

Method LV RV LA RA mIOU

w/o pre-training 0.548 0.475 0.491 0.421 0.483

MoCo V2 0.586 0.491 0.512 0.424 0.503

SSMTL 0.573 0.487 0.451 0.398 0.477

SSMTL+ 0.607 0.487 0.523 0.434 0.513

SSMTL(U-Net) 0.656 0.496 0.657 0.537 0.586

encoder and the decoder but FCN puts more weight on the encoder. This enables
ResNet-FCN to be more sensitive to semantic information, as ResNet50 is a sem-
inal feature extractor, but also weakens its learning ability for dense prediction
tasks with less semantic contents (i.e. no semantic labels). The pretext tasks pro-
posed in Sec. 3.2 are not designed to extract semantic information as a segmenta-
tion task. So FCN might not be the suitable neural network backbone. SSMTL+
actually mitigates the issue with the additional instance discrimination task and
shows slightly better performance than MoCo V2. Compared with benchmark
SSL pre-training datasets such as ImageNet-1M [10] and Instagram-1B [25], the
data scarcity in medical tasks will impair the performance of data-driven SSL
models such as MoCo V2.

Denoising We have another ablation study to validate our hypothesis of the
relationship between the architecture and the target task. Here, we examine the
proposed framework with a simple downstream task, denoising. Denoising is a
dense prediction task with pixel-to-pixel mapping. The pretext tasks are highly
correlated with denoising as they are both reconstructing images. Moreover,
there is no semantic labels involved. We use the same training and test split for
CT scans. We add synthetic noise to the original images and use them as the
training/test images. We treat the original images as the ground truth. Following
[15], we implement the noise model as a zero-mean image-dependent Gaussian
distribution. We utilize the models pre-trained from previous experiments. The
training for the denoising downstream task is performed by minimizing the L1
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Table 5: Proxy evaluation of self-supervised multi-task learning on sagittal MRI
scans with ResNet-FCN as the neural network backbone.

Method LV RV LA RA mIOU

w/o pre-training 0.445 0.415 0.186 0.254 0.325

MoCo V2 0.481 0.443 0.226 0.276 0.357

SSMTL 0.454 0.399 0.145 0.243 0.310

SSMTL+ 0.501 0.473 0.211 0.257 0.361

SSMTL(U-Net) 0.552 0.489 0.297 0.371 0.427

Table 6: Proxy evaluation of self-supervised multi-task learning with denoising
on CT scans.

Method Network PSNR

w/o pre-training U-Net 36.04

SSMTL U-Net 37.22

w/o pre-training ResNet-FCN 34.85

MoCo V2 ResNet-FCN 32.85

SSMTL ResNet-FCN 35.38

SSMTL+ ResNet-FCN 34.66

loss between the noisy input and the clean original images. We report the peak
signal-to-noise ratio (PSNR) in Table 6, where U-Net outperforms FCN by a
large margin.

Finally, we want to clarify that the experiments in this section are only
used to validate the theoretical discussion in a simplified scenario. The proposed
framework is designed for sequential medical images only. In practice, the medi-
cal tasks could have more complex problem settings and data challenges, which
requires further consideration. In addition, we conclude that the choice of the
neural network backbone should be dependent on the downstream dense predic-
tion tasks. A possible future research direction could be using neural architecture
search [13] to find the optimal network.

5 Conclusion

In this work, we propose a self-supervised representation learning framework for
dense prediction tasks on sequential medical images. The proposed framework
utilizes the human structural similarity to integrate MTL and SSL. The theo-
retical discussion and empirical analysis show that the proposed framework has
several advantages over SOTA SSL methods, which are originally designed for
natural images, on label-efficient medical image analysis. Limited by space, we
only investigate a few downstream tasks on medical images. In the future, we
will generalize the proposed framework for more dense prediction tasks in the
medical domain and study the task affinity between the pretext tasks and the
downstream tasks.
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